
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

3

Error Correction Codes and Signal
Processing in Flash Memory

Xueqiang Wang1, Guiqiang Dong2, Liyang Pan1 and Runde Zhou1
1Tsinghua University,

2Rensselaer Polytechnic Institute,
1China

2USA

1. Introduction

This chapter is to introduce NAND flash channel model, error correction codes (ECC) and
signal processing techniques in flash memory.
There are several kinds of noise sources in flash memory, such as random-telegraph noise,
retention process, inter-cell interference, background pattern noise, and read/program
disturb, etc. Such noise sources reduce the storage reliability of flash memory significantly.
The continuous bit cost reduction of flash memory devices mainly relies on aggressive
technology scaling and multi-level per cell technique. These techniques, however, further
deteriorate the storage reliability of flash memory. The typical storage reliability
requirement is that non-recoverable bit error rate (BER) must be below 10-15. Such stringent
BER requirement makes ECC techniques mandatory to guarantee storage reliability. There
are specific requirements on ECC scheme in NOR and NAND flash memory. Since NOR
flash is usually used as execute in place (XIP) memory where CPU fetches instructions
directly from, the primary concern of ECC application in NOR flash is the decoding latency
of ECC decoder, while code rate and error-correcting capability is more concerned in NAND
flash. As a result, different ECC techniques are required in different types of flash memory.
In this chapter, NAND flash channel is introduced first, and then application of ECC is
discussed. Signal processing techniques for cancelling cell-to-cell interference in NAND
flash are finally presented.

2. NAND flash channel model

There are many noise sources existing in NAND flash, such as cell-to-cell interference,
random-telegraph noise, background-pattern noise, read/program disturb, charge leakage
and trapping generation, etc. It would be of great help to have a NAND flash channel model
that emulates the process of operations on flash as well as influence of various
program/erase (PE) cycling and retention period.

2.1 NAND flash memory structure

NAND flash memory cells are organized in an array->block->page hierarchy, as illustrated
in Fig. 1., where one NAND flash memory array is partitioned into many blocks, and each

www.intechopen.com

Flash Memories

58

block contains a certain number of pages. Within one block, each memory cell string
typically contains 16 to 64 memory cells.

Fig. 1. Illustration of NAND flash memory structure.

All the memory cells within the same block must be erased at the same time and data are
programmed and fetched in the unit of page, where the page size ranges from 512-byte to
8K-byte user data in current design practice. All the memory cell blocks share the bit-lines
and an on-chip page buffer that holds the data being programmed or fetched. Modern
NAND flash memories use either even/odd bit-line structure, or all-bit-line structure. In
even/odd bit-line structure, even and odd bit-lines are interleaved along each word-line and
are alternatively accessed. Hence, each pair of even and odd bit-lines can share peripheral
circuits such as sense amplifier and buffer, leading to less silicon cost of peripheral circuits.
In all-bit-line structure, all the bit-lines are accessed at the same time, which aims to trade
peripheral circuits silicon cost for better immunity to cell-to-cell interference. Moreover,
relatively simple voltage sensing scheme can be used in even/odd bit-line structure, while
current sensing scheme must be used in all-bit-line structure. For MLC NAND flash
memory, all the bits stored in one cell belong to different pages, which can be either
simultaneously programmed at the same time, referred to as full-sequence programming, or
sequentially programmed at different time, referred to as multi-page programming.

2.2 NAND flash memory erase and program operation model

Before a flash memory cell is programmed, it must be erased, i.e., remove all the charges

from the floating gate to set its threshold voltage to the lowest voltage window. It is well

known that the threshold voltage of erased memory cells tends to have a wide Gaussian-like

distribution. Hence, we can approximately model the threshold voltage distribution of

erased state as

 (1)

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

59

where and are the mean and standard deviation of the erased state.

Regarding memory programming, a tight threshold voltage control is typically realized by
using incremental step pulse program (ISPP), i.e., memory cells on the same word-line are
recursively programmed using a program-and-verify approach with a stair case program
word-line voltage Vpp, as shown in Fig.2.

Fig. 2. Control-gate voltage pulses in program-and-verify operations.

Under such a program-and-verify strategy, each programmed state (except the erased state)
associates with a verify voltage that is used in the verify operations and sets the target
position of each programmed state threshold voltage window. Denote the verify voltage of
the target programmed state as , and program step voltage as . The threshold voltage

of the programmed state tends to have a uniform distribution over . Denote

 and for the k-th programmed state as and . We can model the ideal

threshold voltage distribution of the k-th programmed state as:

 (2)

The above ideal memory cell threshold voltage distribution can be (significantly) distorted in
practice, mainly due to PE cycling effect and cell-to-cell interference, which will be
discussed in the following.

2.3 Effects of program/erase cycling

Flash memory PE cycling causes damage to the tunnel oxide of floating gate transistors in
the form of charge trapping in the oxide and interface states, which directly results in
threshold voltage shift and fluctuation and hence gradually degrades memory device noise
margin. Major distortion sources include
1. Electrons capture and emission events at charge trap sites near the interface developed

over PE cycling directly result in memory cell threshold voltage fluctuation, which is
referred to as random telegraph noise (RTN);

2. Interface trap recovery and electron detrapping gradually reduce memory cell
threshold voltage, leading to the data retention limitation.

RTN causes random fluctuation of memory cell threshold voltage, where the fluctuation
magnitude is subject to exponential decay. Hence, we can model the probability density
function of RTN-induced threshold voltage fluctuation as a symmetric exponential

function:

www.intechopen.com

Flash Memories

60

 (3)

Let N denote the PE cycling number, scales with in an approximate power-law

fashion, i.e., is approximately proportional to .

Threshold voltage reduction due to interface trap recovery and electron detrapping can be
approximately modeled as a Gaussian distribution . Both and scale with N in

an approximate power-law fashion, and scale with the retention time in a logarithmic

fashion. Moreover, the significance of threshold voltage reduction induced by interface trap
recovery and electron detrapping is also proportional to the initial threshold voltage
magnitude, i.e., the higher the initial threshold voltage is, the faster the interface trap
recovery and electron detrapping occur and hence the larger threshold voltage reduction
will be.

2.4 Cell-to-cell interference

In NAND flash memory, the threshold voltage shift of one floating gate transistor can

influence the threshold voltage of its adjacent floating gate transistors through parasitic

capacitance-coupling effect, i.e. one float-gate voltage is coupled by the floating gate

changes of the adjacent cells via parasitic capacitors. This is referred to as cell-to-cell

interference. As technology scales down, this has been well recognized as one of major noise

sources in NAND flash memory. Threshold voltage shift of a victim cell caused by cell-to-

cell interference can be estimated as

(4)

where represents the threshold voltage shift of one interfering cell which is

programmed after the victim cell, and the coupling ratio is defined as

 (5)

where is the parasitic capacitance between the interfering cell and the victim cell, and

 is the total capacitance of the victim cell. Cell-to-cell interference significance is

affected by NAND flash memory bit-line structure. In current design practice, there are two

different bit-line structures, including conventional even/odd bit-line structure and

emerging all-bit-line structure. In even/odd bit-line structure, memory cells on one word-

line are alternatively connected to even and odd bit-lines and even cells are programmed

ahead of odd cells in the same wordline. Therefore, an even cell is mainly interfered by five

neighboring cells and an odd cell is interfered by only three neighboring cells, as shown in

Fig. 3. Therefore, even cells and odd cells experience largely different amount of cell-to-cell

interference. Cells in all-bit-line structure suffers less cell-to-cell inference than even cells in

odd/even structure, and the all-bit-line structure can effectively support high-speed current

sensing to improve the memory read and verify speed. Therefore, throughout the remainder

of this paper, we mainly consider NAND flash memory with the all-bit-line structure.

Finally, we note that the design methods presented in this work are also applicable when

odd/even structure is being used.

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

61

Fig. 3. Illustration of cell-to-cell interference in even/odd structure: even cells are interfered
by two direct neighboring cells on the same wordline and three neighboring cells on the
next wordline, while odd cells are interfered by three neighboring cells on the next
wordline.

2.5 NAND flash memory channel model

Based on the above discussions, we can approximately model NAND flash memory device

characteristics as shown in Fig. 4, using which we can simulate memory cell threshold

voltage distribution and hence obtain memory cell raw storage reliability.

),(ee  r ),(dd  tppV

Fig. 4. Illustration of the approximate NAND flash memory device model to incorporate
major threshold voltage distortion sources.

Based upon the model of erase state and ideal programming, we can obtain the threshold

voltage distribution function pp(x) right after ideal programming operation. Recall that ppr(x)

denotes the RTN distribution function, and let par(x) denote the threshold voltage

distribution after incorporating RTN, which is obtained by convoluting pp(x) and pr(x), i.e.,

 (6)

The cell-to-cell interference is further incorporated based on the model of cell-to-cell

interference. To capture inevitable process variability, we set both the vertical coupling ratio

and diagonal coupling ratio as random variables with tailed truncated Gaussian distribution:

 (7)

where and are the mean and standard deviation, and CC is chosen to ensure the

integration of this tail truncated Gaussian distribution equals to 1. In all the simulations in

this section, we set and .

www.intechopen.com

Flash Memories

62

Let pac(x) denote the threshold voltage distribution after incorporating cell-to-cell
interference. Denote the retention noise distribution as pt(x). The final threshold voltage
distribution pf(x) is obtained as

 (8)

The above presented approximate mathematical channel model for simulating NAND flash
memory cell threshold voltage is further demonstrated using the following example.
Example 1: Let us consider 2bits/cell NAND flash memory. Normalized and of the
erased state are set as 1.4 and 0.35, respectively. For the three programmed states, the
normalized program step voltage is 0.2, and the normalized verify voltages Vp are 2.6,
3.2 and 3.93, respectively. For the RTN distribution function, we set the parameter

, where equals to 0.00025. Regarding to cell-to-cell interference, we set the
ratio between the means of and as 0.08 and 0.0048, respectively. For the function

 to capture trap recovery and electron detrapping during retention, we set that
scales with and scales with , and both scale with , where denotes
the memory retention time and is an initial time and can be set as 1 hour. In addition, as
pointed out earlier, both and also depend on the initial threshold voltage. Hence we
set that both approximately scale , where is the initial threshold voltage, and
and are constants. Therefore, we have

 (9)

where we set , , , and . Accordingly, we
carry out Monte Carlo simulations to obtain

Fig. 5. Simulated results to show the effects of RTN, cell-to-cell interference, and retention on
memory cell threshold voltage distribution after 10K PE cycling and 10-year retention.

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

63

Fig. 6. Simulated threshold voltage distribution after 100 PE cycling and 1-month retention
and after 10K PE cycling and 10-year retention, which clearly shows the dynamics inherent
in NAND flash memory characteristics.

Fig. 5 shows the cell threshold voltage distribution at different stages under 10K PE cycling

and with 10-year storage period. The final threshold voltage distributions after 100 PE

cycling and 1 month storage and after 10K PE cycling and 10 years storage are shown in Fig.

6. Fig. 7 presents the evolution of simulated raw BER with program/erase cycling.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
-4

10
-3

10
-2

10
-1

P/E cycling

R
a
w

 B
E

R

Fig. 7. The evolution of raw BER with program/erase cycling under 10-year storage period.

3. Basics of error correction codes

In the past decades, error correction codes (ECC) have been widely adapted in various

communication systems, magnetic recording, compact discs and so on. The basic scheme of

ECC theory is to add some redundancy for protection. Error correction codes are usually

www.intechopen.com

Flash Memories

64

divided into two categories: block codes and convolution codes. Hamming codes, Bose-

Chaudur-Hocquenghem(BCH) codes, Reed-Solomon(RS) codes, and Low-density parity-

check (LDPC) codes are most notable block codes and have been widely used in

communication, optical, and other systems.

The encoding/decoding scheme of a block code in a memory is shown in Fig. 8. When any

k-bit information data is written to flash memory, an encoder circuit generates the parity

bits, adds these parity bits to the k-bit information data and creates a n-bit codeword. Then

the whole codeword is written in and stored on a page of the memory array. During the

reading operation, a decoder circuit searches errors in a codeword, and corrects the

erroneous bits within its error capability, thereby recovering the codeword.

Fig. 8. ECC encoding and decoding system in a flash memory

Current NOR flash memory products use Hamming code with only 1-bit error correction.

However, as raw BER increases, 2-bit error corretion BCH code becomes a desired ECC.

Besides, in current 2b/cell NAND flash memory. BCH codes are widely employed to

achieve required storage reliability. As raw BER soars in future 3b/cell NAND flash

memory, BCH codes are not sufficient anymore, and LDPC codes become more and more

necessary for future NAND flash memory products.

3.1 Basics of BCH codes

BCH codes were invented through independent researches by Hocquenghen in 1959 and by

Bose and Ray-Chauduri in 1960. Flash memory uses binary primitive BCH code which is

constructed over the Galois fields GF(2m). Galois field is a finite field in the coding theory

and was first discovered by Evariste Galois. In the following, we will recall some algebraic

notions of GF(2m).

Definition 3.1 Let α be an element of GF(2m), α is called primitive element if the smallest

natural number n that satisfies αn=1 equals 2m -1, that is, n=2m -1.

Theorem 3.1 Every none null element of GF(2m) can be expressed as power of primitive

element α, that is, the multiplicative group GF(2m) is cyclic.

Definition 3.2 GF(2m)[x] is indicated as the set of polynomials of any degree with

coefficients in GF(2m). An irreducible polynomial p(x) in GF(2m)[x] of degree m is called

primitive if the smallest natural number n, such that xn–1 is a multiple of p(x), is n=2m–1.

In fact, if p(x)=xm+am-1xm–1+…+a1x+a0 is a primitive polynomial in GF(p)[x] and α is one of its

roots, then we have

 2 1
0 1 2 1

m m
ma a a a a   
     (10)

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

65

Equation (10) indicates that each power of α with degree larger than m can be converted
to a polynomial with degree m-1 at most. As an example, some elements in the field
GF(24), their binary representation, and according poly representation forms are shown in
Table 1.

Element
Binary

representation
Polynomial

representation

0 0000 0

α0 1000 1

α1 0100 α

α3 0001 α3

α4 1100 1+α

α5 0110 α+α2

α6 0011 α2+α3

Table 1. Different representations of elements over GF(24)

Based on the Galois fields GF(2m), the BCH(n, k) code is defined as
Codeword length: n = 2m-1

Information data length: k  2m-mt
In a BCH code, every codeword polynomial c(x) can be expressed as c(x)=m(x)g(x), where

g(x) is the generator polynomial and m(x) is the information polynomial.

Definition 3.3 Let α be the primitive element of GF(2m). Let t be the error correction

capability of BCH code. The generator polynomial g(x) of a primitive BCH code is the

minimal degree polynomial with root: α, α2,…αt. g(x) is given by

 0 1 2() { (), (), ()}dg x LCM x x x     (11)

Where Ψi is the minimal polynomial of αi.

Generally, the BCH decoding is much more complicated than the encoding. A typical

architecture of BCH code application in a flash memory is presented in Fig. 9.

i


Fig. 9. Architecture of BCH code application in a flash memory

3.1.1 BCH encoding
For a BCH(n,k) code, assuming its generator polynomial is g(x), and the polynomial of the

information to be encoded is m(x) with degree of k-1. The encoding process is as follows:

First, the message m(x) is multiplied by xn-k, and then divided by g(x), thereby obtaing a

quotient q(x) and a remainder r(x) according to equation (12). The remainder r(x) is the

polynomial of the parity information; hence the desired parity bits can be obtained.

www.intechopen.com

Flash Memories

66

() ()

()
() ()

n km x x r x
q x

g x g x


  (12)

As mentioned above, any codeword of BCH code is a multiple of the generator polynomial.

Therefore, an encoded codeword c(x) can be expressed as:

 () () ()n kc x m x x r x   (13)

3.1.2 BCH decoding

Generally the decoding procedure for binary BCH codes includes three major steps, which is

shown in Fig. 9.

 Step 1: Calculating the syndrome S.

 Step 2: Determining the coefficients of the error-location polynomial.

 Step 3: Finding the error location using Chien Search and correcting the errors.

During the period of data storage in flash memory, the repeated program/erase (P/E) cycles

may damage the stored information; thereby some errors occur in the read operation. The

received codeword can be expressed as r(x) = c(x) + e(x) with the error polynomial

representation e(x) = e0 + e1x + … en-1xn-1

The first step in the BCH decoding is to calculate 2t syndromes with the received r(x). The

computation is given by

 2
()()

() 1
() ()

i
i

i i

S xr x
Q x for i t

x x 
    (14)

Where Ψi is the minimal polynomial of element αi, t is the error numbers in codeword. Si(x)

is called syndrome. Since Ψi(αi)=0, the syndrome can also be obtained as Si(αi) = r(αi).

 Si(αi) = r(αi) (15)

From equation (14), it can be seen that the syndrome calculation in the BCH decoding is

similar to the encoding process in equation (12). Hence, they both employ the linear

feedback shift register (LFSR) circuit structure.

The next step is to compute the coefficients of the error-location polynomial using the

obtained syndrome values. The error-location polynomial is defined as

 2
1 21() t

tx x x x       (16)

Where and i (1 i  t) is the required coefficient.

There are two main methods to compute the coefficients, one is Peterson method and the

other is Berlekamp-Massey algorithm. In the following sections, we will discuss and employ

both methods for error correction in different types of flash memory.

The last step of BCH decoding is Chien search. Chien search is employed to search for the

roots of the error locator polynomial. If the roots are found (i) =0 for 0 i n-1, then the

error location is n-1-i in the codeword. It should be noted that the three modules of a BCH

decoder is commonly designed with three pipeline stages, leading to high throughput of the

BCH decoding.

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

67

3.2 LDPC code
Low-density parity-check (LDPC) codes can provide near-capacity performance. It was
invented by Gallager in 1960, but due to the high complexity in its implementation, LDPC
codes had been forgotten for decades, until Mackey rediscovered LDPC codes in the 1990s.
Since then LDPC codes have attracted much attention.
A LDPC code is given by the null space of a sparse mxn ‘low-density’ parity-check matrix H.
Regular LDPC codes have identical column weight and identical row weight. Each row of H
represents one parity check. Define each row of H as check node (CN), and each column of
H as variable node (VN). A LDPC code can be represented by Tanner graph, which is a
bipartite graph and includes two types of nodes: n variable nodes and m check nodes. In
Tanner graph, the i-th CN is connected to j-th VN, if hi,j=1.
Consider a (6, 3) linear block code with H matrix as

H =
 1 1 1 0 1 0

 1 1 0 1 0 1

 1 0 1 1 1 1

The corresponding Tanner graph is shown in Fig. 10.
The performance of LDPC code depends heavily on parity-check matrix H. Generally
speaking, LDPC code with larger block length, larger column weight and larger girth trends
to have better performance. In Tanner graph, a cycle is defined as a sequential of edges that
form a closed path. Short cycles degrade the performance of LDPC codes, and length of the
shortest cycle in Tanner graph is named as girth.

Fig. 10. The Tanner graph for the given (6, 3) linear block code.

There have been lots of methods to construct parity-check matrix. To reduce the hardware
complexity of LDPC encoder and decoder, quasi-cyclic (QC) LDPC code was proposed and
has widely found its application in wireless communication, satellite communicate and
hard-disk drive.
As for LDPC decoding, there are several iterative decoding algorithms for LDPC codes,
including bit-flipping (BF) like decoding algorithms and soft-decision message-passing
decoding algorithms. Among all BF-like decoding, BF and candidate bit based bit-flipping
(CBBF) can work with only hard-decision information. Other BF-like decoding require soft-
decision information, which incurs large sensing latency penalty in flash memory devices as
discussed later, though they may increase the performance a little bit.
Soft-decision message passing algorithm, such as Sum-product algorithm (SPA), could
provide much better performance than BF-like decoding, upon soft-decision information.
However, the complexity of SPA decoding is very high. To reduce the decoding complexity,
min-sum decoding was proposed, with tolerable performance loss. Readers can refer to
“Channel Codes: Classical and Modern” by Willian E. Ryan and Shu Lin.

www.intechopen.com

Flash Memories

68

4. BCH in NOR flash memory

Usually NOR flash is used for code storage and acts as execute in place (XIP) memory where

CPU fetches instructions directly from memory. The code storage requires a high-reliable
NOR flash memory since any code error will cause a system fault. In addition, NOR flash
memory has fast read access with access time up to 70ns. During read operation, an entire
page, typical of 256 bits, is read out from memory array, and the ECC decoder is inserted in

the critical data path between sense amplifiers and the page latch. The fast read access
imposes a stringent requirement on the latency of the ECC decoder (required <10%
overhead), and the ECC decoder has to be designed in combinational logic. As a result,

decoding latency becomes the primary concern for ECC in NOR Flash memory.
Traditionally, hamming code with single-error-correction (SEC) is applied to NOR flash
memory since it has simple decoding algorithm, small circuit area, and short-latency
decoding. However, in new-generation 3xnm MLC NOR flash memory, the raw BER will

increase up to 10-6 while application requires the post-ECC BER be reduced to 10-12 below.
From Fig. 11, it is clear that hamming code with t=1 is not sufficient anymore, and double-
error-correction (DEC) BCH code gains more attraction in future MLC NOR flash memory.

However, the primary issue with DEC BCH code applied in NOR flash is the decoding
latency. In the following, a fast and adaptive DEC BCH decoding algorithm is proposed and
a high-speed BCH(274,256,2) decoder is designed for NOR flash memory.

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-22

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

B
E

R
 A

ft
e
r

E
C

C

Raw BER

 no ECC

 Hamming code

 DEC BCH code

Fig. 11. BER curves of different ECC in NOR flash memory with 256-bit page size

4.1 High-speed DEC BCH decoding algorithm

First we employ equation equation (15) for high-speed syndrome computation. The entire

expression of syndromes is

2 2

1 2 2 0 1

1 2 1 2 1

,

 1 1 . 1

() () . ()
(, ,) (. . .)

() () . ()

t
T

t n

n n t n

S S S r H r r r
  

    

 
 
      
 
 
 

 (17)

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

69

Here r is the received codeword and H is defined as the parity matrix

 Each element of GF(2m) i can be represented by a m-tuples binary vector, hence each
element in the vector can be obtained using mod-2 addition operation, and all the
syndromes can be obtained with the XOR-tree circuit structure. Furthermore, for binary
BCH codes in flash memory, even-indexed syndromes equal the squares of the other one,
i.e., S2i=Si2, therefore, only odd-indexed syndromes (S1, S3 …S2t-1) are needed to compute.
Then we propose a fast and adaptive decoding algorithm for error location. A direct solving
method based on the Peterson equation is designed to calculate the coefficients of the error-
location polynomial. Peterson equation is show as follows

1 1

2 2 3 1 1

2 1 2 1 1

2 . . .

 . . .

 . .

t t t

t t t

t t t t

S S S S

S S S S

S S S S








  

 

     
     
     
     
     
     
          

 (18)

For DEC BCH code t=2, with the even-indexed syndrome S1, S3, the coefficient 1, 2 can be

obtained by direct solving the above matrix as

2

1 1 2 1 3 1, /S S S S   
 (19)

Hence, the error-locator polynomial is given by

 2 2 23
1 2 1 1

1

1 1() ()
S

x x x S x S x
S

         (20)

To eliminate the complicate division operation in above equation, a division-free

transform is performed by multiplying both sides by S1 and the new polynomial is

rewritten as (21). Since it always has S1  0 when any error exists in the codeword, this

transform has no influence of error location in Chien search where roots are found in (x)

=0, that is also ’(x) =0.

2 2 3 2

0 1 2 1 1 1 3
' ' ' '() ()x x x S S x S S x         

 (21)

The final effort to reduce complexity is to transform the multiplications in the coefficients of

equation (21) to simple modulo-2 operations. As mentioned above, over the field GF(2m),

each syndrome vector (S[0], S[1], . . . S[m-1]) has a corresponding polynomial S(x) = S[0] +

S[1]x+ . . . + S[m-1]xm-1. According to the closure axiom over GF(2m), each component of the

coefficient 1 and 2 is obtained as

1 1

2 3 1 1

0 1

0 1

'

'

[] [] for ,

[] [] [] [] for , ,

i S j i j m

i S i S j S k i j k m





   

     




 (22)

It can be seen that only modulo-2 additions and modulo-2 multiplications are needed to
calculate above equation, which can be realized by XOR and AND logic operations,
respectively. Hardware implementation of the two coefficients in BCH(274, 256, 2) code is

www.intechopen.com

Flash Memories

70

shown in Fig. 12. It can be seen that coefficient 1 is implemented with only six 2-input XOR

gates and coefficient 2 can be realized by regular XOR-tree circuit structure. As a result, the
direct solving method is very effective to simplify the decoding algorithm, thereby reduce
the decoding latency significantly.

Fig. 12. Implementation of the two coefficient in BCH(274,256,2)

Further, an adaptive decoding architecture is proposed with the reliability feature of flash
memory. As mentioned above, flash memory reliability is decreased as memory is used. For
the worst case of multi-bit errors in flash memory, 1-bit error is more likely happened in the
whole life of flash memory (R. Micheloni, R. Ravasio & A. Marelli, 2006). Therefore, the best-
effort is to design a self-adaptive DEC BCH decoding which is able to dynamically perform
error correction according to the number of errors. Average decoding latency and power
consumption can be reduced.
The first step to perform self-adaptive decoding is to detect the weight-of-error pattern in
the codeword, which can be obtained with Massey syndrome matrix.

1

3 2 1

2 1 2 2 2 1

 1 0 0

 0

j

j j j j

S

L S S S

S S S S  

 
 

  
 
 





 (23)

where Sj denotes each syndrome value (1≤j≤2t-1).
With this syndrome matrix, the weight-of-error pattern can be bounded by the expression of
det(L1), det(L2), …, det(Lt). For a DEC BCH code in NOR flash memory, the weight-of-error
pattern is illustrated as follows

 If there is no error, then det(L1) = 0, det(L2) = 0, that is,

1

3
1 30 0, S S S   (24)

 If there are 1-bit errors, then det(L1)≠0, det(L2) = 0, that is

1

3
1 30 0, S S S   (25)

 If there are 2-bit errors, then det(L1)≠0, det(L2)≠0, that is

1

3
1 30 0, S S S   (26)

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

71

Let define R= S13 + S3. It is obvious that variable R determines the number of errors in the
codeword. On the basis of this observation, the Chien search expression partition is
presented in the following:

 Chien search expression for SEC

 1

2
1() ()i i

SEC S S    for 2m - n ≤ i ≤2m –1 (27)

 Chien search expression for DEC

2() () ()i i i

DEC SEC R      for 2m - n ≤ i ≤2m –1 (28)

Though above equations are mathematically equivalent to original expression in equation
(21), this reformulation make the Chien search for SEC able to be launched once the
syndrome S1 is calculated. Therefore, a short-path implementation is achieved for SEC
decoding in a DEC BCH code. In addition, expression (27) is included in expression (28),
hence, no extra arithmetic operation is required for the faster SEC decoding within the DEC
BCH decoding. Since variable R indicates the number of errors, it is served as the internal
selection signal of SEC decoding or DEC decoding. As a result, self-adaptive decoding is
achieved with above proposed BCH decoding algorithm reformulation.
To meet the decoding latency requirement, bit-parallel Chien search has to be adopted. Bit-
parallel Chien search performs all the substitutions of (28) of n elements in a parallel way,
and each substitution has m sub-elements over GF(2m). Obviously, this will increase the
complexity drasmatically. For BCH(274, 256, 2) code, the Chien search module has 2466
expression, each can be implemented with a XOR-tree. In (X. Wang, D. Wu & C. Hu, 2009),
an optimization method based on common subexpression elimination (CSE) is employed to
optimize and reduce the logic complexity.

4.2 High-speed BCH decoder implementation

Based on the proposed algorithm, a high-speed self-adaptive DEC BCH decoder is design
and its architecture is depicted in Fig. 13. Once the input codeword is received from NOR
flash memory array, the two syndromes S1, S3 are firstly obtained by 18 parallel XOR-trees.
Then, the proposed fast-decoding algorithm is employed to calculate the coefficients of error
location polynomial in the R calculator module. Meanwhile, a short-path is implemented for
SEC decoding once the syndrome value S1 is obtained. Finally, variable R determines
whether SEC decoding or DEC decoding should be performed and selects the according
data path at the output.

Fig. 13. Block diagram of the proposed DEC BCH decoder.

The performance of an embedded BCH (274,256,2) decoder in NOR flash memory is

summarized in Table 2. The decoder is synthesized with Design Compiler and implemented

in 180nm CMOS process. It has 2-bit error correction capability and achieves decoding

www.intechopen.com

Flash Memories

72

latency of 4.60ns. In addition, it can be seen that the self-adaptive decoding is very effective

to speed up the decoding and reduce the power consumption for 1-bit error correction. The

DEC BCH decoder satisfies the short latency and high reliability requirement of NOR flash

memory.

Code Parameter BCH(274, 256) codes

Information data 256 bits

Parity bits 18 bits

Syndrome time 1.66ns

Data output time
1-bit error 3.53ns

2-bit errors 4.60ns

Power consumption
(Vdd=1.8V, T=70ns)

1-bit error 0.51mW

2-bit error 1.25mW

Cell area 0.251 mm2

Table 2. Performance of a high-speed and self-adaptive DEC BCH decoder

5. LDPC ECC in NAND flash memory

As raw BER in NAND flash increases to close to 10-2 at its life end, hard-decision ECC, such

as BCH code, is not sufficient any more, and such more powerful soft-decision ECC as

LDPC code becomes necessary. The outstanding performance of LDPC code is based on

soft-decision information.

5.1 Soft-decision log-likelihood information from NAND flash
Denote the sensed threshold voltage of a cell as Vth, the distribution of erase state as ,

the distribution of programmed states as , where is the index of

programmed state. Denote as the set of the states whose -th bit is 0. Thus, given the ,

the LLR of i-th code bit in one cell is:

 (29)

Clearly, LLR calculation demands the knowledge of the probability density functions of all

the states, and threshold voltage of concerned cells.

There exist many kinds of noises, such as cell-to-cell interference, random-telegraph noise,

retention process and so on, therefore it would be unfeasible to derive the closed-form

distribution of each state, given the NAND flash channel model that captures all those noise

sources. We can rely on Monte Carlo simulation with random input to get the distribution of

all states after being interrupted by several noise sources in NAND flash channel. With

random data to be programmed into NAND flash cells, we run a large amount of simulation

on the NAND flash channel model to get the distribution of all states, and the obtained

threshold voltage distribution would be very close to real distribution under a large amount

of simulation. In practice, the distribution of can be obtained through fine-grained

sensing on large amount of blocks.

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

73

In sensing flash cell, a number of reference voltages are serially applied to the

corresponding control gate to see if the sensed cell conduct, thus the sensing result is not the

exact target threshold voltage but a range which covers the concerned threshold voltage.

Denote the sensed range as (and are two adjacent reference voltages). There

is be .

Example 2: Let’s consider a 2-bit-per-cell flash cell with threshold voltage of 1.3V. Suppose

the reference voltage starts from 0V, with incremental step of 0.3V. The reference voltages

applied to the flash cell is: 0, 0.3V, 0.6V, 0.9V, 1.2V, 1.5V ... This cell will not be open until the

reference voltage of 1.5V is applied, so the sensing result is that the threshold voltage of this

cell stays among (1.2, 1.5].

The corresponding LLR of i-th bit in one cell is then calculated as

 (30)

5.2 Performance of LDPC code in NAND flash

With the NAND flash model presented in section 2 and the same parameters as those in

Example 1, the performances of (34520, 32794, 107) BCH code and (34520, 32794) QC-LDPC

codes with column weight 4 are presented in Fig. 14, where floating point sensing is

assumed on NAND flash cells. The performance advantage of LDPC code is obvious.

0 2000 4000 6000 8000 10000

10
-3

10
-2

10
-1

10
0

Cycling

P
E

R

LDPC

BCH

Fig. 14. Page error rate performances of LDPC and BCH codes with the same coding rate
under various program/erase cycling.

5.3 Non-uniform sensing in NAND flash for soft-decision information

As mentioned above, sensing flash cell is performed through applying different reference
voltages to check if the cell can open, so the sensing latency directly depends on the number of
applied sensing levels. To provide soft-decision information, considerable amount of sensing
levels are necessary, thus the sensing latency is very high compared to hard-decision sensing.

www.intechopen.com

Flash Memories

74

Soft-decision sensing increases not only the sensing latency, but also the data transfer latency
from page buffer to flash controller, since these data is transferred in serial.
Example 3: Let’s consider a 2-bit-per-cell flash cell with threshold voltage of 1.3V. Suppose

the hard reference voltages as 0, 0.6V and 1.2V respectively. Suppose sensing one reference

voltage takes 8us. The page size is 2K bytes and I/O bus works as 100M Hz with 8-bit

width. For hard-decision sensing, we need to apply all three hard reference voltages to sense

it out, resulting in sensing latency of 24us. To sense a page for soft-decision information

with 5-bit precision, we need us, more than ten times the hard-decision sensing

latency. With 5-bit soft-decision information per cell, the total amount of data is increased by

2.5 times, thus the data transfer latency is increased by 2.5 times, from 20.48 us to

51.2us. The overall sensing and transfer latency jumps to 51.2+256=307.2 us from

20.48+24=44.48 us.

Based on above discussion, it is highly desirable to reduce the amount of soft-decision

sensing levels for the implementation of soft-decision ECC. Conventional design practice

tends to simply use a uniform fine-grained soft-decision memory sensing strategy as

illustrated in Fig. 15, where soft-decision reference voltages are uniformly distributed

between two adjacent hard-decision reference voltages.

Fig. 15. Illustration of the straightforward uniform soft-decision memory sensing. Note that
soft-decision reference voltages are uniformly distributed between any two adjacent hard-
decision reference voltages.

Intuitively, since most overlap between two adjacent states occurs around the corresponding

hard-decision reference voltage (i.e., the boundary of two adjacent states) as illustrated in

Fig. 15, it should be desirable to sense such region with a higher precision and leave the

remainder region with less sensing precision or even no sensing. This is a non-uniform or

non-linear memory sensing strategy, through which the same amount of sensing voltages is

expected to provide more information.

Given a sensed threshold voltage Vth, its entropy can be obtained as

 (31)

Where

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

75

 (32)

For one given programmed flash memory cell, there are always just one or two items being
dominating among all the items for the calculation of . Outside of the

dominating overlap region, there is only one dominating item very close to 1 while all the
other items being almost 0, so the entropy will be very small. On the other hand, within the
dominating overlap region, there are two relatively dominating items among all the

 items, and both of them are close to 0.5 if locates close to the hard-

decision reference voltage, i.e., the boundary of two adjacent states, which will result in a
relatively large entropy value . Clearly the region with large entropy tends to demand a

higher sensing precision. So, it is intuitive to apply a non-uniform memory sensing strategy as
illustrated in Fig. 16. Associated with each hard-decision reference voltage at the boundary of
two adjacent states, a so-called dominating overlap region is defined and uniform memory
sensing is executed only within each dominating overlap region.
Given the sensed of a memory cell, the value of entropy is mainly determined by

two largest probability items, and this translates into the ratio between the two largest
probability items. Therefore, such a design trade-off can be adjusted by a probability ratio

, i.e., let denote the dominating overlap region between two adjacent states, we

can determine the border and by solving

 (33)

Fig. 16 Illustration of the proposed non-uniform sensing strategy. Dominating overlap
region is around hard-decision reference voltage, and all the sensing reference voltages only
distribute within those dominating overlap regions.

Since each dominating overlap region contains one hard-decision reference voltage and two
borders, at least sensing levels should be used in non-uniform sensing. Simulation

results on BER performance of rate-19/20 (34520, 32794) LDPC codes in uniform and non-
uniform sensing under various cell-to-cell interference strengths for 2 bits/cell NAND flash
are presented in Fig. 17. Note that at least 9 non-uniform sensing levels is required for non-
uniform sensing for 2 bits/cell flash. The probability ratio is set as 512. Observe that

www.intechopen.com

Flash Memories

76

Fig. 17. Performance of LDPC code when using the non-uniform and uniform sensing
schemes with various sensing level configurations.

15-level non-uniform sensing provides almost the same performance as 31-level uniform
sensing, corresponding to about 50% sensing latency reduction. 9-level non-uniform sensing
performs very closely to 15-level uniform sensing, corresponding to about 40% sensing
latency reduction.

6. Signal processing for NAND flash memory

As discussed above, as technology continues to scale down and hence adjacent cells become
closer, parasitic coupling capacitance between adjacent cells continues to increase and results
in increasingly severe cell-to-cell interference. Some study has clearly identified cell-to-cell
interference as the major challenge for future NAND flash memory scaling. So it is of
paramount importance to develop techniques that can either minimize or tolerate cell-to-cell
interference. Lots of prior work has been focusing on how to minimize cell-to-cell interference
through device/circuit techniques such as word-line and/or bit-line shielding. This section
presents to employ signal processing techniques to tolerate cell-to-cell interference.
According to the formation of cell-to-cell interference, it is essentially the same as inter-
symbol interference encountered in many communication channels. This directly enables
the feasibility of applying the basic concepts of post-compensation, a well known signal
processing techniques being widely used to handle inter-symbol interference in
communication channel, to tolerate cell-to-cell interference.

6.1 Technique I: Post-compensation

It is clear that, if we know the threshold voltage shift of interfering cells, we can estimate the
corresponding cell-to-cell interference strength and subsequently subtract it from the sensed

threshold voltage of victim cells. Let denote the sensed threshold voltage of the -th

interfering cell and denote the mean of erased state, we can estimate the threshold

voltage shift of each interfering cell as . Let denote the mean of the

corresponding coupling ratio, we can estimate the strength of cell-to-cell interference as

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

77

 (34)

Therefore, we can post-compensate cell-to-cell interference by subtracting estimated from
the sensed threshold voltage of victim cells. In [Dong, Li & Zhang, 2010], the authors presents
simulation result of post-compensation on one initial NAND flash channel with the odd/even
structure. Fig. 18 shows the threshold voltage distribution before and after post-compensation.
It’s obvious that post-compensation technique can effectively cancel interference.
Note that the sensing quantization precision directly determines the trade-off between the cell-

to-cell interference compensation effectiveness and induced overhead. Fig. 19 and Fig. 20 show

the simulated BER vs. cell-to-cell coupling strength factor for even and odd pages, where 32-

level and 16-level uniform sensing quantization schemes are considered. Simulation results

clearly show the impact of sensing precision on the BER performance. Under 32-level sensing,

post-compensation could provide large BER performance improvement, while 16-level sensing

degrades the odd cells’ performance when cell-to-cell interference strength is low.

Fig. 18. Simulated victim cell threshold voltage distribution before and after post-
compensation.

Reverse Programming for Reading Consecutive Pages

To execute post-compensation for concerned page, we need the threshold voltage
information of its interfering page. When consecutive pages are to be read, information on
the interfering pages become inherently available, hence we can capture the approximate
threshold voltage shift and estimate the corresponding cell-to-cell interference on the fly
during the read operations for compensation.
Since sensing operation takes considerable latency, it would be feasible to run ECC
decoding on the concerned page first, and sensing the interfering page will not be started
until that ECC decoding fails, or will be started while ECC decoding is running.

www.intechopen.com

Flash Memories

78

Fig. 19. Simulated BER performance of even cells when post-compensation is used.

Fig. 20. Simulated BER performance of odd cells when post-compensation is used.

Note that pages are generally programmed and read both in the same order, i.e. page with
lower index is programmed and read prior to page with higher index in consecutive case.
Since later programmed page imposes interference on previously programmed neighbor
page, as a result, one victim page is read before its interfering page is read in reading
consecutive pages, hence extra read latency is needed to wait for reading interfering page of
each concerned page. In the case of consecutive pages reading, all consecutive pages are
concerned pages, and each page acts as the interfering page to the previous page and
meanwhile is the victim page of the next page. Intuitively, reversing the order of
programming pages to be descending order, i.e., pages with lower index are programmed
latter, meanwhile reading pages in the ascending order can eliminate this extra read latency
in reading consecutive pages. This is named as reverse programming scheme.
In this case, when we read those consecutive pages, after one page is read, it can naturally
serve to compensate cell-to-cell interference for the page being read later. Therefore the extra
sensing latency on waiting for sensing interfering page is naturally eliminated. Note that this
reverse programming does not influence the sensing latency of reading individual pages.

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

79

6.2 Technique II: Pre-distortion
Pre-distortion or pre-coding technique widely used in communication system can also be
used in NAND flash: Before a page is programmed, if its interfering pages are also known,
we can predict the threshold voltage shift induced by cell-to-cell interference for each victim
cell, and then correspondingly pre-distort the victim cell target programming voltage.
Hence, after its interfering pages are programmed, the pre-distorted victim cell threshold
voltages is expected to shift to its desired location by cell-to-cell interference.

Let

denote the expected threshold voltage of the -th interfering cell after programming

and denote the mean of erased state, we can predict the cell-to-cell interference
experienced by the victim cell as

 (35)

Let denote the target verify voltage of the victim cell in programming operation, we can

pre-distort the victim cell by shifting the verify voltage from to . The threshold
voltage of the victim cell will be shifted towards its desired location after the occurrence of cell-
to-cell interference. It should be emphasized that, since we cannot change the threshold
voltage if the victim cell should stay at the erased state, this pre-distortion scheme can only
handle cell-to-cell interference for those programmed states but is not effective for erased state.
Fig. 21 illustrates the process of pre-distortion, where the verify voltage is assumed to be
able to be adjusted with a floating-point precision. Clearly, this technique can be considered
as a counterpart of the post-compensation technique.

Fig. 21. Illustration of threshold voltage distribution of victim even cells in even/odd
structure when data pre-distortion is being used.

Fig.22 shows the cell threshold distribution with the cell-to-cell interference strength factor
 under the same initial NAND flash channel model as in above subsection, where

the pre-distortion is assumed to be able to be adjusted with a floating-point precision.
Fig. 23 shows the simulated BER of even cells over a range of cell-to-cell interference
strength factor s. Besides the ideal floating point precision, pre-distortion with finite
precision is also shown, where the range of pre-distorted is quantized into either 16 or 32

www.intechopen.com

Flash Memories

80

levels. Clearly, as the finite quantization precision of pre-distorted increases, it can
achieve a better tolerance to cell-to-cell interference, at the cost of increased programming
latency, a larger page buffer to hold the data and higher chip-to-chip communication load.

Fig. 22. Simulated threshold voltage distribution when using pre-distortion.

Fig. 23. The simulated BER of even cells with pre-distortion under various cell-to-cell
strength factor.

7. Reference

K. Kim et.al, “Future memory technology: Challenges and opportunities,” in Proc. of International
Symposium on VLSI Technology, Systems and Applications, Apr. 2008, pp. 5–9.

www.intechopen.com

Error Correction Codes and Signal Processing in Flash Memory

81

G. Dong, S. Li, and T. Zhang, “Using Data Post-compensation and Pre-distortion to Tolerat
Cell-to-Cell Interference in MLC NAND Flash Memory”, IEEE Transactions on
Circuits and Systems I, vol. 57, issue 10, pp. 2718-2728, 2010

Y. Li and Y. Fong, “Compensating for coupling based on sensing a neighbor using
coupling,” United States Patent 7,522,454, Apr. 2009.

G. Dong, N. Xie, and T. Zhang, “On the Use of Soft-Decision Error Correction Codes in
NAND Flash Memory”, IEEE Transactions on Circuits and Systems I, vol. 58, issue 2,
pp. 429-439, 2011

E. Gal and S. Toledo, “Algorithms and data structures for flash memories,” ACM Computing
Surveys, vol. 37, pp. 138–163, June 2005.

Y. Pan, G. Dong, and T. Zhang, “Exploiting Memory Device Wear-Out Dynamics to
Improve NAND Flash Memory System Performance”, USENIX Conference on File
and Storage Technologies (FAST), Feb. 2011

G. Dong, N. Xie, and T. Zhang, “Techniques for Embracing Intra-Cell Unbalanced Bit Error
Characteristics in MLC NAND Flash Memory”, Workshop on Application of
Communication Theory to Emerging Memory Technologies (in conjection with IEEE
Globecom), Dec. 2010

N. Mielke et al., “Bit error rate in NAND flash memories,” in Proc. of IEEE International
Reliability Physics Symposium, 2008, pp. 9–19.

K. Kanda et al., “A 120mm2 16Gb 4-MLC NAND flash memory with 43nm CMOS technology,”
in Proc. of IEEE International Solid-State Circuits Conference (ISSCC), 2008, pp. 430–431,625.

Y. Li et al., “A 16 Gb 3-bit per cell (X3) NAND flash memory on 56 nm technology with 8
MB/s write rate,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 195–207, Jan. 2009.

S.-H. Chang et al., “A 48nm 32Gb 8-level NAND flash memory with 5.5MB/s program
throughput,” in Proc. of IEEE International Solid-State Circuits Conference, Feb. 2009,
pp. 240–241.

N. Shibata et al., “A 70nm 16Gb 16-level-cell NAND flash memory,” IEEE J. Solid-State
Circuits, vol. 43, pp. 929–937, Apr. 2008.

C. Trinh et al., “A 5.6MB/s 64Gb 4b/cell NAND flash memory in 43nm CMOS,” in Proc. of
IEEE International Solid-State Circuits Conference, Feb. 2009, pp. 246–247.

K. Takeuchi et al., “A 56-nm CMOS 99-mm2 8-Gb multi-level NAND flash memory with 10-
mb/s program throughput,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 219–232,
Jan. 2007.

G. Matamis et al., “Bitline direction shielding to avoid cross coupling between adjacent cells
for NAND flash memory,” United States Patent 7,221,008, May. 2007.

J. W. Lutze and N. Mokhlesi, “Shield plate for limiting cross coupling between floating
gates,” United States Patent 7,335,237, Apr. 2008.

H. Chien and Y. Fong, “Deep wordline trench to shield cross coupling between adjacent
cells for scaled NAND,” United States Patent 7,170,786, Jan. 2007.

S. Li and T. Zhang, “Improving multi-level NAND flash memory storage reliability using
concatenated BCH-TCM coding,” IEEE Transactions on Circuits and Systems-I:
Regular Papers, vol. PP, pp. 1–1, 2009.

K. Prall, “Scaling non-volatile memory below 30 nm,” in IEEE 2nd Non-Volatile Semiconductor
Memory Workshop, Aug. 2007, pp. 5–10.

H. Liu, S. Groothuis, C. Mouli, J. Li, K. Parat, and T. Krishnamohan, “3D simulation study of
cell-cell interference in advanced NAND flash memory,” in Proc. of IEEEWorkshop
on Microelectronics and Electron Devices, Apr. 2009.

www.intechopen.com

Flash Memories

82

K.-T. Park et al., “A zeroing cell-to-cell interference page architecture with temporary LSB
storing and parallel MSB program scheme for MLC NAND flash memories,” IEEE
J. Solid-State Circuits, vol. 40, pp. 919–928, Apr. 2008.

K. Takeuchi, T. Tanaka, and H. Nakamura, “A double-level-Vth select gate array
architecture for multilevel NAND flash memories,” IEEE J. Solid-State Circuits, vol.
31, pp. 602–609, Apr. 1996.

K.-D. Suh et al., “A 3.3 V 32 Mb NAND flash memory with incremental step pulse
programming scheme,” IEEE J. Solid-State Circuits, vol. 30, pp. 1149–1156, Nov. 1995.

C. M. Compagnoni et al., “Random telegraph noise effect on the programmed threshold-
voltage distribution of flash memories,” IEEE Electron Device Letters, vol. 30, 2009.

A. Ghetti, et al., “Scaling trends for random telegraph noise in deca-nanometer flash
memories,” in IEEE International Electron Devices Meeting, 2008, 2008, pp. 1–4.

J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interference on NAND flash
memory cell operation,” IEEE Electron. Device Letters, vol. 23, pp. 264–266, May 2002.

K. Takeuchi et al., “A 56-nm CMOS 8-Gb multi-level NAND flash memory with 10-MB/s
program throughput,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 219–232, Jan. 2007.

Y. Li et al., “A 16 Gb 3 b/cell NAND flash memory in 56 nm with 8 MB/s write rate,” in Proc.
of IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2008, pp. 506–632.

R.-A. Cernea et al., “A 34 MB/s MLC write throughput 16 Gb NAND with all bit line
architecture on 56 nm technology,” IEEE Journal of Solid-State Circuits, vol. 44, pp.
186–194, Jan. 2009.

N. Shibata et al., “A 70 nm 16 Gb 16-level-cell NAND flash memory,” IEEE J. Solid-State
Circuits, vol. 43, pp. 929–937, Apr. 2008.

H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design approach,” IEEE
Transactions on Circuits and Systems-I: Regular Papers, vol. 52, no. 4, pp. 766–775, 2005.

I. Alrod and M. Lasser, “Fast, low-power reading of data in a flash memory,” in United
States Patent 20090319872A1, 2009.

Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite geometries: a
rediscovery and new results”, IEEE Trans. Inf. Theory, vol. 47, pp. 2711-2736, Nov. 2001.

R. G. Gallager, “Low density parity check codes”, IRE Trans. Inf. Theory, vol. 8, pp. 21-28,
Jan. 1962.

G. Dong, Y. Li, N. Xie, T. Zhang and H. Liu, “Candidate bit based bit-flipping decoding
algorithm for LDPC codes”, IEEE ISIT 2009, pp. 2166-2168, 2009

J. Zhang and M. P. C. Fossorier, “A modified weighted bit-flipping decoding of low-density
parity-check codes”, IEEE Commun. Lett., vol. 8, pp. 165-167, Mar. 2004.

F. Guo and L. Hanzo, “Reliability ratio based weighted bit-flipping decoding for low-
density parity-check codes”, Electron. Lett., vol. 40, pp. 1356-1358, Oct. 2004.

C.-H. Lee and W. Wolf, “Implementation-efficient reliability ratio based weighted bit-
flipping decoding for LDPC codes”, Electron. Lett., vol. 41, pp. 755-757, Jun. 2005.

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity
check codes”, Electron. Lett., vol. 32, pp. 1645–1646, Aug. 1997.

X. Wang, L. Pan, D. Wu et al., ”A High-Speed Two-Cell BCH Decoder for Error Correcting
in MLC NOR Flash Memories”, IEEE Trans. on Circuits and Systems II, vol.56, no.11,
pp.865-869, Nov. 2009.

X. Wang, D. Wu, C. Hu, et al., “Embedded High-Speed BCH Decoder for New Generation
NOR Flash Memories” Proc. IEEE CICC 2009, pp. 195-198, 2009.

R. Micheloni, R. Ravasio, A. Marelli, et al., “A 4Gb 2b/cell NAND flash memory with
embedded 5b BCH ECC for 36MB/s system read throughput”, Proc. IEEE ISSCC,
pp. 497-506, Feb. 2006.

www.intechopen.com

Flash Memories

Edited by Prof. Igor Stievano

ISBN 978-953-307-272-2

Hard cover, 262 pages

Publisher InTech

Published online 06, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Flash memories and memory systems are key resources for the development of electronic products

implementing converging technologies or exploiting solid-state memory disks. This book illustrates state-of-

the-art technologies and research studies on Flash memories. Topics in modeling, design, programming, and

materials for memories are covered along with real application examples.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Xueqiang Wang, Guiqiang Dong, Liyang Pan and Runde Zhou (2011). Error Correction Codes and Signal

Processing in Flash Memory, Flash Memories, Prof. Igor Stievano (Ed.), ISBN: 978-953-307-272-2, InTech,

Available from: http://www.intechopen.com/books/flash-memories/error-correction-codes-and-signal-

processing-in-flash-memory

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

