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1. Introduction 

The mission of the Central Institution for Decision Support Systems (DSS) in Crop 

Protection (German acronym ZEPP) is to develop, collect and examine existing forecasting 

and simulation models for important agricultural and horticultural pests and diseases and 

to adapt these models for practical use. More than 40 weather-based forecasting models for 

pests and diseases have been successfully developed within the last years. The occurrence of 

diseases/pests and periods of high-intensity attacks can be calculated with high accuracy. 

The forecast models are based on different concepts. These range from simple temperature 

sum models to complex population matrices with integrated rate based algorithms to 

calculate growth, reproduction and distribution of noxious organisms. 

DSS are employed for the 

 estimation of disease/pest risk 

 estimation of the necessity for pesticide treatments 

 forecast of the optimal timing for field assessments 

 forecast of the optimal timing for pesticide treatments 

 recommendation of appropriate pesticides. 

Results of DSS are distributed to the farmers via warning services, using different 

transmission media (bulletins, letters, faxes and telephone answering machines) and via the 

internet platform www.isip.de (Information System for Integrated Plant Production) 

(Röhrig & Sander, 2004). The predictions are suitable for integrated as well as organic 

farming. 

In the following chapter the three basic parts that lead to the creation of a comprehensive 

and modern DSS for forecasting and warning in integrated crop protection will be 

analysed. Meteorological data are needed as well as assessed field data as input for 

decision support systems. With these input data the decision support systems calculate an 
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output result, e.g. the date of the first appearance of a pest. In the first part of this chapter 

a software is presented which was developed to administer the data of weather stations 

and to make it available for prognosis models. In the second part the results of a study 

how to increase the accuracy of simulation models by using Geographic Information 

Systems (GIS) are presented. The influence of elevation and geographical location on 

temperature and relative humidity are interpolated using GIS methods, whereas 

precipitation data was obtained from radar measurements. These meteorological data 

were then used as input for the simulation models. The output of the models is presented 

as spatial risk maps in which areas of maximum risk of a disease are displayed. It is 

expected that by using GIS methods the acceptance of model outputs will be increased by 

the farmers. Finally model validation is one of the essential requirements of the model 

development process to guarantee that models are accepted and used to support decision 

making. Validation ensures that the model meets its intended requirements in terms of 

the employed methods and the obtained results. The ultimate aim of model validation is 

to make the model useful ensuring that the model addresses the right problem, provides 

accurate information about the system which is being modelled and makes it actually be 

used. Methods for the validation and evaluation of forecasting models are described in 

the third part of this chapter. 

2. Management of meteorological data 

The meteorological data in Germany are provided on the one hand by the German 

meteorological service, on the other hand some federal states in Germany built up their own 

meteorological networks. At the moment data of 148 stations of the German meteorological 

service and 417 stations owned by the federal states are available. In sum these are data of 

565 stations which can be used to run decision support systems. The federal states use the 

locally installed program AgmedaWin (Agrometeorological database for Windows) (Keil & 

Kleinhenz, 2007) to administer the data of their own weather stations. With AgmedaWin 

they can import, check, evaluate and store the meteorological data and export them to the 

internet system www.isip.de in which the data are imported and forecast models are run. 

AgmedaWin is used so far in 8 states in Germany since 2005. Also the data of the German 

meteorological service are transferred to www.isip.de.  

2.1 Import of meteorological data 

Meteorological data can be imported in AgmedaWin as long as the file containing the 

meteorological data is an ASCII file. The format of the ASCII files of different stations can 

vary, depending on the type and the manufacturer and depending on the sensor equipment 

of the weather station. 

With AgmedaWin it is possible to import data having different formats. For this reason an 

“import wizard” was developed. With the import wizard it is possible to describe exactly 

the format of almost every ASCII import file by defining “import profiles”. The advantage 

of this solution is that no changes in the program are necessary when a station with a new 

data format is added. In this case only a new import profile is defined and assigned to the 

weather station. 

How the format of an ASCII file can be described with an import profile is shown in fig. 1 

(a-c).  
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a. general configurations b. configuration of date/time format 

 

c. configuration of the sensors format 

Fig. 1. AgmedaWin: Definition of an import profile 

When defining a new import profile it first has to get a profile name. Then some general 
configurations can be made by for example entering the number of caption lines and the 
interval of measurements used in the import file. In AgmedaWin only hourly values are 
stored. So if the interval of measurements is smaller than 60 minutes the values are 
automatically aggregated to hourly values before they are imported. Next it is possible to 
define a valid line. In the example in fig. 1 only values of lines which have a “;” at position 
10 will be imported. Also it has to be defined if the sensor values in the import file are 
arranged in fixed columns or if they are separated by a delimiter (fig. 1.a). 
The positions and the lengths of the date and time items as year, month, day, hour and 
minute have to be entered. It also has to be selected whether in the import file the hours are 
marked from 00:00-23:00 or from 01:00-24:00 (fig. 1.b). 
Also the sensors stored in the import file and the positions and lengths of the sensor values 
must be entered. In the example in fig. 1.c the value of relative humidity would be expected 
in column 9 with a length of 5. The format of null values can be entered. Also simple 
calculations can be done with the values and conditions can be checked before the values are 
imported (fig. 1.c). After an import profile is defined it is saved and then assigned to a 
weather station. Only if an import profile is assigned to a weather station data for this 
station can be imported. 

2.2 Gap filling 

Decision support systems need complete meteorological data as input. Therefore it is very 

important to make sure that gaps in the data are filled. In AgmedaWin this can be done in 

different ways. 

Gaps can be filled manually by the weather administrator by simply entering or changing 

the values. 
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A gap can also be filled by copying the data of a selected station into the gap. 
Small gaps which are not bigger than three hours can be filled automatically by executing a 
linear interpolation. 
Big gaps which are bigger than three hours and not bigger than 15 days can be filled with 
the data of the best adjacent station. The best adjacent station is found by calculating the 
correlation coefficient. The data of the station with the best correlation coefficient are then 
merged into the gap by vertical moving and horizontal rotating so that the tangential points 
at the beginning and the end fit exactly. This is done by graphical support. 

2.3 Plausibility checking 

Plausibility checking is a very important feature in AgmedaWin because if the 
meteorological data provided for the prognosis models are wrong the models will give 
wrong results. 
In AgmedaWin two kinds of plausibility checking are possible. 
The first kind is the internal plausibility checking. With this method data of a single station 
can be checked. Several checking algorithms can be defined and adjusted in AgmedaWin. 
Examples for checking algorithms: 

 checking of lower and upper limits 

 several algorithms for checking the dynamic of the data (e.g.: 12 equal values of air 
temperature in series would be marked as implausible) 

 comparing a value with its previous and following value 
When values are found to be implausible by the checking routines they are marked with the 
plausibility sign “*”. The weather administrator has to decide what to do with the marked 
values. Either he would check if the sensor still works correctly or he could define that a 
value is plausible although the plausibility checking had marked it as implausible by 
changing the plausibility sign manually.  
The second kind of plausibility checking is the external plausibility checking. With this 

method the data of adjacent stations can be compared. At first groups of stations in a 

subregion with similar climatical conditions are defined. Then the deviations of the daily 

mean values are calculated and shown in a cross table. Deviations which exceed a defined 

limit are marked. The external plausibility checking can be a help to detect defect sensors. 

2.4 Representation of meteorological data 

In AgmedaWin meteorological data can be represented in different ways. 
The data of all stations can be shown on a map after selecting the sensor, the aggregation 
(hourly, daily or monthly values) and the date and time. 
Data of all sensors of one station can be represented in table form. 
Also the values of selected stations and sensors can be represented in a diagram. The user 
has several possibilities to adjust and configure the representation by selecting or 
unselecting sensors, by highlighting single sensors or changing the colours. Also it is 
possible to zoom and scroll in the diagram and to print and save it (fig. 2). 

2.5 Evaluation of meteorological data 

The following evaluations are available in AgmedaWin: 

Sum analysis: Output of the sum of all values of a chosen sensor and station depending on a 

specified lower and upper limit. 
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Limit analysis: Showing all hours fulfilling a defined condition. 
Evaluations of wind speed and wind direction: Showing a percentaged frequency 
distribution of wind speed and wind direction values and representing a wind rose of all 
wind direction values of a specified period. 
Long-time mean values: Calculation and output of long-time mean values per month for 
specified stations and sensors. 
Climatic water balance: The climatic water balance is calculated from the evapo -
transpiration (Penman, 1948) and the rain fall. The result is represented in a graph or can be 
stored as a file (fig. 3). 
 

 

Fig. 2. AgmedaWin: Graphical representation of meteorological data 

 

 

Fig. 3. AgmedaWin: Output of climatic water balance 

2.6 Export interfaces 

In AgmedaWin an ASCII / Excel export interface is implemented. The user has several 
possibilities to configure the format of the generated output files. He has to enter the period, 
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the export format (ASCII or Excel) and the aggregation interval and he has to select the 
weather stations and sensors. He can also choose whether he wanted the plausibility signs 
and the minimum and maximum values of the selected aggregation interval to be exported. 
The other very important export interface is the export to www.isip.de which consists of 
two steps. In the first step a XML file is generated containing the information about the data 
to be exported. This file is zipped and in the second step transferred to www.isip.de via FTP 
(File Transfer Protocol). 
The ISIP export can be done either manually or automatically. If it is done automatically 
only data which have been changed since the last transfer or which are new are exported to 
www.isip.de. With this method it is guaranteed that in www.isip.de always the same 
meteorological data are available as in the local AgmedaWin databases. 

3. Use of geographic information systems in crop protection warning service 

In the previous chapter the management of meteorological data originating from individual 
weather stations and their importance for simulation models was highlighted. However, in 
some agricultural areas, the distance between weather stations (MS) exceeds 60 km. Forecast 
models did not give satisfactory results for fields separated by such large distances to MSs 
(Zeuner, 2007).  
 

 

Fig. 4. Process to calculate risk maps using GIS 

With the help of Geographic Information Systems (GIS) a plot-specific classification of 
temperature and relative humidity has been developed using complex statistical 
interpolation methods described by Zeuner (2007). The method, however, cannot be applied 
to the parameter precipitation. Especially in the case of frequent spatially and temporally 

Risk map

Weather data DGM Longitude Latitude

Temperature Rel. humidity Rainfall Simulation model

risk map

meteorological data digital elevation model longitude latitude 

temperature rel . humidity precipitation simulation model
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limited rainfall (so-called convective rainfall event), the interpolation for precipitation does 
not give plausible results (Zeuner & Kleinhenz, 2007, Zeuner & Kleinhenz, 2008, Zeuner & 
Kleinhenz, 2009). Precipitation data with a high spatial resolution may be obtained from 
radar measurements.  
Using these spatial input parameters for the currently available disease forecast models 
should lead to accurate forecasting for areas in-between two or more distant MSs. With the 
use of GIS, daily spatial risk maps for diseases and pests can be created in which the spatial 
and the temporal process of first appearance and regional development are documented 
(Fig.4). These risk maps may lead to improved control and a reduction in fungicide use. 

3.1 Storage 

In order to store the results of interpolation, a grid was laid out over Germany. At present, 

the Governmental Crop Protection Services (GCPS) use about 570 MSs to represent an 

agricultural area of aprox. 200.000 km2, or an average of one MS per 350 km2. With the new 

GIS method, grid cells have a size of 1 km2 and, after interpolation, are represented by 

virtual weather stations (Liebig & Mummenthey, 2002) 

3.2 Spatial data of temperature and relative humidity 

For the interpolation of temperature and relative humidity the multiple regression method 
was chosen because it gave the best results by the shortest calculation time of all tested 
interpolation methods. The first calculations with the four interpolation methods (Inverse 
Distance Weighted, Spline, Kriging and Multiple Regression) showed that deterministic 
interpolation methods were not suitable. The general purpose of multiple regressions (the 
term was first used by Pearson, 1908) is to learn more about the relationship between several 
independant or predictor variables and a dependant or criterion variable. MR is an 
interpolation method that allows simultaneous testing and modelling of multiple 
independant variables (Cohen, et al., 2003). Parameters that have an influence on 
temperature and relative humidity, e.g. elevation, slope, aspect, can therefore be tested 
simultaneously. MR uses matrix multiplication and only variables with a defined minimum 
influence that will be included into the model. The result of MR is a formula (x = const + 
A1*const1 + A2*const2+ A3*const3+…+ Ax*const) which allows a calculation of a parameter 
set for each grid cell from which independent variables are known (Zeuner, 2007). 
 

year 
temperature [°C] relative humidity [%] 

2003 2004 2005 2006 2003 2004 2005 2006 

CoD 96% 96% 99% 98% 94% 96% 95% 92% 

mean dev. 0.0 0.0 0.0 0.1 0.3 0.1 0.1 -0.6 

maximum 4.4 4.1 4.3 4.7 19.6 32.6 21.6 21.2 

minimum -3.8 -4.5 -4.5 -4.1 -18.9 -21.9 -22.8 -22.8 

t-test n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Table 1. Validation of data on temperature and relative humidity; deviation between 
calculated values and measured data with MR (n = 92160 hours, n.s. = not significant)      

To validate the results of the interpolation, 13 MSs were ignored in the interpolation process. 

After interpolation, the deviation between calculated values and measured data of these 

stations was compared. The study was conducted from January to August in the years 2003 
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to 2006. For all stations, MR gave results with highest accuracy (Tab. 1). In all cases, the 

coefficient of determination (CoD) ranged between 96 and 99% for temperature and 92 and 

96% for relative humidity, respectively. For the 13 MSs, the mean deviation for temperature 

was less than 0.1°C and for relative humidity less than 0.6% as calculated with MR. The 

absolute maximum and minimum for temperature was less than 4.7°C and for relative 

humidity less than 32.6%. The data also were tested for significance between calculated and 

measured data using a t-test. The test indicated that for all stations the differences between 

the calculated and measured values were random. The MR method gave plausible results, 

so it was chosen to interpolate the meteorological data to be used as input for the forecasting 

models. 

3.3 Spatial precipitation data 

16 radar stations are run by the German meteorological service to record precipitation all 
over Germany. These stations do not measure the amount of precipitation at ground level 
but the signal reflected from the rain drops in the atmosphere. These measurements at first 
only allowed calculation of an unspecific ‘precipitation intensity’, a shortcoming. With the 
system RADOLAN intensity is now calibrated online with data from a comprehensive 
network of ombrometers, using complex mathematic algorithms. As a result the amount of 
precipitation can be provided in a spatial resolution of 1 km² (Bartels, 2006). These calibrated 
amounts of precipitation based on radar measured rainfall intensities are referred to as 
“radar data” in the following. The validation of precipitation data took place in intensely 
used agricultural areas, joining the radar grid with stations of the meteorological network. 
In this way, it was possible to relate each station to a grid cell.  
The radar derived precipitation at the station’s grid cell and the actually measured data 
formed the basis for the statistical verification. Since rain events differ throughout the year, 
two representative months (May and August 2007) were selected to analyse uniform rainfalls 
in spring as well as convective rainfall events in summer. This resulted in a validation dataset 
of 1488 hours for each MS. Depending on the region, the number of MSs ranged from 9 to 29. 
In addition, the influence of the distance between radar station and MSs was analysed.  
Furthermore, a leaf wetness simulation model used by ZEPP (Racca, 2001, unpublished) was 
run on data from both methods of precipitation measurement and the results were 
compared. 
The parameters for the amount of precipitation, number of hours with precipitation and 

calculated leaf wetness showed high correlations between radar values and measured data. 

The maximum of the hourly deviation of the amount of precipitation was 0.06 mm. In hours 

with rainfall the deviation was slightly higher (0.36 mm). No correlation could be detected 

for the distance between radar stations and MSs. For hourly rainfall pattern, a correlation of 

91.4% between stations and validation areas was measured. The best correlations were 

obtained for the leaf wetness model for which values > 99.9% were achieved.  

The results clearly show that the use of radar data as an input parameter in disease forecast 
models is valid. By adding data of temperature and relative humidity with high spatial 
resolution, an optimal basis for plot-specific forecasts has been established. Moreover, this 
system allows the exact detection of local convective rainfall events, which at the moment 
often remain undetected using individual weather stations. Significant improvements of the 
spatial forecasting by plant disease simulation models can be expected from the use of radar 
data.  
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3.4 Introducing spatial risk maps into practice (www.isip.de) 

ISIP, the Information System for Integrated Plant production www.isip.de, is a Germany-
wide online decision support system. It has been initiated in 2001 by the German Crop 
Protection Services as a common portal, thus achieving synergies by pooling existing 
information. Target groups are farmers as well as advisors. 
Since information transfer is the primary task of extension services, the system is intended to 
make this work more efficient by using modern information technology. Therefore a bi-
directional data flow between the services and the farmers was developed. By combining 
general with specific data, recommendations can be refined from regional to individual. The 
information is primarily distributed via HTML pages, thus a browser is necessary to use the 
system (Röhrig & Sander, 2004).  
 

 

Fig. 5. Risk map of the German Federal State of Lower Saxony for Potato Late blight in mid-
June 2010. Shown are the infection pressures in five classes (very low [green] to very high 
[red]) and the respective spraying intervals in days 

In 2010 a new way of presenting results of prognosis models for plant pests and diseases has 
been implemented. Using interpolated meteorological data in a high spatial resolution as 
input paramters, so-called ‘risk maps’ are drawn (fig. 5). These maps have several 
advantages compared to results  representing point information  based on single weather 
stations: 

 A risk maps more suitable to identify hot spots and eases the interpretation of the 
model’s results. 

 The user does not have to choose a specific weather station, which might even not be 
valid for his plant production site. 
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 The maps are produced conform to the OGC standards, thus can be used in other 
systems. 

In addition to the GIS functionalities of zooming and panning, it is possible to scroll through 
the maps of the last ten days. This gives an excellent overview of the temporal development 
of the pest or disease risk. 
The system is supplemented by a spatial three-day weather forecast 3 day offered by the 
German Meteorological Service. It is expected that this further supports the decision and 
management processes of the farmer. 

4. Model validation and evaluation in crop protection warning service 

Whereas in the previous two chapters the management, validation and preparation of 
meteorological data which are essential for the forecasting models were discussed the next 
chapter will address the complex issue concerning the validity of the simulation models 
used in pest integrated control. 
Considering the general mathematical simulation of real events or specific models for plant 
disease epidemiology, there are several definitions of model validation (Kranz & Royle, 
1978, Racca, et al., 2010b, Reynolds, et al., 1981, Sargent, 1998, Schlesinger, 1979, Teng, 1985, 
Welch, et al., 1981). The validation process can be summarised as the comparison between 
the virtual (simulated) and the real (actual) system. According to (Balci & Sargent, 1984) the 
model validation of a generic model will be separated in two methods: the subjective 
validation techniques and the statistical techniques. In other words, the model validation 
strictly depends on the modelled system, the model output and the availability of observed 
field data for the validation. 
According to the classification due to ZEPP (Racca, et al., 2010b) the simulation models can 
be summarised in: 
Pests and disease models: 

 Type 1: Models  predicting first appearance of a disease or a pest. 

 Type 2: Complex simulation models predicting the epidemiological development or 
population dynamics like the disease severity, the disease incidence or pest abundance. 

 Type 3: Models predicting a target event like the overriding of an action threshold or 
periods with high risk for an epidemiological development of the disease or of pest 
population dynamic. 

Ontogenesis models: 

 Ontogenesis models are able to simulate the crop-growing. These models can be used in 
combination with the diseases or corresponding pest models. 

For each kind of these models a subjective and/or a statistical validation is possible. 
The evaluation of the model performance depends on the aim and the type of model and is 
strictly correlated with the validation results. Generally, based on the ZEPP experience, a 
model has a good performance when during the validation phase a quote of correct 
prognoses up to 75% is overridden and/or the underestimations are less than 15%. 

4.1 Validation of type 1 models 

Type 1 models forecast the first appearance of a disease or a pest at the beginning of the 
growing season. They are mainly used by advisors to determine the beginning of the 
regional monitoring activities and by farmers to do the initial checks on their fields. The 
results are generally given on a regional level considering the region as the area 
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surrounding a weather station. Examples of these models currently used by the GCPS are 
CERCBET1, ERYBET1, UROBET1 and RAMUBET1 used to predict the appearance of 
Cercospora leaf spot (Cercospora beticola) (Roßberg, et al., 2000), powdery mildew (Erysiphe 
betae), rust (Uromyces betae) and ramularia (Ramularia beticola) (Racca, et al., 2010a) on sugar 
beet, SIMCOL1 for the lupin anthracnose (Colletotrichum lupini) (Racca & Tschöpe, 2010), 
SIMPHYT1 and SIMBLIGHT1 for the potato leaf blight (Phytopthora infestans)  (Kleinhenz, et 
al., 2007), SIMPEROTA1 for blue mold disease of tobacco (Peronospora tabacina) (Racca, et al., 
2007). An example for pests is the SIMLEP1-Start model to forecast the appearance of the 
hibernating adults of Colorado potato beetle (Leptinotarsa decemlineata) (Jörg, et al., 2007).  
All type 1 models can be validated by using statistical and/or subjective validation 
methods. Some of these methods will be described below with a few examples. 
CERCBET1 is a model which is able to forecast the appearance of Cercospora leaf spot on 
sugar beet fields (Roßberg, et al., 2000, Rossi & Battilani, 1986, Rossi & Battilani, 1991). 
The subjective validation of CERCBET1 took place retrospectively with monitoring - data of 
the years 1995 to 2008 in all German sugar beet growing areas. 
The validation was made by comparing 

 the date of the first appearance forecasted by the model and observed in the field; 

 the forecasted and observed date when 50% of the fields in one region are infected.. 
This date represents the distribution of the disease in several fields in one region, the 
50th percentiles. At this point the probability to detect a Cercospora infection in a field 
is very high and the disease had been established in this region. For the validation the 
available data are grouped in “regions” near a representative weather station. To detect 
the distribution of the infected field, only regions with surveys in more than four sugar 
beet fields were taken into consideration. 

In any case the forecasting was considered:  

 correct - when the difference between the forecasted and the observed date was in a 
range of one week (± 7 days); 

 early/late - when the difference between the forecasted and the observed date was 
bigger than one week (> ± 7 days). 

The subject of the validation method in this case is to consider a period of ± 7 days correct 

for these kind of model results. We consider that the data for the validation derive from 

regional monitoring arranged by the GCPS. This monitoring is done weekly. So, one week of 

delay or one week of earlier forecast is acceptable for this model.  

The result of the validation is summarised in Table 2. 
 

 first appearance 50 % infected fields 

too early 31.80% 20.14% 

correct 64.66% 72.08% 

too late 3.53% 7.77% 

Table 2. CERCBET1: Subjective validation in Germany. Data from 1995 to 2008 (n=283) 

Concerning the first appearance, in about 64% of the forecasts the model was able to predict 

the disease appearance correct, in 32% the date was too early and in 4% of the cases the 

forecasted date of disease appearance was too late. The model shows more accuracy in the 

prediction of the 50% infected field date. Analyzing the results of the validation, the trend of 

the model to anticipate the occurrence of disease can be identified (Tab.2). This trend can 

www.intechopen.com



 
Efficient Decision Support Systems – Practice and Challenges From Current to Future 

 

342 

also be explained by analyzing the same data which was used for the validation. Sometimes 

sample size t used in the surveys is not appropriate for detecting a rare event like  the 

appearance of first necrotic spots (Roßberg, et al., 2000). It can also be difficult to recognize 

the first symptoms at the leaves (the first spots of Cercospora could be taken for Alternaria 
sp., Phoma sp. or bacterial spots). 

For an appropriate statistical validation (Racca, et al., 2010b, Rossi, et al., 1997a, Teng, 1981) 
simulation and field data were regarded as two independant random samples to compare 
the distribution. It is possible to apply some parametric tests like the t-test (comparison of 
mean values) and the F-test (comparison of standard deviation), but also a non-parametric 
method like the Kolmogorov-Smirnov test (computing the maximum distance between the 
cumulative distributions of two samples) (Tab.3) 
 

year n 
first appearance 50% infected fields 

t-test F-test Kol.Smirn. test t-test F-test Kol.Smirn. test 

1999 25 n.s. * * n.s. * * 

2000 16 n.s. n.s. n.s. n.s. n.s. n.s. 

2001 16 n.s. n.s. * n.s. n.s. n.s. 

2002 27 n.s. * * n.s. n.s. * 

2003 30 n.s. n.s. n.s. n.s. n.s. n.s. 

2004 22 n.s. n.s. * n.s. n.s. * 

2005 35 * * * * * * 

2006 36 * n.s. * * n.s. * 

2007 28 * * * n.s. * * 

2008 28 n.s. n.s. * n.s. n.s. n.s. 

Table 3. CERCBET1: Statistical tests on the results for the simulation years 1999-2008 
(Kol.Smirn.: Kolmogorov-Smirnov test, n.s. not significant, * = significant with p<0,05) 

Considering the statistical analysis of model results, it must be concluded that the presence of 
significant differences between the distributions does not show a good correlation according to 
the data. However, analyzing the subjective validation method we conclude that the model is 
satisfactory if we consider the principal aim of the model, determine the date of beginning of 
the monitoring system. An early forecast can also be accepted (in only 12% of the total cases 
the forecast was more than 3 weeks before the observed first appearance).  
A similar validation was done for the SIMBLIGHT1 model. The model predicts the risk of a 

potato late blight outbreak and recommends the date for the first treatment. A subjective 

validation was done and the model results were considered valid when the predicted date 

of the first treatment was earlier than the date of the field observation. More than 700 

observations during the period 1994-2005 were recorded for the validation. For most years 

the proportion of correct forecasts reached more than 90% and a statistical validation was 

not done (Kleinhenz, et al., 2007). 

For models that provide results in a binary response it is possible to apply a different 

statistical method of evaluation and validation. As one example in the model ERYBET1 the 

dates of onset of the disease (powdery mildew on sugar beet) were classified into two 

groups: early onset (before July 31) and late onset (after July 31). The two groups are 

discriminated by  a binary logistic regression model using the winter weather as input 

parameters (Racca, et al., 2010a). 
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Binary logistic regressions results in a value between 0 and 1. Discrimination of individual 
cases in two classes is done by definition of a “cut-off” threshold. Depending on the “cut-
off” the following classification of the cases is defined: 

 true negative: cases correctly classified in early onset (model specificity) 

 false negatives: the values of early onset were classified in late onset (underestimation) 

 true positive: cases correctly classified in late onset (model sensitivity) 

 false positives: the values of late onset were classified in early onset (overestimation) 
The cut-off value is simply chosen mathematically or graphically so that the rate of false 
positives and false negatives is minimized (Hadjicostas, 2006). The model validation is done 
using a ROC (Receiver Operating Characteristic) curve (Madden, et al., 2008). 
In a ROC curve the true positive rate (Sensitivity) is plotted in function of the false positive 

rate (1-Specificity) for different cut-off points of a parameter. Each point on the ROC curve 

represents a sensitivity/specificity pair corresponding to a particular decision threshold. 

The area under the ROC curve is a measure of how well a parameter can distinguish 

between two diagnostic groups (Fig. 6). 
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Fig. 6. ROC Curve for the Model ERYBET1 discriminates an early or late powdery mildew 
onset in sugar beet 

Accuracy is measured by the area under the ROC curve (AUC). An area of 1 represents a 
perfect test, an area of 0.5 represents a worthless test. A rough guide for classifying the 
accuracy of a diagnostic test is the traditional academic point system: 0.9-1 = excellent; 0.8-
0.9 = good, 0.7-0.8 = fair, 0.6-0.7 = poor, 0.5-0.6 = fail. 
Since the AUC of the ERYBET1 model is equal to 0.73 it is statistically acceptable. 
Furthermore, with a cut-off equal to 0.74 (estimated to obtain for the model a weighted 
combination of specificity and sensitivity) the values shown in Table 5 are obtained for the 
classification of the onsets. The percentage of correct classification is about 65% of all cases. 
The underestimations were less than 35% and so the model is considered a good estimator 
of the early or late onset of disease dependant only on winter weather conditions. 
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disease onset 
classification 

early late sum correct (%) 

early 54 39 93 58.06% 

late 80 164 244 67.21% 

sum 134 203 337 64.69% 

Table 4. Results of the classification of the disease onset (powdery mildew on sugar beet) 
forecasted by the model ERYBET1 using binary logistic regression with “cut off” value = 
0.74 

4.2 Validation of type 2 models 

Type 2 models are examples for classical simulation models. Generally, they are very complex. 
The aim is to predict the epidemic development (expressed as disease severity and/or disease 
incidence) for the diseases or to predict the various development stages of insects. These 
models are used, in the examination phase, as a basis for identifying the parameters and 
variables for the construction of type 1 and 3 models. Examples of these models are 
CERCODEP which is able to simulate the epidemics of Cercospora leaf spot on sugar beet  
(Rossi, et al., 1994), RUSTDEP for leaf rust (Puccinia recondita) on winter wheat (Rossi, et al., 
1997b), SEPTRI2 for leaf blotch (Septoria triciti) on winter wheat (Erven, et al., 2008, Erven, et al., 
2010) , SIMPHYT2 for the potato leaf blight (Roßberg, et al., 2001) and SIMLEP2 to forecast the 
phenological development of the Colorado potato beetle (Roßberg, et al., 1999). 
The following three models are used as examples for validation methods: PUCREC for leaf 
rust in winter rye (Puccinia recondita), PUCTRI for leaf rust in winter wheat (Puccinia 
triticina) and SEPTRI for leaf blotch (Septoria triciti) in winter wheat. 
The first two models simulate the development of the epidemics of rust on different leaf 
layers expressed as disease incidence (Racca, et al., 2008, Räder, et al., 2007). Models were 
validated with both subjective and statistical methods of field data, collected from 2002 to 
2005. In total, 51 data sets for PUCREC and 37 for PUCTRI were available to investigate the 
predictive ability of the models. 
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Fig. 7. PUCREC – Simulated disease incidence (DI) on the flag leaf (F). weather station 
Herxheimweyher (Rhineland-Palatinate – Germany) in 2003. (▬ simulation, � field data, + 
confidence interval of the field data) 
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The subjective validation simply consists of the comparison of the simulated disease 
incidence with data, recorded in the field (fig. 7). The simulation is decided to be correct 
when the simulated disease incidence ranges between the confidence interval of the 
recorded disease incidence. Overestimation is given when the simulated value overrides the 
highest level of the confidence interval in opposition to underestimation when the simulated 
value is under the lowest level of the confidence interval. Validation was done for both 
models and for each leaf layer F (flag leaf) to F-3 (Tab.5). 
 

leaf layer 
PUCREC -winter rye PUCTRI -winter wheat 

under. corr. over. under. corr. over. 

F 8 74 18 0 82 18 
F 8 74 18 0 82 18 

F-1 2 86 12 0 76 24 

F-2 6 84 10 0 71 29 

F-3 0 80 20 0 76 24 

Table 5. Validation of PUCREC (n=51) and PUCTRI (n=37) – Share (%) of underestimated, 
correct and overestimated leaf rust epidemics on different leaf layers (2001 – 2005) (under.= 
Underestimation, corr. = correct, over.=overestimation) 

According to the subjective validation the field data and the model results coincided well. In 
most of the cases (from 71 to 86%), the disease incidence progress was correctly simulated 
(Tab. 5). In a few cases PUCREC underestimated (2 - 8%) or overestimated (10 – 20%) the 
epidemic progress of P. recondita. For winter wheat a considerable share of overestimations 
occurred (18 – 29%). This means that epidemics simulated by PUCTRI started earlier and 
progressed faster than observed in the field. For winter wheat no underestimations could be 
observed.  
The statistical validation was done with two parametric (regression analysis, hypothesis 
test) and one non-parametric test (Kolmogorov-Smirnov). 
The simulated disease incidence (dependant variable) is simply linear correlated with the 
recorded data (independant variable). The “null hypothesis” demonstrates that “a” 
(intercept of the regression line) is equal to 0 and “b” (slope of regression) is equal to 1 
(tested using the Student t-test) (Tab.6). 
 

Leaf 
layer 

PUCREC -winter rye PUCTRI -winter wheat 

Regression parameters 
Kolm.-Smirn. 

Regression parameters 
Kolm.-Smirn. 

t-a t-b t-a t-b 

ns * ns * ns * ns * ns * ns * 

F 93 7 59 41 96 4 95 5 90 10 95 5 

F-1 91 9 77 23 98 2 94 6 87 13 94 6 

F-2 91 9 68 32 96 4 100 - 100 - 92 8 

F-3 88 12 79 21 91 9 100 - 67 33 100 - 

Table 6. Validation of PUCREC (n=51) and PUCTRI (n=37) – regression analysis and 
Kolmogorov-Smirnov test  (2001 – 2005), share (%) of the significance. (t-a: hypothesis t-test 
for regression intercept, t-b: hypothesis t-test for regression slope, Kol.Smirn.= Kolmogorov-
Smirnov test, n.s. = not significant, * = significant with p<0.05) 

The statistical validation gave very satisfactory results with both (parametric and non-
parametric) methods. The high number of non-significant cases of the regression parameters 
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and the Kolmogorov-Smirnov test mean that the model is considered a statistically accurate 
simulator of the field data (Teng, 1981). 
SEPTRI is a model able to simulate the disease epidemics of Septoria tritici on winter wheat. 
In particular the model calculates the infection probability, the infection rate, the lesion 
growth and the sporulation for wheat cultivars for three susceptibility levels: high 
susceptible, mean susceptible and low susceptible. The simulation results are the values of 
disease severity per leaf layer. 
Also this model was validated using both subjective visual method (fig. 8, tab. 7) and 
statistical methods (tab. 8). 
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Fig. 8. SEPTRI – Simulated disease severity (DS) on the flag leaf (F). weather station 
Rommersheim (Rhineland-Palatinate – Germany) in 2009. Wheat cultivar with high Septoria 
susceptibility (▬ simulation, � field data, + confidence interval of the field data) 

 

leaf layer cultivar susceptibility 

high mean low 

under. corr. over. under. corr. over. under. corr. over. 
F 6.3 81.3 12.5 6.3 75.0 18.8 6.3 62.5 31.3 

F-1 31.3 68.8 0 12.5 81.3 6.3 6.3 68.8 25.0 

F-2 50.0 50.0 0 31.3 68.8 0 12.5 68.8 18.8 

F-3 75.0 25.0 0 62.5 37.5 0 43.8 50 6.3 

Table 7. Validation of SEPTRI (n=60) – share (%) of underestimated, correct and 
overestimated leaf blotch Epidemics on different leaf layers (2007 – 2009) (under.= 
underestimation, corr. = correct, over.=overestimation) 

According to the subjective validation, the model results are satisfactory. In most of the cases 
(from 50 to 81.3%), excluding the leaf layer F-3, the disease severity progress was simulated 
correctly (Tab. 7). For leaf layer F-3 a considerable share of underestimation occurred (from 
43.8 to 75%). This means that epidemics on this leaf layer were poorly simulated. Otherwise 
for use of the model in praxis the leaf layer F-3 has less importance because the action 
threshold for the treatment scheduling is generally based on leaf layer F-2.  
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leaf layer 

SEPTRI – all cultivar susceptibilities 

regression parameters 
Kolm.-Smirn. 

t-a t-b 

ns * ns * ns * 

F 100 0 87 13 74 26 

F-1 100 0 100 0 95 5 

F-2 100 0 90 10 65 35 

Table 8. Validation of SEPTRI (n=60)  – Regression analysis and Kolmogorov-Smirnov test  
(2007 – 2009), share (%) of the significance. (t-a: hypothesis t-test for regression intercept, t-b: 
hypothesis t-test for regression slope, Kol.Smirn.: Kolmogorov-Smirnov test, n.s. not 
significant, * = significant with p<0.05) 

The statistical validation of the SEPTRI model gives satisfactory results for the leaf layer F, 
F-1 and F-2 with both (parametric and non-parametric) methods. 

4.3 Validation of type 3 models 

Type 3 models are derived from models of type 2. The output is various. The simulation of 
the development of the disease is often done to forecast the overriding of the action 
threshold and to give a recommendation for a fungicide or insecticide spraying. Models of 
type 3 are sometimes combined with routines for the calculation of the effectiveness of 
pesticides. They may include agricultural parameters like type of rotation, fertilization, 
irrigation and cultivar susceptibility which interact with the epidemics of the specific 
disease. The type 3 models can be used on regional and field-specific levels. Some examples 
of the most successful type 3 models are CERCBET3 (Racca & Jörg, 2007), ERYBET3, 
UROBET3 and RAMUBET3 (Racca, et al., 2010a) for Cercospora leaf spot, powdery mildew, 
rust and ramularia leaf spot respectively on sugar beet, SIMPHYT3 for potato leaf blight 
(Gutsche, 1999), PUCREC3 and PUCTRI3 for cereal leaf rusts (Räder, et al., 2007) and 
SIMLEP3 for Colorado potato beetle (Jörg, et al., 2007). 
Some validation methods for type 3 models can be described using sugar beet leaf disease 

models as examples. CERCBET3, ERYBET3, UROBET3 and RAMUBET3 simulate the 

progress of sugar beet leaf diseases, expressed as disease incidence development, and 

forecast the overriding of an action threshold, suggested for the treatments during the sugar 

beet growing season (Racca & Jörg, 2007, Racca, et al., 2004). For most sugar beet growing 

areas in Germany the Regional Plant Protection Offices use an action threshold for the 

fungicide treatment to control sugar beet leaf diseases based both on time and disease 

incidence (DI). Particularly the Plant Protection Services suggest the following strategy: 

action threshold 5% DI until the end of July, 15% DI before the 15th of August and 45% DI 

later than 15th August (Jörg & Krauthausen, 1996). For a subjective validation the weekly 

assessment data of the disease incidence were confronted with simulated data. The 

difference between the assessed and simulated date exceeding the relevant action threshold 

(5, 15 and 45% of disease incidence) was classified as follows: 

 too early: the forecast exceeds the action threshold more than 7 days earlier than the 
assessed date; 

 correct: the forecast differs not more than ± 7 days from the assessed date; 

 too late: the forecast exceeds the action threshold more than 7 days later than the 
assessed date. 
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The results of this subjective validation is summarised in Tab. 9. 
 

model n too early correct too late 

CERCBET3 71 10.9 % 84.2 % 4.9 % 

ERYBET3 555 28.4 % 63.8 % 2.9 % 

UROBET3 652 16.5 % 77.2 % 6.3 % 

RAMUBET3 241 9.6% 86.0 % 2.5 % 

Table 9. Sugar beet type 3 models validation. Comparison of the assessed and the forecasted 
date for exceeding the action threshold (year 2001-2009) 

All sugar beet type 3 models gave very satisfactory results. The action threshold was 
forecasted correctly in about 84% of the cases for cercospora leaf spot, in about 69% for 
powdery mildew, in about 77% of the cases for rust and in about 86% of the cases for 
ramularia leaf spot. 
For the CERCBET3 model the same pool of data was useful for an appropriate statistical 
validation. For all three action thresholds the simulated date of threshold exceeding was 
linear regressed with the real date (Tab.10). 
 

threshold a b t-a t-b r2 c 

action threshold 
5% 5.43 

0.86 * * 0.72 0.82 

action threshold 
15% 20.76 

0.31 * * 0.31 0.45 

action threshold 
45% 

32.64 0.24 * * 0.19 0.36 

Table 10. Parameters of the regression analysis between the simulated and the real date of 
threshold overriding (t-a: hypothesis t-test for regression intercept, t-b: hypothesis t-test for 

regression slope, n.s. not significant, * = significant with p<0.05, c: concordance correlation 
coefficient). 

The statistic analysis shows different results compared to the subjective validation. There is 
only a strong statistical correlation for the action threshold 5% (r2 = 0.72). The other action 
thresholds are poor correlated (r2=0.31 and 0.19). For all regressions the intercept and the 
slope are significant at p<0.05. 

One step further, using the concordance correlation coefficient c (Lin, 1989) can be 

overcome the statistical validation of avoiding problems with misinterpreted results in the 

regression analysis (failed t-test for a and b). The values of c range from 1 perfect 

agreement to -1, total lack of agreement. Validation of the action threshold 5% shows a high 

value of c. There is a good agreement between the simulated and the real observations.  

In practical use of the model, a correct timing of the overriding of the first threshold (action 

threshold 5%) is very important. In some cases a treatment in this early phase is able to 

decelerate the epidemic of the disease and a second or third spraying can be avoided. In this 

case the combination of subjective and statistical validation is very satisfactory. Another 

example for the validation of a type 3 model can be illustrated with the model SIMLEP3. The 

model simulates the development of Leptinotarsa decemlineata from the beginning of egg 

laying to the occurrence of the old larvae at a field specific scale (Jörg, et al., 2007). SIMLEP3 

was validated in Germany and in several European countries. The method is only 
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subjective, comparing the forecasting dates of the maximum abundance of egg cluster and 

young larvae with field observations. The model output was considered correct when the 

forecast was within an interval of one week compared to the observed date (Tab. 11). 

 

country 

maximum abundance of 

egg clusters young larvae 

% correct % too early/late n % correct % too early/late n 

Germany 91 9 33 87 13 38 

Italy 100 0 6 100 0 6 

Austria 71 29 7 86 14 7 

Poland 100 0 2 100 0 2 

Mean 90.5 7.5  93.25 6.75  

Table 11. Results of SIMLEP3 subjective validation in several European countries (1999-
2004): share of correct forecasts (%). 

In general, SIMLEP3 results were very satisfying. The first occurrence of young larvae in 
most of the cases was predicted correctly. Nevertheless, differences between forecasting and 
observed date ranging from 18 days too early up to 10 days too late were registered. Good 
results were also obtained for the prediction of maximum egg cluster occurrence. 
Throughout Germany, Poland, Austria and Italy the mean share of correct forecasts given 
from SIMLEP3 (both egg clusters and young larvae) amounted to about 92%. In Austria, the 
share of correct predictions was the lowest (approx. 70%) and in Germany the share of 
correct predictions exceeded 90%. Maximum occurrences of young larvae predictions were 
correct in about 93% of the cases on the European scale. Again, optimum results were 
obtained in Italy and Poland. In Austria and Germany, the share of correct forecasts 
exceeded 85%. Subjective validation efforts showed that SIMLEP3 is able to give correct 
forecasts for the most important development stages of L. decemlineata with respect to 
control efforts. The validation also demonstrates the possibility to expand the use of the 
model throughout Europe. 

4.4 Validation of ontogenesis models 
Ontogenesis models are ontogenetic models which simulate the development of crops 
expressed as BBCH growth stages (Hack, et al., 1992) over time. SIMONTO-models are 
based on the modelling approaches of CERES-Wheat (USA) (Gabrielle, et al., 1998) and 
ONTO-models (Germany) (Wernecke & Claus, 1996). The ontogenetic progress in 
SIMONTO is reflected by a developmental rate which is a function of temperature and 
photoperiod. Parameters for the different models (winter oilseed rape and winter cereals) 
were estimated by employing the Monte-Carlo-method (Falke, et al., 2006, Roßberg, et al., 
2005). More than 13800 single observations of BBCH growth stages for winter cereals from 
2003 to 2008 were available for the model validation. In the first step of the statistical 
validation, the observed BBCH growth stages are simply linear regressed with the model. A 
high r2 (0.88) suggests a good correlation between the data. Both regression parameters, a 
and b, are significant but the concordance correlation coefficient of 0.92 demonstrates a good 
agreement between the data. The model is apparently good to simulate the reality. 
Unfortunately, the BBCH growth stages are not strictly arithmetical dependant. Some stages 
could appear very early in the season and stay constant for a long time. The simple 
arithmetic difference between two BBCH growth stages can be minimal but the difference in 
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days between the two stages themselves can be very big. For example, the arithmetical 
difference between BBCH 21 (beginning of the tillering) and 22 (2 tiller detectable on the 
plants) is only = 1 but sometimes BBCH 21 is recorded on the fields in autumn and 
simulated by the model in spring. This can mean a difference of up to 5 months. Again the 
model should also be validated with a subjective method. For SIMONTO a scoring model 
approach is used (Roßberg, et al., 2005). The difference in days between the simulation and 
the observation is classified with a subjective flaw dot table: 

 model more than 7 days too early or more than 7 days too late: flaw dot 7; 

 model too early or too late (4 to 7 days): flaw dot 3; 

 model too early or too late (1 to 3 days): flaw dot 1; 

 no difference between simulation and observation: flaw dot 0; 
The sum of the flaw dots could be classified in a flaw dot coefficient with values varying 
from 0 (perfect model) to 7 (simulation extremely early or extremely late). Concerning the 
results in Tab. 12 the flaw dot coefficient is comprised in a range from 1.27 to 3.10. Values 
are classified when the simulation results arrive with a delay or an advance of up to 3 days. 
Values above 3 indicate a higher difference of days between simulation and reality. 
Since most of the flaw dot coefficients are lower than 3 we can conclude that the model 
accurately simulates the reality with a gap of acceptable days. In this case, the subjective 
validation is essential because the statistical validation could lead to misleading results. 
 

BBCH n 
case with 

flaw  dot 
flaw dot 

coefficient flaw dot 7 flaw dot 3 flaw dot 1 flaw dot 0 

BBCH 23 22 4 2 0 18 28 1.27 

BBCH 32 1490 252 228 320 636 2930 1.97 

BBCH 39 1070 140 203 188 514 1852 1.73 

BBCH 61 703 216 212 60 224 2181 3.10 

BBCH 65 732 184 0 142 194 2066 2.82 

Table 12. SIMONTO: Validation. Error point, sum of the flaw and flaw dot coefficient for 
some BBCH growth stages in winter cereals (seasons 2003-2008). 

Another type 4 model validated in 2010 (Tschöpe & Racca, 2010) was SIMONTO-lupin, a 
model which simulates the crop stages of the lupin (Lupinus angustifolius). 
For the subjective validation the simulated progress of ontogenesis was compared visually 
with the observed BBCH growth stages in the field. The classification of the cases in correct, 
overestimated and underestimated was the same used for the type 2 model validation. In 
total 215 data sets were analysed by this validation method. 88.4% of the cases were 
simulated correctly, 9.8% were underestimated and 1.9% were overestimated. 
For the statistical validation the model output (dependant variable) was compared to the 
field data (independent variable) with the help of a regression analysis. The average of the 
coefficient of determination was 0.984 and the slope b was in all cases not significant.  
 

BBCH stage n too early correct too late 

61 
229 

0 % 86.0 % 14.0 % 

69 22.7 % 75.5 % 1.7 % 

Table 13. Evaluation of the deviation in days (% of the cases with early, correct or late 
classification) between the date of the BBCH stage observed in field and the simulated for 
BBCH 61 (begin of flowering) and BBCH 69 (end of flowering) (n=229). 
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Like the BBCH growth stages of the cereals also the BBCH stages of the lupin are not strictly 
arithmetically dependant. Also in this case another validation criterion was needed. Again 
the deviation in days between the ontogenesis in field and the simulated ontogenesis was 
compared. If the deviation between the both dates was ±7 days the prognosis was rated as 
“correct”. Otherwise the prognosis was too early or too late (Tab. 13). 
In total 229 data sets were analysed by this validation method for the  BBCH-stages: Start of 
flowering (BBCH 61) and end of flowering (BBCH 69). BBCH 61 achieved a hit rate of 86.0% 
correct forecasts, 14.0% of the dates were simulated too late. Concerning the BBCH 69 it was 
simulated correctly in 75.5% of all cases, 22.7% of the simulations were too early and in 1.7% 
of the cases the simulated BBCH was too late. 

5. Conclusions 

Decision support systems in plant protection need plausible and complete meteorological 
data as main input. Meteorological data on the one hand are provided by the German 
meteorological service. On the other hand several states in Germany built up their own 
meteorological networks. These states use the software AgmedaWin for import, 
management, presentation, evaluation and export of the measured data. Core of the 
program is a flexible import module which facilitates the import of files with different 
formats from all types of weather stations by describing the structure of the files with 
import profiles. Several algorithms are integrated in AgmedaWin to ensure plausibility and 
completeness of the data. The program also includes a module to compare data of 
corresponding stations. With an XML-based export interface the data are transferred from 
AgmedaWin to the internet system www.isip.de where all data are stored and used as input 
for the decision support systems. Furthermore the unprocessed meteorological data can be 
evaluated in www.isip.de or downloaded as files in different formats by external users. 
The plausibility and completeness of meteorological data as main input for the models is the 
most important pre-condition to get correct prognosis results. However by using 
meteorological data of weather stations a good prognosis is only reached in the scope of a 
weather station. That is the reason why the ZEPP developed a new technology based on 
Geographic Information Systems (GIS). With the help of GIS it is possible to obtain results 
with higher accuracy for disease and pest simulation models. The influence of geographical 
factors on temperature and relative humidity were interpolated with GIS methods getting 
meteorological data for every km2 in Germany. The parameter precipitation was taken by 
radar measured precipitation data and the results of all measured meteorological data were 
used as input for the simulation models. The output of these models is presented as spatial 
risk maps in which areas of maximum risk of the disease outbreak, infection pressure or 
pest appearances are displayed. The modern presentation methods of GIS lead to an easy 
interpretation and will furthermore promote the use of the system by farmers. 
Finally the validation of a simulation model is a critical point in the development of the 
model itself. Unfortunately, there is no set of specific tests or decision-making algorithms 
which can determine the best method to validate a model. The subjective methods are 
certainly more intuitive and provide easy answers with easy interpretations. In this case, the 
decision for the method depends on the experience of the one who validates the model. It is 
important to know, for example, what weight has to be indicated to the over- and especially 
to the underestimation of the results of the model. Careful attention must be payed to the 
quality of data which is available for the validation. They should certainly be adequate in 
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number and represent the real agronomical system. Unfortunately there is no “manual for 
the validation of a model” but a combination of statistical and subjective methods gives 
good judgement of benefits of a decision support system which helps to plan crop 
protection activities like field assessments or pesticide use. 
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