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1. Introduction 

This chapter is dedicated to the capture, preservation, reuse and learning of agricultural 
knowledge. We illustrate the potential of information technology with a simple example of a 
writing pen. Before the age of information, a person with a pen or pencil could write beautiful 
poetry. If she gave or loaned the pen to someone else, she could no longer write poetry, but the 
other person, would have gained a tool that helped write poetry. In this case, the first person’s 
loss is the second person’s gain, which, in economic terms, is a zero-sum game. Of importance 
is the fact that the relationship between the first and second person has changed and in order 
to continue writing poetry the first must obtain permission from the second to continue 
writing. Thus a certain measure of power has been passed with the possession of the pen and a 
dependency has changed between the first person and the second. Rare is the individual that 
does not see this as a clear disadvantage for the first person. Also rare is the relationship 
between two people that would not be strained by such a reversal. 
Imagine, however, if the first person were to make a copy of the pen and give it to the 
second person, while retaining the use of the pen and thus suffer no loss in ability to write 
poetry. The relationship between the first person and the second changes from one of 
dependency to one of collaboration and mutual empowerment. Rare is the relationship 
between two persons that would not be strengthened rather than strained by the sharing of 
our information age pen. In this case no longer is it a zero-sum transaction. No longer is 
there the capable and the incapable. No longer is there gain of one at the loss of the other. 
Rather it has become a win-win situation in which all gain. Under these conditions, the first 
person is more likely and could be stimulated to make copies and distribute pens to 
everyone in the world, since it no longer results in their losing the tools to write poetry. This 
is the potential of information technology. Information technology can enable and empower 
us to share tools without the loss of use of the tool ourselves. It seems we have yet to fully 
exploit the potential of this technology. 

2. Scope of this chapter 

We will concentrate this chapter on agricultural knowledge, particularly that pertinent and 
relevant to tropical agroecosystems, largely because the bulk of our experience with 
decision-aids has been concerned with such production systems. Our thesis is that 
successful decision-aids need to recognize the inherent complexity of such systems. It is the 
thesis of this chapter that decision-aids can be tools to assist in the management of these 
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complex yet critical elements of human food security, partially through the capture of 
relevant knowledge and also through facilitating the accelerated learning/acquisition of the 
knowledge by others, and also through improvement in that knowledge as a result of the 
organization and representation effort. 
This chapter will describe some of the authors’ experience with decision-aids and their 
characteristics that have been useful in agriculture. The initial motivation to develop a 
decision-aid derived from the confluence of four conditions occurring at the onset of a 
newly formed, foreign technical assistance project in Indonesia (TropSoils, 1981): 
1. The goal of the project was to provide improved soil and crop management for 

Transmigrants (farmers and producers from the “over-populated” rural areas of Java, 
Indonesia) in their new environment on Sumatra with relatively large amounts of land, 
but little land with the water needed for paddy rice cultivation, the system anticipated 
by government planners and desired by some farmers. The new homesteads in Sumatra 
provided little land suitable for paddy rice production. The more extensive land 
differed drastically from that on Java by being exceedingly acid, with pH values of 4.0 
to 4.5 and high levels of plant toxic aluminum. Aluminum saturation values frequently 
exceeded 50%, indicating probable toxicity to food crop plants such as maize (Zea mays, 
L), peanut (Arachis hypogea, L.), and especially mung bean (Vigna radiata). Other soil 
constraints to food crop productivity included low levels of essential soil nutrients 
(phosphorus, potassium), which also were constraints rare in the rich Javanese soils. 
Thus the need was great to provide new ways for the Transmigrants to produce food 
and secure a livelihood in this strange, new environment. 

2. Two US universities were tapped to provide the technical assistance (North Carolina 
State University, and the University of Hawai`i at Manoa). These universities had 
extensive experience dealing with soils taxonomically identical (Paleudults1) to those at 
the project site (Sitiung, West Sumatra). The immediate challenge was “How could the 
experience of producers and growers in the SouthEast US, Central and South America, 
which was largely experiential, but also recently scientific, be efficiently introduced and 
shared with the Transmigrants,” who were in immediate need of food production 
technology on their new, but unfamiliar land. 

3. A new perspective had just appeared in international agricultural development 
research circles, that of Farming Systems Research and Development (Shaner et al., 
1982). The approach pointed out that farmers should be respected and very much 
involved in attempts to introduce new technology and practice. This approach also 
seemed to coalesce with Agroecosystems Analysis,  as advocated by South East Asian 
scientists in the SUAN network (Rambo and Sajise, 1984). 

4. Recent developments in information technology, specifically the new capabilities of 
software development efforts associated with Artificial Intelligence (Rich, 1983), were 
purported to permit medical diagnosis (Hayes-Roth et al., 1983). It was hypothesized at 
the time that the detection and possibly the prescription of soil and crop management 
solutions to the weathered, acid soils, would be analogous to the diagnosis and 
prescription of appropriate medication in similarly complex human health situations. 

With this motivation the initial decision-aids were developed with the perhaps pompous 
title of “expert systems”(Yost et al., 1988). 

                                                                 
1 Paleudults are soils of the Ultisol order, which are particularly old and highly weathered, associated 
with high, usually year-long rainfall. See Buol, S.W., F.D. Hole, and R.J. McCracken. 1989. Soil Genesis 
and Classification. 3rd ed. Iowa State University, Ames. 
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Because decision-aids are often developed to improve the capture, transfer (in a learning 
sense), and use of agricultural knowledge, the search for and development of successful 
decision-aids needs to begin with a thorough knowledge of agriculture. It might be yet more 
appropriate to search for the agricultural knowledge that is critical for providing food 
security and well-being. One of the hypotheses of the decision-aids effort described herein 
was that it was possible to capture, transfer (in a learning sense), and use this knowledge 
more directly---in contrast to simply writing chapters, books, and articles on the knowledge 
which must then be read and assimilated before the knowledge could be used. 

3. Agricultural knowledge  

Agricultural knowledge, that is the combined experience of how to grow and produce food, 
fiber, and bioproducts while securing a livelihood from the land, is extremely complex, 
comprised of multiple disciplines, multiple persons, with multiple levels of abstraction. 
Producer decisions range from considering the details of how a plant needs protection from 
pests and diseases, to planning commodity trading and marketing---all sometimes in a 
matter of minutes. Other producers’ worries range from which variety of food crop to plant, 
to which field to plant first, to issues of food availability and alternative sources of income 
should food production fail. With such complexity, uncertainty, and variation over time, it 
is not surprising that agriculture as an enterprise is considered highly risky. White (personal 
communication, Cornell University, 2011) clusters the modern agricultural risks into 5 
groups (1) Production risk, 2) Marketing/Price Risks, 3) Financial Risk, 4) Legal and 
Environmental Risk, 5) Human Resource Risks. Of those risks the primary one to be 
considered in this chapter is production risk. Production risk or productivity has been 
identified as an agroecosystem property by Conway (1986). He groups the major properties 
of agroecosystems thusly: 1) Productivity, 2) Stability, and 3) Resilience. Rambo and Sajise 
(1984) have expanded the number of properties to include those related to the human 
community associated with the agro-ecosystem (Table 1).  
 

Property Description 

Productivity The agroecosystem’s output of goods and services. 

Stability The degree to which productivity remains constant. 

Sustainability (now 
Resilience) 

The ability of a system to maintain its productivity when subjected 
to stress and shock. 

Equitability A measure of how evenly the products of the agroecosystem are 
distributed among its human beneficiaries. 

Autonomy A measure of the extent to which a system’s survival is dependent 
on other systems outside its control. 

Solidarity The ability of a social system (i.e. community) to make and 
implement decisions about collective behavior. 

Diversity (Rambo, 
1989) 

Measure of the number of different kinds/types of components. 
Usually providing a greater range of options for change when 
necessary. 

Adaptability 
(Rambo, 1989) 

The ability of the system to respond to change in its environment 
to ensure continuing survival. 

An example analysis of several agricultural systems from this perspective is given in (Yost et al., 1997). 

Table 1. Agroecosystem properties. (Conway, 1987, Marten and Rambo, 1988). 
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4. Experiential knowledge 

While the totality of agricultural knowledge is, as indicated above, exceedingly complex and 
diverse, we will consider a small subset of that knowledge in this chapter. We will focus on 
knowledge related to the growth and production of agricultural food crops and the role of 
nutrients, either in deficit or excess in that relationship. Agricultural knowledge is extremely 
descriptive with many adjectives and nouns, but few of the axioms, postulates, and 
theorems enjoyed by sciences such as physics and mathematics. Also as suggested above, 
agricultural knowledge tends to be encyclopedic with relatively few universal, nearly 
inviolable rules. In addition to exercising relatively few universal rules it is also clearly 
interdisciplinary, requiring close interaction among disciplines to adequately capture the 
experience.  
Acknowledging the interdisciplinarity is important because the methods and norms of the 
various disciplines differ and should be respected in order to obtain the best knowledge 
from each of the disciplines. A personal experience illustrates differences among social and 
biological scientists, for example. Among biological scientists data almost always refers 
exclusively to numerical knowledge, weights of maize, metric tons of root crops, dollars per 
kilogram, kilograms of fertilizers or amendments, duration of crop cycles, while social 
science data can be notes taken during an intensive interview,  during a focus group 
discussion, or as a result of a recollection. It is important in working with such diverse, 
interdisciplinary knowledge that disciplines are respected for their methods, techniques, 
approaches and culture. 

4.1 Collecting and recording agricultural knowledge 
Accurate collection and recording of agricultural knowledge, not surprisingly, must reflect 
the complexity of the knowledge itself. Such collection is difficult and success, not 
surprisingly, seems to require methods appropriate for the knowledge. Probably some of the 
best methods from the point of view of completeness are those used by anthropologists. 
Their holistic perspective requires unusually complete, thorough knowledge collection and 
recording using the most current methods available. One good example is the Ph.D. 
dissertation of Dr. Cynthia T. Fowler (Fowler, 1999), describing an agricultural community, 
Kodi, West Sumba, Indonesia. The dissertation required approximately 550 pages to record 
the relevant knowledge. A small portion of the dissertation was later synthesized into an 
explanation of an apparent oddity – that an introduced plant from another continent came 
to be a local ‘sacred’ plant (Fowler, 2005).  
Another example of the capture of detailed agricultural knowledge is provided by the 
dissertation of Dr. M. Robotham (Robotham, 1998). Again, some 550 pages were needed to 
describe the agricultural system. In this case, Robotham attempted to generalize the 
knowledge and capture the decision-making logic from each of three villages located in the 
Philippines (ibid, 1998). Within each of the 3 sites, selected to represent variation in 
Philippine agriculture, multiple households were interviewed using social science 
techniques, with a total of some 17 households interviewed in all. Models of the apparent 
decision-making process were synthesized into decision-trees (graphs that represent the 
flow of decision-making, Appendix 1) to help compare and contrast the knowledge that had 
been developed for each of the villages.  
Influences of socio-economic forces on agroforestry adoption in the Dominican Republic 
were modeled using a rule-based system (Robotham, 1996). Examples of a rule-based 
system will be forthcoming in section 5.2 
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Another effort, conducted by members of the TropSoil team of our study in Sumatra, 
Indonesia, was the attempt to capture the similarities and differences among the local 
people in contrast with the Transmigrants (Colfer et al., 1989). The results suggested that the 
rule-based knowledge representation structure was not ideal to capture and structure the 
information. It may have been that the knowledge was descriptive while the software was 
designed to capture decisions built on goals and rule-based logic. 

5. Contributions of artificial intelligence to decision-aid development 

(Rich, 1983) defines artificial intelligence (AI) as “the study of how to make computers do 
things at which, at the moment, people do better.” She goes on to list various topics of 
interest (“problems”) as of the time of her book that scientists in the field were working on:  
- Knowledge representation 
- Search strategies 
- Reasoning methods 
- Game playing 
- Theorem proving 
- General problem solving 
- Perception (visual, speech) 
- Natural language understanding 
- Expert problem solving (Symbolic mathematics, Medical diagnosis, Chemical analysis, 

Engineering design) 
Of particular interest to the authors of this chapter was the type of “Expert problem solving” 

of Medical diagnosis. This application of A.I. illustrates three contributions of A.I. to 

agricultural knowledge: Knowledge representation, Search Strategies, and Reasoning Methods.  

5.1 Characteristics of experts 

Glaser and Chi (1988) suggest that experts often display the following characteristics 

 Excel mainly in their own domains 
 Perceive large meaningful patterns in their domain 
 Work quickly. They are faster than novices in performing the skills of their domain 
 Have superior short term and long term memory 
 See and represent a problem in their domain at a deeper (more principled) level than 

novices 

 Spend a great deal of time analyzing a problem qualitatively 
 Have strong self-monitoring skills  

5.2 Knowledge representation 

One of the first systems to carry out medical diagnosis was the software Mycin (Hayes-Roth 

et al., 1983) , which used a rule-based system to record and exercise expert knowledge. Rule-

based systems were constructed from a sequence of “if then” statements illustrated as 

follows: 

1. If Blood temperature is warm and method of reproduction is live 
Then Animal = mammal 
2. If Blood temperature is warm and method of reproduction is eggs 
Then Animal = bird 
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The analogy seems obvious between diagnosing and solving a medical condition and that of 
diagnosing and solving a condition that is constraining or limiting a plant or food crop. This 
analogy was first recognized by several plant pathologists and resulted in the development 
of a system to detect soybean diseases (Michalski et al., 1981). 
This structure was used in the first ‘expert systems’ developed by the authors. Rules used to 
capture the knowledge included, for example: 
Rule 1: If the plant observed in the field is Leucaena leucocephala, L. and the plant is growing 
well then it is very unlikely that soil acidity would limit most food crop yields (80/100). 
Rule 2: If the soil of the field is red and in a tropical environment then it is likely that soil 
acidity will limit food crop yields (60/100). 
Rules 1 and 2 illustrate ways that observational information, i.e. the presence of a particular 
plant, can be recorded and can contribute to a conclusion that soil acidity may or may not be 
limiting. Rule-based systems were used to develop a wide range of diagnostic systems. In 
addition, these two rules illustrate a method not only to capture the logic in the if-then 
sequence, but also record some expression of uncertainty in the declaration of the logical 
relationship. In advanced rule-based systems combinations or rules with less than 100% 
confidence level would be combined to represent that uncertainty in the resulting 
conclusion. Some scientists developed methods of checking the consistency of combinations 
of various rules, by examining the veracity of the resulting conclusion. 
Other methods of knowledge representation have been developed such as frames, semantic 
nets, but these are beyond the scope of this chapter. Given the complexity of agricultural 
knowledge, improvements in structures supporting knowledge representation continue to 
be needed. Specifically challenging are ways to combine qualitative and quantitative 
knowledge in ways that conserve both. Unfortunately, many combinations of these types of 
knowledge are possible only when the quantitative information is simplified to match the 
form of the qualitative and when the qualitative is expressed only in quantitative terms. 

5.3 Search strategies 

As indicated in Rich (1983) and other references, strategies for efficient search through huge 
networks, decision-trees and databases are needed. AI has provided some clear examples of 
search strategies such as a) Depth-first, b)Breadth-first, and 3)Best-first (Figure 1). A Depth-
first strategy probes a knowledge-tree or a decision-tree by asking the detailed questions 
first in a  limb of the tree (top downward) as the first path through the tree. A Breadth-first 
strategy, in contrast, searches all nodes at the same depth and then proceeds to the next 
lower level of nodes (or questions). The Best-first, however, is a combination of the best 
features of the Depth-first and the Breadth-first strategy. The Best features are those in 
which a heuristic2, or specific knowledge, guides the search to choose at each node either a 
Depth-first or a Breadth-first strategy, depending on the knowledge. It’s interesting to note 
that novices often choose a Depth-first strategy in probing a decision-tree and sometimes 
ask far too-detailed questions (deep into the decision-tree) too quickly, resulting in a failed 
search. In fact, this occurs so often that when someone exercises a Depth-first search, and it 

                                                                 
2 On a personal note, my Brazilian wife has shown me a very practical ‘heuristic’, she taught me how to 
cook rice by using the rule 1) add rice to the pan and 2) add only enough water to cover the rice by the 
depth of the distance between the tip of one’s index finger and the first joint. Interestingly, some have 
speculated that this distance may coincide with the “inch” in English measurements. Less controversial 
is that this as an extremely convenient meter stick! 
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fails to find the correct answer, we tend to conclude that person is a novice! Experts 
frequently use the Best-first, where they may switch between search strategies based on 
their experience and awareness of the decision-tree content.  
 

 

Fig. 1. Decision-tree illustrating Depth-first searches (pathway example 1), Breadth-first 
(follow pathway 2), and Best-first (follow pathway 3). 

Recently, there has been renewed interest in search strategies that can exploit the rapidly 
expanding information base on the Internet (Watson-Jeopardy, 2011). These strategies may 
make qualitative information much more accessible to computer based reasoning systems. 

5.4 Reasoning methods 
A third contribution of AI to agricultural decision-aids (the first being Knowledge 
representation, the second is Search Strategies) is the choice between forward-chaining and 
backward chaining in terms of flow of the reasoning or inference through the decision-tree 
or set of rules. The forward-chaining method of reasoning begins with the observed facts 
and makes all possible inferences on the first pass through the decision-tree. The second and 
subsequent passes collect all facts originally observed plus all conclusions resulting from the 
first pass through the decision-tree. When the entire decision-tree is evaluated and all 
possible inferences are made the process is complete. The backward-chaining method begins 
with the same decision-tree but first evaluates the “goals” or final conclusions or inferences 
of the decision-tree, of which there typically only a few. Each of these “goals” is evaluated 
one at a time by determining what facts are needed for each of the goals to be concluded 
(succeed in being inferred). If any facts are missing that are needed for a specific goal, then 
that goal is discarded and the next unevaluated goal is similarly evaluated. Many of the 
initial expert system software programs chose backward-chaining as a reasoning strategy. 
The backward-chaining method of reasoning or progress through the decision-tree is often 
much more rapid than forward-chaining because major portions of the decision-tree are 
truncated if any rule does not have all of the necessary information and thus is evaluated as 
false. Readers interested in further details of these reasoning strategies are encouraged to 
consult recent texts or summaries on AI.  
As this chapter is being written, new techniques of reasoning are illustrating that machines 
such as IBM’s Watson can account for uncertainty in information and situations, by rank 
ordering multiple solutions to a given problem. The result is better performance than the 
best human players of the game Jeopardy (Watson-Jeopardy, 2011). This event is sure to be a 
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milestone in terms of managing complex and uncertain information, far exceeding the 
previous success of IBM’s Deep Blue that excelled with the much more algorithmic game of 
chess. The success by Watson included the access of 15 terabytes of information accessed by 
10 racks of IBM Power 750 servers, which generated 80 teraflops of processing power. 
Henshen (2011) reports that the 80 teraflops of processing power together with improved 
information access methods reduced information access time from 2 hours to 3 seconds. 

6. Example decision-aids 

Some of the authors used an expert system development tool (expert system shell) to 
implement a rule-based system that used backward-chaining to diagnose acid soil 
conditions and prepare predictions of the amount of agricultural limestone needed to 
remove the soil acidity limitation to selected crops. This software, ACID4, was described in 
(Yost et al., 1986) and subsequent decision-aids. We now present a list of various decision-
aids developed and illustrate the range of uses, methods of implementation, purposes as 
well as unexpected benefits. 

6.1 ACID4 rule-based system 
6.1.1 Goal  

Facilitate the transfer of the acid soil management knowledgebase developed in Southeast 
US, Central and South America to farmers and producers of the Transmigration area of 
Indonesia in general and Sumatra in particular.  

6.1.2 Objectives 

Implement a set of rules that together represent both the scientific knowledge and farmer 
experience in managing acid soils for food crop production. The primary source for the 
knowledge was a review paper by (Kamprath, 1984), practical experience reported by 
(Gonzalez-Erico et al., 1979), and firsthand experience by the authors. 

6.1.3 Implementing language 
EXSYS, expert system “shell”(Hunington, 1985.) 

6.1.4 Successes 

The ACID4 decision-aid illustrated that soil management knowledge could, indeed, be 
captured and represented in a computer-based decision-aid. The system permitted non-
experts with only inputs of measured soil acidity (KCl-extractable acidity, calcium and 
magnesium and a selected crop) to receive predictions of lime requirements in tons of 
limestone per hectare (eq. 1).  

 
 

 
Lime requirement tons /hectare   

1.4 Exchangeable Acidity –  CAS * ECEC /100


 (1) 

- Where: Lime requirement is the amount of limestone of 100% CaCO3 quality, 
- Exchangeable Acidity is the KCl-extractable toxic aluminum and hydrogen, 
- CAS is the Critical Aluminum Saturation, which is the maximum amount of toxic 

aluminum and hydrogen the specific crop can tolerate while achieving maximum 
yields. 
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- ECEC is the soil effective cation exchange capacity, which is the sum of the cations (Al, 
Ca, Mg, and K) as measured by a neutral salt. 

The predictions of amount of limestone thus included current soil status of soil acidity, crop 
needs, quality of the limestone, and ancillary needs of calcium and magnesium in the soil.  
An extensive comparison of ADSS, which was a slightly improved version of ACID4, 
indicated that the system made accurate predictions of lime requirements for maize (Zea 
mays, L.) and soybean (Glycine max, L.) but predictions for rice (Oryza sativa, L) and cassava 
(Manihot esculenta. L.) needed improvement (Dierolf et al., 1999). 
Results from an exploratory, rule-based system FARMSYS (Colfer et al., 1989) illustrated that it 
was possible to merge multiple disciplines in a rule-based decision-aid. Ethnographic knowledge 
could be combined with knowledge of soil chemistry and management, when diagnosing and 
prescribing management when acid soil conditions were encountered. Local Minangkabau 
farmers preferred to grow rubber on their acid soils, which required no limestone applications 
and no tilling of the soil. Transmigrant Javanese and Sundanese farmers, on the other hand, 
would not hesitate to ameliorate their acid soils by applying the recommended limestone and 
tilling the soil for annual food crop production (Yost et al., 1992b).  
Through repeated use of the decision-aid, users became familiar with typical requirements 
for particular crops, given usual levels of measured soil acidity, differences among soils and 
various crops. In fact, the users gained familiarity with the methodology, and learned 
certain aspects of the knowledge of managing acid soils. It is likely that some measure of the 
‘expert’ knowledge was transferred to novice users through extensive use of the system. 
Perhaps the meta-level information was transferred to the decision-aid users as a result of 
using the system. It is clear, also that the detailed scientific knowledge was not transferred. 
Thus the mere use of the decision-aid does not replace the learning of the detailed 
algorithmic knowledge.  

6.1.5 Observations 
Further consideration of the factors affecting lime decisions indicated selection of lime 
materials could become impossibly complex. A linear programming model was developed 
that evaluated limestone cost, quality (fineness, neutralization capacity, as well as calcium 
and magnesium content), quantity available, and distance from the location for up to 5 
limestone materials. These parameters were evaluated to provide a minimal cost choice of 
one or more of the limestone materials that met the specified soil pH and Ca and Mg targets 
in a spreadsheet decision-aid (Li et al., 1995). 
While the main benefit of the decision-aid ACID4 was the use of the knowledge it contained, 
the process of organizing and recording the knowledge led to greater scrutiny of the 
knowledge and the identification of gaps and imprecision, which, in turn, led to improved 
subsequent research. This is illustrated in the evaluation of ADSS (a slight improvement 
over ACID4) (Dierolf et al., 1999). Thus, ironically, the preparing of the knowledge for 
dissemination, rather than detracting from the research process, actually improved and 
accelerated it. This meta-level analysis of the knowledge resulting from the crafting of the 
knowledge and representing it in the knowledge-base later proved to be extremely 
beneficial. This, in fact, may be a replication of the “patterns” and “larger framework” that 
experts seem to develop over time (Glaser and Chi, 1988) 

6.1.6 Disadvantages  
The ACID4 system provided a hands-on introduction to capture important knowledge and, 
for the Transmigrants of West Sumatra, critical knowledge about how to produce food on 
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these highly acid soils that differed so greatly from those of their experience. The system 
had several disadvantages including the following:  
- The goal-driven, rule-based system proved rather unsuited to capture some of the 

information. In particular, social science information did not necessarily fit well in the 
rule-based knowledge representation system (Colfer et al., 1989). 

- Many on-farm production limitations were due to multiple constraints occurring 
together. Acid soils in particular are characterized by multiple constraints. In addition 
to high acidity with toxic levels of aluminum and manganese. Levels of pH itself, 
calcium, magnesium, and phosphorus are to be expected to be insufficient and possibly 
yield limiting as well (Fox et al., 1985).  

- A subsequent decision-aid was developed that attempted to address this problem (see 
section 6.4 NuMaSS, (Nutrient Management Decision Support System), later in this 
chapter). 

- The system required a computer. 
- This could be overcome by technicians and scientists running the software for the 

specific site or farm and communicating the results to the producer / grower. 
- We later explore and propose a type of decision-aid that is completely graphic. 
- Modification and updating of the software required rather expensive, proprietary 

software. 
- One copy of the software could develop many systems (Le Istiqlal, 1986.) 
- A small, free copy of the essential software was provided such that copies of the 

decision-aid could be copied and distributed inexpensively (run-time version). 
- For subsequent decision-aids we used a procedure languages such as Pascal or 

declarative languages such as Prolog and hired programmers. 
- Although the rules were given a numeric score of uncertainty, this uncertainty was 

combined in an inflexible way that often neither represented good practice nor the 
scientifically verifiable behavior. 

- This effort led to subsequent improved representations of multiple sources of evidence 
(Bayesian cumulative probability) (Yost et al., 1999)---an implementation of evidence 
accumulation described in Pearl (1988).  

Subsequent decision-aids included the cumulative probability to generate approximate 
confidence limits of numeric predictions of fertilizer needs using first order uncertainty 
analysis (Chen et al., 1997). This remains an area requiring more accurate representation of 
evidence accumulation as well as the appropriate handling of contradictory evidence. What 
are the most successful ways to carry out such calculations and accumulate evidence? It is 
likely that some of the methods recently used by IBM’s Watson (Watson-Jeopardy, 201) 
would lead to better approaches than those described here. It also is not yet clear how 
successful experts make such estimates, if they do.  

6.2 Propa (Papaya expert system) 
That agricultural knowledge is highly interdisciplinary presents a challenge to the classical 
concept of an expert in a single discipline. When a grower or producer contacts the 
University with an issue they sometimes are referred to several experts before determining 
which expert is the right one for the specific problem. Confusion and failure to succeed in 
the diagnostic effort may occur. The goal of the Propa decision-aid was to explore this 
dynamic by attempting to construct a decision-aid that would identify and solve typical 
problems possibly requiring multiple disciplines (Itoga et al., 1990). 
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6.2.1 Goal  

Develop an expert system comprised of multiple experts dealing with complex agricultural 

problems. 

6.2.2 Objectives  

Capture the knowledge of various scientists working with the papaya (Carica papaya) 

tropical fruit. 

6.2.3 Implementing language  

Prolog declarative language. Arity Prolog®. 

6.2.4 Successes 

The Propa decision-aid illustrated that it was possible for a group of experts from various 

disciplines to assess a case of a papaya problem and sort out which expert would be the 

primary expert to solve the problem. This was achieved through the use of a monitor and 

blackboard system that evaluated the interaction between the experts and the person with 

the papaya problem information. Each expert was assigned a dynamic relevancy factor 

which represented the success of their interaction with the papaya problem information. 

The disciplines brought together for the problem-solving session included experts in 1) 

Insect pests, 2) Nutrient management, 3) Disease identification, and 4) General management 

and good practice (Itoga et al., 1990).  

Propa was able to show the user images of the various insects to assist and confirm their 

identification, which greatly assisted the insect expert’s diagnosis and recommendation 

process. 

6.2.5 Disadvantages 

Test runs of the final system with users indicated that they were often overwhelmed with 

the number of technical questions that were asked of them by the group of experts. Many 

users were not prepared to answer dozens of questions about the detailed appearance of the 

plant and thus could not respond to the experts. When users could not respond to the 

expert’s questions the experts were no longer able to proceed with a diagnosis. 

6.3 PDSS (phosphorus decision support system)  

The PDSS system development began in 1990 (Yost et al., 1992a).  

6.3.1 Goal 

Capture the knowledge, including both successful practice and the supporting scientific 

knowledge associated with the Diagnosis, Prediction, Economic Analysis, and 

Recommendations associated with managing nutrient phosphorus (P) in tropical food 

production systems. 

6.3.2 Objectives 

Capture a P management structure in a computer software decision-aid that would improve 

the management of the nutrient P. 
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6.3.3 Implementing language 

Delphi® rapid application development software, Pascal language. 

6.3.4 Successes 

PDSS builds on the results of the structuring of the knowledge for the soil acidity decision-
aid ACID4. As a result of the meta-analysis of the soil acidity decision-making process, we 
identified four components in the general process of nutrient management: 1)Diagnosis, 2) 
Prediction, 3) Economic Analysis and 4) Recommendation. These components served the 
basis for constructing PDSS and will now be discussed in succession. 

6.3.5 Diagnosis  

A diagnosis of a particular condition, in this case of a deficiency in soil and plant content of 
the nutrient phosphorus (P) is critical to bringing appropriate attention to the condition and, 
consequently, to its solution. A diagnosis in this sense can be observed when an expert is 
confronted by a problem and asks a few quick questions and rapidly determines the 
importance of further questioning or not. In this sense, the expert is exercising the “Best-
First” search strategy discussed above. Such rapid assessments were observed when 
experienced scientists did field-visits, discussing with farmers the conditions of their crops. 
Often during such visits and discussions a suggestion resulted that led to corrective action. 
A diagnosis in this sense is our attempt to capture and implement an expert’s best-first 
strategy of quickly assessing the seriousness of a situation and determining the best 
subsequent course of action. In another sense a diagnosis is a call to action. It is a decision 
about whether to act or not. This definition and use is important in terms of problem-solving 
and may be somewhat different than the classic “diagnosis” used in disease identification. 
The “diagnosis” we describe in this section is most effective if carried out by the person 
actually working with and intimately involved with managing the complex system (a crop-
soil production system, in our case). A frequent heuristic or rule of thumb is that if a disease 
or condition is caught early then it is more likely to be successfully cured or remedied. 
Likewise, in complex systems of soil and crop management, a condition can often best be 
solved if it is detected early before subsequent, secondary complications, or in some cases 
irreversible damage, occurs. The analogy with human medicine is clear. For these reasons, it 
seems prudent for the grower, producer, or farmer to be informed and empowered with 
sufficient knowledge to detect the need for action. We also, upon further analysis, learned 
that there are other aspects of a good diagnosis that are important (Yost et al., 1999)   
(Table 1). 
Diagnostic knowledge can be useful even if it is qualitative, highly observational, and even 
if a substantial amount of uncertainty is present. Highly uncertain information, when 
combined with other information with a similarly large amount of uncertainty, can, when 
taken together, begin to show a pattern that is typical of the disease, the condition or the 
state being detected. A good diagnosis could result from multiple pieces of information, 
none of which stands alone on its own, but when combined together, suggests a singular 
conclusion (i.e. all tending to indicate deficiency of a particular nutrient). We implemented 
this characteristic of being able to combine qualitative, quantitative, as well as uncertain 
information by using a Bayesian cumulative probability framework as indicated above in a 
chapter on Diagnosis (Yost et al., 1999). An example spreadsheet illustrating the calculations 
is shown in Appendix 2. The combining of multiple pieces of information thus often led to a 
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diagnosis when no individual piece of information was sufficient to provide a call for action. 
It was possible to include a consistency check, if mutually contradictory facts were 
observed. For example, if the probability of a nutrient deficiency for fact A was 0.9 that a P 
deficiency was likely (where 0 means certainty of no deficiency, 0.5 means complete 
ambivalence, and 1.0 means total certainty) and fact B had a probability of 0.2, then we have 
a situation of conflicting evidence. A rule was written to send a message to list in the output 
that a serious contradiction is occurring. 
 

 
 
We encountered two disadvantages of using the Bayesian accumulation of probability 
framework: 1) Much of our evidence and multiple observations or measurements were 
highly correlated or multicollinear. The multicollinearity contrasts with the assumed 
condition of independence in classic Bayesian evidence accumulation and thus the 
calculated cumulative conditional probabilities were in slight error depending on the 
degree of multicollinearity. 2) One could have strong evidence both for and against a 
condition as well as weak evidence for and against the condition, or even a complete lack 
of information, all of which would combine to a value of 0.5. As a result, strong, but 
conflicting, evidence is wholly discounted. One of our inadequate solutions to this 
situation was to monitor evidence and when evidence for and against a particular 
outcome differed substantially, a message was attached to the conclusion warning of the 
information conflict. 

Table 1. Considerations in developing diagnostic questions. 
We suggest that the best diagnostic information/ tools/ 
questions are those that build on the common knowledge that 
on-site managers (e.g. farmers) have readily available together 
with simple measures, both qualitative and quantitative, of 
fundamental characteristics of the production system: 
   -The tool/question should be simple to use by lay persons. 
   -Results of the tool should be quick, such as the simple 
observation of a symptom or property in the field. 
   -Cost of the tool/question should be low or of no cost. 
   -The tool/question should be reliable as it should reliably 
indicate what action is to be taken. 
Observations:  
   -Sometimes the result of the tool/question is that more 

expertise is required. 

   -Incomplete or imperfect data should not completely 
invalidate the diagnosis. 
   -The tool/question should take full advantage of the farmer, 
producer, or field observer’s observation and knowledge. 
   -The tool/question may lead to improved, better diagnostic 
tools. 
   (Questions developed in a TPSS 650 Soil, Plant, Nutrient 
Interactions by students N. Osorio, X. Shuai, W. Widmore, R. 
Shirey. University of Hawai`i at Manoa) 
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6.3.6 Predictions 

The Prediction in PDSS is usually a numerical amount of a specified amendment needed to 
resolve the nutrient deficient condition identified in the Diagnostic section. There may be 
additional inferences based on the additional data usually required to complete the 
numerical prediction. There is a possibility that, upon analysis of the additional information, 
a prediction of no requirement may occur. The Prediction was developed using a 
combination of both scientific and local experiential knowledge. The preferred knowledge is 
that occurring when the best scientific methodology is gleaned from the literature and tested 
in the unique local soil, crop, weather, economic, and social conditions. To obtain and 
ensure such knowledge clearly requires intense work by the local scientists as well as the 
knowledge engineer (the person who organizes the knowledge and structures it into the 
knowledge representation format of the decision-aid software). In our case, scientists have 
included both international experts as well as local agricultural scientists who were in the 
process of or had completed field studies of the prediction methodology. 
The choice of which knowledge and how much detail needed to be recorded and 
represented in order to minimize excessive detail and yet retain the essential knowledge 
was and seems to be a challenging one. This aspect has been lucidly discussed in Stirzaker et 
al. (2010). As Stirzaker et al. (2010) indicate, the typically detailed information resulting from 
research, needs to be smoothed and simplified to be most effectively used in a working 
system. Our experience has been identical and this aspect of building decision-aids seems to 
us to be one that requires close interaction and discussion with the intended users to best 
ascertain the appropriate level of detail. Thus it is clear that the direct transfer of algorithms 
and conclusions from a research effort is seldom possible without the requisite 
simplification described by Stirzaker et al. (2010). The intense and repeated contact between 
the developer and the client or user group has been essential in our experience. This type of 
intense interaction has come to be termed “extreme programming”(Beck, 1998; Wells, 2001). 
This programming style is based on frequent viewing and discussing of the software being 
developed with representative, intended users.  
One of the requirements of the Prediction step that is necessary for the integration with the 
subsequent components is that there be a numeric prediction. This numerical value forms 
the basis of the benefit/cost analyses carried out in the subsequent Economic Analysis 
section. The Prediction equation of the PDSS decision-aid is thus an equation that began 
with the rather simple description given in (Yost et al., 1992a) shown in equation (2). 

 
 P requirement  Soil P required –  Soil P present 

/Reactivity of the soil to added P


 (2) 

Where: P requirement is the kg/ha of fertilizer P needed to increase the soil P level (“Soil P 
present”) to match the “Soil P required” and thus meet the specific crop’s requirement for 
nutrient P. While equation (2) gives the basic structure of the P requirement prediction 
equation, there were updates to the equation which gradually increased in detail and 
complexity (eq (3)). 

 
  P requirement  PCL –  Po /PBC  0.8 * PBC * Puptake * 0.8 * 1 / 2  

* Placement factor *  Application Depth /10 
 

 (3) 

Where:  
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PCL = P critical level of the crop using a specific extractants (“Soil P required”of eq. 3) 
Po =  Initial, measured soil level of P using an specific extractant (“Soil P present” of eq. 3) 
PBC = Phosphorus Buffer Coefficient using a specific extractant (“Reactivity of the soil to 
added P” of eq. 3) 
Puptake = Yield of crop component removed*P content of the removed tissue (not present in 
eq. 3) 
Application depth = Depth to which the fertilizer is incorporated (not present in eq. 3) 
Placement factor = A factor that represents the relative efficiency of localized placement in 
reducing the P fertilizer requirement (not present in eq. 3) 
The predictions developed in PDSS, as in ACID4, also included an expression of the 
associated uncertainty. In the ACID4 and FARMSYS modules the uncertainties were 
personal estimates of the reliability of the rules being exercised. In PDSS a different 
approach was used, that of error propagation (Burges and Lettenmaier, 1975). The error 
propagation calculation resulted in a very useful assessment of the equation’s prediction. 
This was later expressed as the confidence limits of the prediction. An example of a 
prediction of P requirement was carried out on an experiment done at the Centro 
Internacional de Agricultura Tropical (CIAT) in Cali, Colombia and is illustrated in Figure 2.  
An interesting result of this prediction was that the actual precision of the fertilizer 
prediction was approximately +/-  50% of the requirement in most cases. This large error 
pointed out the typically large uncertainty in fertilizer predictions. One advantage of the 
first order uncertainty prediction was the ranking of sources of variability in the prediction 
equation. This enabled prioritizing research effort to better understand and make 
predictions (Chen et al., 1997). 
 

 

Fig. 2. Comparison of PDSS prediction with field estimates of the amount of fertilizer 
phosphorus needed to achieve maximum yield (CIAT, 1993) 

6.3.7 Economic analysis 
Economic analysis was the third component. This component clearly differed from the other 
portions of the decision making process requiring an economic calculation of profitability 
resulting from resolving the Diagnosed problem using the Prediction methodology. As 
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indicated above the construction of this component required quantitative output from the 
Prediction component in order to carry out the calculation of the benefit resulting from the 
solution of the diagnosed problem. This, for example, required a quantitative estimate of the 
amount by which the crop yield was increased as a result of supplying the necessary 
nutrient phosphorus. Understandably this required more than the usual soil science solution 
to increase extractable P. In PDSS, this required an estimate of crop growth response, which 
required estimating crop behavior at various levels of extractable soil P. This requirement 
meant that we had to incorporate plant response in addition to the simple chemical 
evaluation of extractable P. Thus we had to fill yet another knowledge gap in order to link 
the Prediction module with the Economic Analysis module. We found this “stretch” to 
ensure module communication helpful and broadening. As a result we gained an improved 
perspective of the decision-making process. The ultimate advantage was that we could 
conduct sensitivity analysis of the effects of change in extractable soil P on crop yield, 
profitability, and benefit/cost. 
The adopted methodology for economic analysis was a simple partial budget analysis. This 
type of analysis permitted a quantitative calculation of benefit versus cost, giving some 
indication of economic advantage of the practice suggested in the Prediction step. The 
strength of the partial budget assessment was the minimal data requirement. The weakness, 
of course, was that the entire enterprise could be losing money but if the addition of 
fertilizer was resulting in yield increases considering fertilizer costs, the analysis would 
report a profit. Another weakness, from an anthropological point of view is that economic 
analyses capture only part of people’s decisionmaking logic----issues like gender/ethnic 
division of labour and circular migration issues, symbolic meanings of particular crops, 
distaste for handling of fertilizers, food crop taste preferences, etc. are ignored...[of varying 
relevance, depending on local conditions]. In addition, the partial budget assumes no 
interactions among the fertilizer variables with other factors in the enterprise. Since the 
exploration of the consequences of various cost and benefit scenarios is often helpful for 
decision-support, a separate form was constructed to facilitate entry and calculation of 
benefit/cost given various price inputs. 

6.3.8 Recommendation 

The fourth and last component of the structure of nutrient management revealed as a result 
of the meta-level analysis of the decision-making process was the Recommendation. The 
Recommendation as identified in this analysis is the process and result of summarizing the 
entire decision-making process and includes the Diagnosis, Prediction, and Economic 
Analysis, and presents this information in a way that the decision-aids user can utilize. 
Understandably this varies with the needs, knowledge preferences and capabilities of the 
users. In the case of PDSS software a simple page is constructed that includes the specific 
segments of Diagnosis, Prediction, and Economic Analysis, and concludes with a list of the 
warnings (aspects of the consultation that could be seriously in error) or information notes 
that supplement the conclusions of the consultation. 
The Recommendation, in the case of the SimCorn decision-aid (a decision-aid developed by 
scientists at Kasetsart University using the knowledge and algorithm implemented in PDSS) 
for the diagnosis, prediction, and economic analysis of fertilizer quantities for maize, was a 
book of recommendations that could be used by local extension officers to interpret soil test 
results and to communicate specific amounts of fertilizer blends for producers and growers 
in their region. In this case, the extension officers provided the information verbally rather 
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than distributing leaflets and tables of fertilizer recommendations (Attanandana et al., 2007; 
Attanandana, 2004; Attanandana and Yost, 2003; Attanandana et al., 2007). 
Preparing the decision-aid knowledge for the Recommendation thus requires close contact 
and familiarity with the clients, or with the agents who will be the direct users of the 
software. As discussed in Attanandana et al. (2008), the results of the decision-aid 
consultation should be prepared in a form that enables and empowers the producer/farmer 
who will be using the results. The preparation of the Recommendation thus completes the 
process of close contact with the eventual user of the decision-aid results that we consider 
essential for the crafting and construction of the decision-aid as well as its application 
(Attanandana et al., 2007; Attanandana et al., 2006). 

6.3.9 Reaction to the PDSS decision-aid among differing collaborators 

The PDSS system and the knowledge contained therein was found useful in various ways 
by our collaborators. For example, our Thai colleagues sought to include PDSS for the P 
algorithm contained therein. They incorporated the logic and equation into their own 
systems, SimCorn and SimRice (Attanandana et al., 2006). Our colleagues in the Philippines, 
however, preferred to receive the PDSS algorithms in the form of the more integrated 
NuMaSS software, to be discussed subsequently, which combined the nitrogen, phosphorus, 
and soil acidity components  (Osmond et al., 2000).  
The use of the PDSS algorithms in our collaborators’ software SimCorn (Attanandana et al., 
2006) reduced the recommended application of phosphorus by roughly 50% (Attanandana, 
2003, personal communication) reducing the requirement for foreign exchange to purchase 
fertilizer P, and limiting the accumulation of environmentally harmful levels of nutrient P. 

6.3.10 Expansion and extension of the PDSS decision-aid 
The PDSS decision-aid, first released in 2003, proved to be a decision-aid in development. 
The development of PDSS, similar to the development of ACID4, opened up new 
possibilities and suggested several additions and generated multiple research activities. The 
areas where additional knowledge was prioritized included the addition of a potassium 
module especially for work in Thailand. Also in Thailand and in West Africa, we needed to 
help identify rock phosphate-favorable conditions as well as the amounts that should be 
applied to alleviate P deficient conditions. And, lastly, we needed to diagnose and predict 
nutrient requirements in perennial cropping systems such as trees, which was clear from the 
intial work with decision-aid ACID4 in Sumatra, Indonesia. 

6.3.11 Improving predictions of the PDSS  
As a result of calculating the error in the prediction (Chen et al., 1997), which gave 
confidence limits on the decision-aid prediction, we also obtained the relative ranking of 
error in each of the input variables. This information was then used to identify the greatest 
source of error in the prediction. This led to the identification of follow-up research 
designed to reduce error and uncertainty in the predictions. Follow-up work was carried 
out, for example, to better estimate and predict the buffer coefficient for phosphorus in 
various project sites (George et al., 2000).  

6.3.12 Potassium module 

Another substantial gap in the nutrient management of crops for food and fuel in the 
Tropics included the need to assess the potassium (K) status of highly weathered soils. We 
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expect deficiencies in potassium to occur and indeed our experience has been exactly that in 
Thailand (Attanandana and Yost, 2003). With assistance from our collaborating institution 
and local research support, a study of methods for diagnosing and predicting potassium 
requirements was completed. Based on this result and when integrated with other 
preliminary research, a tentative potassium prediction model was proposed (Yost and 
Attanandana, 2006), eq. 4. 

 

   
 
 

1K requirement kg K ha   Kcritical –  Ksoil /BCK x B.D. x 

Application depth /10  x Placement factor 

 Biomass removed x K content in the biomass

 

   (4) 

Where 
K requirement = the amount of fertilizer K that is needed to restore the soil K supply such 
that crop yields were maximum 
Kcritical = The level of soil K needed to ensure that maximum growth and productivity 
occurred 
Ksoil = The measured level of soil K 
BCK = The soil buffer coefficient, i.e. the reactivity of the soil to added K, using the same 
extractant as Ksoil 
B.D. = Soil bulk density (specific gravity), i.e. the weight of soil per unit volume 
Application depth = The intended depth of incorporation of the fertilizer K in cm 
Placement factor = A fraction that represents the relative benefit from application to a 
fraction of the soil volume at the specified depth to be fertilized 
Biomass removed = The amount of crop bioproduct that is expected to be regularly removed 
from the field 
K content of the biomass = The K content of the portions of the crop that will be removed 
from the field  
Subsequent comparisons of yield and profit from farmer practice as compared with decision-
aid recommendations indicated yield increases where K was applied according to predictions 
and increases in profit (Attanandana et al., 2008). Further and more detailed studies indicated 
that new methods for K diagnosis should be considered  (Nilawonk et al., 2008). 

6.3.13 Rock phosphate module 

Another substantial gap in the nutrient management of crops for food and fuel in the 
Tropics included the need to consider locally available sources of nutrient phosphorus. This 
was an issue both in Thailand and in Mali, West Africa. A systematic analysis of the issues 
and factors that control rock phosphate effectiveness was carried out and the results were 
organized into a decision-tree and logical sequence (Sidibé et al., 2004). This author 
proposed a comprehensive approach to determining whether and how much of a specified 
rock phosphate material should be applied to restore crop productivity. The result was an 
algorithm that successfully predicted rock phosphate applications in acid sulfate soils of 
Thailand (Yampracha et al., 2005). 

6.3.14 Perennial crops module 

Initially, the project anthropologist observed that local communities had long preferred perennial 
crops for a variety of reasons later to become apparent (Colfer, 1991; Colfer et al., 1989). 
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Subsequently, it was apparent that in some high rainfall tropical environments the repeated 
clearing of land for food crops resulted in exposing bare soil to the intense rainfall. This 
could result in damage to the soil status either by leaching and loss of soluble nutrients on 
one hand (Dierolf et al., 1997), loss of enriched, surface soil through soil erosion, or both. In 
certain environments a more conservation-effective agro-ecosystem may be a perennial 
production system that provides regular food production but where the soil surface remains 
covered and protected from the typically highly erosive rainfall of humid tropical 
environments, such as those of tropical Indonesia.  
A meta-level analysis of nutrient management structure and options in perennial cropping 
systems suggested that there also was a discernable and distinctive structure in perennial 
cropping systems and that the structure included the following: 1) A nursery phase, in 
which the seeds of the perennial plant were germinated and young plants begun, 2) An 
establishment phase in which the small seedlings were outplanted into the land that would 
become a forest, 3) A period of fast growth, and 4) A mature phase, in which production 
continued for many years (Figure 3). A review of the literature was assembled considering 
the perennial producer peach palm (Bactris gasipaes, L.) (Deenik et al., 2000). 
 

 

Fig. 3. A graphic depiction of four stages of particular importance in the management of 
nutrients in perennial crops (Deenik et al., 2000). 

As in the case of other meta-level analyses of the agricultural systems, numerous gaps were 

observed in the available nutrient management in perennial crops when viewed from this 

perspective. As a result several studies were undertaken including collaborators, especially 

of the University of Costa Rica and the EMBRAPA/Amazon center in Brazil (Ares et al., 

2002a; Ares et al., 2002b; Ares et al., 2003; Yost and Ares, 2007).  

6.3.15 Summary 

The meta-level assessment of patterns and structure, found so helpful in the development of 

ACID4, was quite helpful in the course of developing PDSS. The meta-level analysis of the 

knowledge base resulted in numerous improvements in the concepts and content of nutrient 

management in the body of knowledge (knowledge-base) surrounding the nutrient 

phosphorus in tropical ecosystems. The identified structure (Diagnosis, Prediction, 
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Economic Analysis, and Recommendation) identifies major components in the decision-

making process and helps the user step through the process. 

Developing a tool that predicts actual quantities of fertilizer needed given specified data 
illustrates that multiple disciplines can contribute to solutions in a systematic, synergistic 
way provided a common language is used. Is it true that computer-based knowledge 
systems can better accommodate and use multiple disciplines than humans? 
A structure was proposed that enabled a monitor to guide and organize a multidisciplinary 
search to solve an unidentified problem in papaya problem diagnosis. 
The calculation of propagated error in the prediction of fertilizer quantity at approximately 
50% illustrates that despite attempts to achieve highly precise estimates in agronomic 
research, the results need improvement to better support economic and environmental 
objectives. The calculation of propagated error identified the variables most contributing to 
error. These variables became objectives for research to improve prediction accuracy and 
precision. 
Conducting research to produce a knowledge module provided a clear, stimulating 
objective and resulted in high quality, problem-driven, and yet rewarding research. 
The meta-analysis of the decision-making process and surveys of the users resulted in the 

identification of knowledge gaps that, in turn, resulted in numerous educational 

opportunities for young scientists. They conducted their research knowing that the results of 

their work would fill a gap in a working knowledge-base. The following scientists 

completed dissertations and Ph.D. degrees during this work (Gill, 1988; Evensen 1989; Agus 

1997); Deenik, 2000; Diarra et al., 2004; Dierolf et al., 1999; Nilawonk et al., 2008; Sipaseuth et 

al., 2007; Yampracha et al., 2005).  

6.4 NuMaSS (nutrient management support system) 

The NuMaSS Project was designed to join the individually developed decision-aids ADSS 

and PDSS, with a new system to be adapted from a nitrogen decision-aid (Osmond et al., 

2000).  

6.4.1 Goal  

The NuMaSS Project was developed to integrate and disseminate decision-aid tools that 

diagnose soil nutrient constraints and select appropriate management practices for location-

specific conditions. The strategy was to develop globally applicable, largely computer-

assisted, integrated decision-aids that could both diagnose and prescribe appropriate 

solutions to soil nutrient constraints. 

6.4.2 Objectives  

The Project had three objectives 1) Improve the diagnosis and recommendations for soil 

acidity and nutrient problems. 2) Develop an integrated computerized knowledge-base, and 

3) Develop auxiliary tools resulting from the integrated knowledge-base to assist producers 

to diagnose and solve soil acidity and nutrient constraints. 

6.4.3 Implementing language  

The rapid application development package Delphi®, which was a Pascal-based 

development environment. 
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6.4.4 Successes  

The integrated software was comprised of existing modules of PDSS and ADSS, both 

modified to merge into the integrated framework called NuMaSS (Nutrient Management 

Support System). A nitrogen module was added by North Carolina State University based 

on the Stanford (1973) approach of determining a balance of what the crop needed relative 

to the soil content with amendments and fertilizers added. The actual implementation, 

while based on the Stanford approach, grew out of a dissertation of one of the project 

members (Osmond, 1991). The NuMaSS software was disseminated in countries in West 

Africa, Central and South America and in S.E. Asia (Thailand and the Philippines). 

One of the notable initial successes of NuMaSS was that by following the diagnosis of soil 
acidity conditions and following with the proper soil amendments, desired crops such as 
mung bean (Vigna radiata, L.) could be grown where the crop had died previously due to 
the high soil acidity (Aragon et al., 2002). The decision-aid also indicated that other crops 
could be grown and would require substantially less expensive limestone than did mung 
bean. The initial success continued and gradually attitudes and awareness towards soil 
acidity changed and producers became aware of the importance and limits in productivity 
it caused. Several assessments of farmer attitude indicated substantial change in 
awareness and prioritization of soil acidity (Aragon et al., 2002). An impact analysis at the 
conclusion of the project reported that during the next 40 years the project results were 
conservatively estimated to return about 45 million $US in benefits to the producers 
(Walker et al., 2009). 
Some other spectacular results occurred on the island of Negros Occidental where farmers 
and producers had not been applying limestone and were basically unaware of soil acidity. 
In this province maize yields of over 7 metric tons were obtained with the addition of 
nutrients according to NuMaSS predictions. This contrasted to yields of maize of 1 to 2 tons 
without the addition of nutrients or limestone (D. Cidro, 2006 personal communication). 
The impact of the introduction of NuMaSS and introducing specific management of the acid, 
uplands soils seems on track to expand and extend well beyond the province of Isabela 
where the Walker et al. (2009) study took place. Other provinces of Northeastern Luzon 
have begun instituting province-wide programs of applying limestone. This contrasts to the 
total lack of commercial agricultural limestone in the regional city of Ilagan when the project 
begun. It was not clear that the rapid and extensive adoption of the liming technology was 
due to NuMaSS, but it seems likely that the dissemination was enhanced by the presence of 
the decision-aid. 

6.4.5 Disadvantages 

While it is clear that the NuMaSS software assisted and improved food crop yields in the 
Philippines, it was also clear that there were problems with the nitrogen component, 
especially in Thailand and Laos. A dissertation study was carried out comparing N 
recommendations from two decision-aids (NuMaSS and DSSAT (Jones, 1998)). The results 
indicated that neither software adequately estimated the minimum amounts of fertilizer N 
that should be applied. A dissertation study indicated that there was substantial residual 
nitrate that should be measured and which reduced the fertilizer nitrogen requirement 
(Sipaseuth et al., 2007). 
Unfortunately, the results of the multiple expert work described in the Propa system (see 
section 6.2) had not yet become available and separate, non-interacting systems for nitrogen, 
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phosphorus, and acidity were constructed. In addition time did not permit the full 
integration of the potassium, rock phosphate, and perennial crop modules that had been 
developed for PDSS, to be integrated into the NuMaSS system. 

6.5 NuMaSS-PDA (nutrient management support system for personal digital 
assistants) 
Scientists at Kasetsart University, Bangkok, Thailand were among the first to attempt to 
diagnose and make fertilizer recommendations at the field-level using decision-aids 
(Attanandana et al., 1999). These scientists adapted simulation model output for use by local 
growers / producers in their efforts to apply site-specific nutrient management on their land 
(Attanandana and Yost, 2003). This approach was an attempt to adapt the concepts of 
Precision Agriculture, which broadly seeks to apply the right amount of the right nutrient at 
the right place at the right time, to the small farms of the Tropics (Attanandana et al., 2007). 
This included invention and use of the soil test kit, identification of the soils in the field 
using simple field observations (Boonsompopphan et al., 2009) and simplification of 
complicated simulation models (Attanandana et al., 2006; Attanandana et al., 1999) so that 
fertilizer recommendations could be made in the field. These efforts led to the assembly of 
the SimCorn, SimRice, and subsequently to the SimCane software (Attanandana et al., 2006). 
The NuMaSS-PDA was an attempt to harness the new capability of handheld computers 
and smartphones to provide the decision-support for the process. 

6.5.1 Goal  
Re-structure and re-organize a subset of the knowledge  in the NuMaSS software for 
delivery on a hand-held computer so that one could go to a producer’s field, sample and 
analyze the soil, identify the pertinent soil series, and conduct the diagnosis, prediction, 
economic analysis, and prepare a recommendation  on site. 

6.5.2 Objectives  
Adapt essential parts of the NuMaSS decision-aid for delivery on a handheld device. Add 
the potassium decision-aid module to that of the nitrogen and phosphorus, thus providing 
direct support for the typical N, P, K fertilizer decision-making. Develop a simple method so 
that interaction and use of the decision-aid would be possible in multiple languages with 
simple addition of a simple dictionary for each language. 

6.5.3 Implementing language  
Superwaba® , a Java-based language. Palm OS, Windows Mobile OS. 

6.5.4 Successes 
A multilingual interface was developed that would permit interaction with users from a 
large number of languages. The nitrogen, phosphorus, potassium and liming modules were 
joined and executed properly in the SuperWaba environment. The initial languages 
implemented included English, French, Portuguese (Li et al., 2006). Subsequently, Tagalog 
and Tetun were added. Development concluded as the project drew to a close. 

6.6 Visual decision-aid 

In numerous regions of the Tropics access to a computer, an agricultural officer, or highly 
knowledgeable producers / growers is difficult or impossible. In other cases, even access to 
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written literature does not provide access to the knowledge written there. Nevertheless, 
producers and growers are intensely aware of, and clearly survive on visual information. 
We began an attempt to explore the possibility of stimulating awareness and transfer of 
information, or learning by a completely visual approach. This was a completely visual 
guide to the installation of a water conservation technology called “Amenagement en 
courbes de niveau” (ACN) in West Africa. This water conservation technique was 
developed by CIRAD (Gigou, 2006) and later characterized (Kablan et al., 2008). Adoption of 
the technology was slow, in part, due to the requirement for expert delineation of the 
contours in the field. Demand for the technology far out-stripped the availability of the local 
scientific staff. Professional staff are required to survey the hydrological issues in the field 
and devise strategies to handle the issues and locate the contours. The visual aid, Visual 
ACN, illustrated in Appendix 3, is proposed to illustrate, inform, and instruct in the 
installation and maintenance of the technology including the illiterate, which often may be 
women farmers, for example. The decision-aid in this case was not a computer software; 
rather it was a simple guide based on a sequence of two figures or drawings per page 
illustrating the condition and the solution on each page. We have conducted test 
distributions of the guide, which have stimulated substantial interest among local producers 
and growers (Figure 4). 
 

 

Fig. 4. Long time, successful ACN (Amenagement en  Courbes de Niveau) user, M. Zan 
Diarra,  Siguidolo, Mali, West Africa examines the Visual ACN decision-aid with interest 
(photo: R.Kablan). How to assess what he might be remembering or learning from the visual 
information? 
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6.7 Decision-aids to assist learning / education 

Use of the decision-aids was found to stimulate and enable learning in several ways. 
- Operating the decision-aid by entering the requisite data. Carrying out the calculations 

and recording or transmitting the results helped users gain familiarity with the software 
and elements of the decision-making process. Merely operating the software did not 
result in the users gaining the knowledge embedded in the software, but to the curious  
it led to questions and sometimes sparked curiosity.  

- Observant users gained some measure of the types of information needed and could 
test the system integrity by checking test cases. A feature of the early expert system 
shells was back-tracking that demonstrated the logic that led to a specific conclusion. 
With later decision-aids this feature was not present so supplementary information 
surrounding the consultation had to be selected and specifically added at the 
Recommendation stage. 

- The rigor imposed by the decision-aid on the user, i.e. having to provide an answer in 
every run or consultation, reinforced and reminded the users of the need to have 
information from a specified group of interdisciplinary knowledge bases. The input 
from farmers as local experts, both improved the system and provided positive 
feedback to them. 

- For some users the rigor of having to answer, in a precise way, was difficult and 
resulted in loss of interest and failure to complete the consultation. 

- Use of a decision-aid can illustrate to users the need for and value of 
interdisciplinarity. 

- Exposure to the way knowledge can be organized provides an exposure to a meta-level 
appreciation of the problem-solving techniques, which can support learning. 

- The structure of the decision-making process illustrates one type of problem-solving 
that users can adopt or modify for themselves in the future as needed. 

6.8 Summary 

This chapter illustrates that complex agricultural knowledge could be captured and 

implemented so that numerical predictions and informed recommendations could be 

produced. In the example given, soil and crop management technology and knowledge on 

acid soils was captured from successful practice in the Southeast US, Central and South 

America and implemented in analogous soils in Indonesia. 

Use of the decision-aid by users in a new location where soil acidity or phosphorus was 

limiting helped users identify data needs for solving such problems. For example, improved 

management of acid soils acid soils in the uplands of the Philippines was stimulated by the 

introduction of the decision-aid NuMaSS. The improved management included introducing the 

practice of liming. As a result producers and growers in the region were expected to benefit over 

45 million $US, according to the impact analysis conducted in 2007.  

The knowledge engineering process led to a meta-analysis of the process, i.e. some thought 
about how to best solve nutrient management problems. The result of the meta-analysis was 
the identification of a structure in nutrient management decision-making. A structure of 
Diagnosis, Prediction, Economic Analysis, Recommendation was proposed. This structure 
guided the formulation of PDSS, NuMaSS, and NuMaSS-PDA. 

6.9 Challenges 

Improved knowledge structures are needed that better match the nature of the knowledge. 

www.intechopen.com



 
Decision Support Systems in Agriculture: Some Successes and a Bright Future 315 

Improved methods of knowledge representation are also needed such that the knowledge 
does not die when a software falls out of use or is discontinued. The use of pseudo-code or 
alternative knowledge capture may be an useful in this regard.  
The knowledge engineering process is expensive and time consuming. The knowledge capture 
process needs further streamlining so that non-experts can record and exercise their knowledge.  
Better software tools are needed to enable decision-aids to serve the learning / teaching function. 
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6.11 Abstract 

The application of Information Technology to agricultural knowledge in the form of 

decision-support systems and decision-aids has already been successful and offers great 

promise of more success in the future. This chapter will discuss the complex characteristics 

of agricultural information and the challenges it presents to society and to Information 

Technology (IT) to capture, organize, and disseminate this knowledge. Successes resulting 

from the application of IT to agricultural knowledge are discussed. The challenging 

characteristics of agricultural knowledge are that it is 1) Highly experiential and highly 

situational, 2) Characterized by outcomes and results that are risky, uncertain, with many 

events minimally predictable, 3) Interdisciplinary in nature, ranging from social sciences to 

biology, chemistry, physics, and mathematics. That this knowledge has been an 

extraordinary challenge for IT to capture is well-known and it is not surprising that new 

methods, structures, and systems continue to be required to capture the information. 

Agricultural knowledge remains in a much earlier more descriptive stage of development, 
where personal observation and personal experience play a primary role in understanding 
agriculture and attempts to control or manage it. It is the thesis of this chapter that 
information technology can play a role in moving agriculture along to a more advanced 
stage of development by recognizing consistent trends, patterns, rules of the trade, rules of 
thumb and building upon such knowledge. Meta-analysis of the state of agricultural 
knowledge should be encouraged as being helpful to the process. The understanding of the 
causes of risk and uncertainty is relatively recent as are the benefits from systems studies 
conducted at a relatively high level of abstraction. Some examples include the identification 
of “tipping points” and their recognition in fragile ecosystems. Other aspects of the 
mathematics of catastrophe theory seem to offer benefits of perspective and overview of 
complex systems such as agriculture. The highly interdisciplinary nature of the knowledge, 
while involving virtually the full range of human knowledge systems, goes well beyond the 
scope of traditional biological, physical, and chemical disciplines. Of particular note is the 
importance of social sciences in the understanding and in attempts to control and manage 
real agricultural systems. As indicated, the need for decision-support systems to consider 
the human element in observing, capturing, and delivering management expertise is well 
known and several examples have been given. Preliminary exploratory decision-aids are 
discussed and the results of the development effort are chronicled in this chapter. One 
example depicts the capture for knowledge associated with the management of acid soils, 
developed in the SE US, Central America, and South America, and enable its transfer and 
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adaptation by farmers of upland cropping systems in the province of Isabela, The 
Philippines. There acid soils abound but techniques of acid soil management were not to be 
found. The results of the capture of both the experiential and scientific knowledge led to the 
identification of patterns and structures in the knowledge. Four components of nutrient 
management decision-making were identified and proved to be helpful in understanding, 
predicting, and controlling the management of nutrients in tropical soils. These included the 
Diagnosis, Prediction, Economic Analysis, and Recommendation components of nutrient 
management decision-making. Numerous gaps in both knowledge representation, 
knowledge organization, and in the use of decision-aids to support and transform teaching 
and learning remain. Nonetheless, it seems the potential of information technology is yet to 
be understood and certainly not realized. 

7. Appendix 1 

Example synthesis and inference of guiding decision-trees of agricultural information 
(Robotham, 1998). 
 
 
 
 
 

 
 
 

Appendix Figure 1(Robotham, 1998, Figure 6.1). 
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Appendix Figure 2 (Robotham, 1998, Figure 6.12). 

 

 

Appendix Figure 3 (Robotham, 1998, Figure 6.13). 
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Appendix Figure 4 (Robotham, 1998, Figure 6.17). 

 

 

Appendix Figure 5 (Robotham, 1998, Figure 6.18). 
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Appendix Figure 6 (Robotham, 1998, Figure 6.19). 

8. Appendix 2 

Example table illustrating the calculation of cumulative probability. Initial probability of P 

deficiency was considered 0.5, which on a scale of 0 to 1 indicates no information for or 

against P being deficient in the examined soil. The corresponding odds of a deficiency then 

is 50/50 or equal to 1. As various factors are considered, each with a probability of P 

deficiency (P(def)), the evidence accumulates until a final cumulative probability of 0.83, 

which indicates a high probability of P being deficient in the measured soil soil (Yost et al 

1999; Pearl 1988). 
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Example Bayesian calculations of cumulative probability 

Initial P deficiency =  0.5 Odds (deficiency):1 

  
   

Odds Cum.Prob 

Factor Value P(def) L(def) (def) 
(P 

deficiency) 

Agric. Region Mali 0.6 1.50 1.50 0.60 

Soil Order none 0.5 1.00 1.50 0.60 

Prev. Crop none 0.5 1.00 1.50 0.60 

Indicator Plant Striga 0.7 2.33 3.50 0.78 

Def. Symp. Purple 0.7 2.33 8.17 0.89 

Plant Anal. 0.3 0.2 0.25 2.04 0.67 

Soil Anal. < 0.5 0.7 2.33 4.76 0.83 

Total Cum Probability: 
    

0.83 

9. Appendix. 3 

Visual ACN 
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