
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Fine-Grained Diagnostics of Ontologies
with Assurance

Stefan Rass, Fadi Al Machot and Kyandoghere Kyamakya
Alpen-Adria Universität Klagenfurt

Austria

1. Introduction

Description logics (DL) is a class of logics for knowledge modeling, which are derived from
semantic networks. Essentially they are to be understood as accessible fragments of predicate
logic of first order, allowing strong expressions to be formulated.
Other description logics permit strong (complex) expressions in a very compact
representation. For description logics, there are special inputs and intuitive notation that
facilitates the handling of them substantially.
Modeling in expert systems is very important, especially in systems within highly complex
domains where spatial and temporal data needs to be modeled. The ontology model permits
the use of a reasoner that can check definitions of the statements in the ontology for consistency
against each other. It can also recognize which concepts are the best for which definitions,
pursuing an optimal solution in terms of size, speed, etc. This is particularly helpful when
dealing with multiple classes hierarchies, therefore expert systems permit creating complex
concepts from definitions of simpler ones. So, an ontology is an engineering artifact or is a
formal representation of knowledge as a set of concepts within a domain, it often includes
classification based information and constraints capturing the knowledge about the domain
(cf. Kohler et al. (2003)).
Rule-based systems are successfully applied across a lot of domains. The interest in ontologies
has become stronger to develop a common rule base that could be computed by different rule
engines. This effort has led to the development of several rule languages such as the rule
markup language (RuleML), the semantic web rule language (SWRL), Metalog, ISO Prolog, and
many others.
Beside the weaknesses of SWRL are the weaknesses of the SPARQL protocol and RDF Query
Language (SPARQL), where RDF is the acronym for resource description framework (see World
Wide Web Consortium (2010)), to query an ontology, which requires the query writer to
understand the data structure of the RDF resources. This understanding can be derived from
eye parsing where sometimes the RDF or OWL ontology are large and the human being is not
able to follow any more. This can become a major obstacle when debugging or extending an
existing ontology.
Other computing paradigms, such as constraint satisfaction, quantified boolean formulas
(QBF), or first order logic (FOL), do not naturally offer the powerful expressive possibilities
to define our knowledge database of to model the spatial and context models. In general the
tasks posed in the constraint satisfaction paradigm are computationally intractable (NP-hard).

5

www.intechopen.com

2 Will-be-set-by-IN-TECH

Thinking of real-time reasoning systems, the most challenging task is to provide decision
support in competitive situations, which calls for fast and reliable decisions. Speaking about
the quality of a decision, we can hardly hope to reliably forecast another entity’s behavior
during an interaction. This is due to different ontologies most likely residing in different
agents, as well as other unexpected behavior of a human operator who decides to ignore the
system’s recommendation.

1.1 Assurance

In many situations, such as driving a car with an adaptive driving assistance system (ADAS),
the situation at hand is not truly competitive, but equally sure not cooperative. Even if
cooperative driving is intended by the individual assistance system (presuming those to be
capable of vehicle-to-vehicle ad hoc networking), the ultimate decision lies with the driver,
who can freely choose to obey or to ignore any recommendation. It follows that if we wish
to assure a particular outcome tied to a recommendation, we have to consider the behavior of
others as much as our own. Interestingly, concepts from game-theory do provide an elegant
mean of having a guaranteed outcome regardless of what the other entities in the system do.
These concepts have become known under the general term of security strategies (cf. Ghose &
Prasad (1989)), and can effectively be carried over to the context of ontological reasoning.
For the modeling, we shall assume an ontology with reasoning capabilities as a mere function
taking some input values (constituting the query) to some recommendation (by performing
internal reasoning). For illustrative purposes, let us take adaptive driving assistance as an
example, stressing it whenever ideas or concept shall be exemplified. Suppose that the ADAS
has been queried for driving directions, provides us with three alternative recommendations
for guiding us to a given destination as fast as possible.

1. drive straight at high speed.

2. turn left at the next junction, speed can be moderate.

3. turn over with high speed.

The first recommendation may arise when the route is correct, but not necessarily the shortest
one. The second advise may be appropriate if a faster route can be reached from the next
junction, and the third statement could indicate an even shorter route provided that one
immediately turns around.
Having the additional objective that we seek to maximize safety, one can again use the
ontology and reasoning capabilities to deduce the likelihood of an accident. Assume that
the approaching traffic can either come at slow or fast speed, and is free to turn left, right
or go straight. We cannot hope to correctly guess which one happens, so we seek the best
possible outcome in this uncertain situation.
The ontology plays a twofold role in the above scenario, as it can be used to

1. derive a recommendation for the next action, and to

2. assess the consequences that such an action might have.

While ontologies can do both, they are usually not explicitly designed to yield the "best"
recommendation. Certainty factors, fuzzy reasoning and many other such approaches have
been introduced to handle uncertainty, but a quantitative optimization of responses is mostly
beyond the scope. Designing an ontology to provide us with both,

• correct, and

• provably optimal,

80 Efficient Decision Support Systems – Practice and Challenges From Current to Future

www.intechopen.com

Fine-Grained Diagnostics of Ontologies

with Assurance 3

recommendations is a hardly considered problem, and a solution proposal for it is the core
contribution of this chapter. In the following, we discuss both problems separately, tackling
the correctness issue with a refined form of diagnosis. Optimality of recommendation will be
achieved with a post-processing step, to be described in section 4.

2. Ontological reasoning in practice

The most recent developments for ontology design is ontology web language (OWL), with its
dialects OWL DL (particularly optimized for description logics) and OWL Lite. It has various
sets of operators and it is based on different logical models which simplify the description
of the concepts. The semantic web rule language is based on OWL DL, OWL Lite, and the
Rule Markup Language (cf. Snidaro et al. (2008)). All rules are expressed in terms of OWL
concepts (classes, properties, individuals). This means that rules can be used to extract new
knowledge from existing OWL ontologies. Therefore complex rules must be transformed to
the requirements of SWRL (cf. Matheus et al. (2005)). Also, there are no inference engines that
fully support SWRL up to now.
The first step in building a context model is to specify the desired system behavior. The
developer then lists a set of possible scenarios, where each scenario is a relationship between
entities to be observed. The requirements for modeling information contexts (cf. Fuchs (2008)):

Applicability: The model must restrict the domain of application.
Traceability: The model must provide support for recording of provenance and processing

of information.
Inference: The model should include tools that permit the definition of new contextual

categories and facts on the basis of low-order context.
Re-usability: The model should allow re-usability in other independent modeling tasks.
Flexibility: The model should not be easily changeable to extend the ontology.
Completeness: The model should cover all relevant concepts and properties.
Redundancy: The model should not contain a lot of defined instances that have the same

properties.

Context reasoning extends context information implicitly by introducing deduced context
derived from other types of context. It is a perfect solution to resolve context inconsistency.
In the light of the key role that ontologies play in many applications, it is essential to provide
tools and services to support users in designing and maintaining high quality ontologies. This
calls for:

1. All named classes can be instantiated (i.e. there are no "abstract" classes)

2. Correctly captured intuitions of domain experts

3. Minimal redundancy and no unintended synonyms

4. Rich axiomatization and (sufficient) detail

Answer queries over ontology classes and instances, e.g.:

1. Find more general/specific classes

2. Retrieve individuals/tuples matching a given query

Context interpreters consist of context reasoning engines and context knowledge-bases
(context KB). The context reasoning engines provide the inference services including inferring
contexts, resolving context conflicts (basically a problem of diagnostics) and maintaining the
consistency of context knowledge-bases. Different rules for consistency can be specified and

81Fine-Grained Diagnostics of Ontologies with Assurance

www.intechopen.com

4 Will-be-set-by-IN-TECH

fed into the reasoning engines. The context KB provides the service that other components
can query, add, delete or modify context knowledge stored in the context database (cf. Wang
et al. (2004)).
However, the problem of the current rules and reasoning systems is that they do not offer
high performance according the highly declarative way of the encoding of the problem and
the execution time to find the "best" solution.
As an example the used semantic web rule language (SWRL) has no negation or disjunction
and the arithmetic predicates which it offers are weak.

Obstacles in writing logical programs

Semantic web technology is widely used for reasoning and expert systems. Especially the use
of SWRL to define relationships between classes and individuals in the ontology may cause
major problems due to the long execution time of semantic web technology for querying the
ontology (e.g. via SWRL and SPARQL). This is indeed a problem when creating practical
expert systems ought to perform in real-time. Some existing paradigms as well suffer from
negation as failure, which has been discussed by Matheus et al. (2005). Moreover, they not
necessarily allow n-ary predicates within a rule.
Going away from SWRL, we still require constraints, negation as failure, and expressive
representation that are decidable and permit reasoning (efficiently). In particular, some logical
programming languages do not offer arithmetic operations "built-in", and numeric constraints
can affect decidability. Since reasoning (like done in the Prolog-language for instance), is often
a recursive procedure, its complexity can become exponential and thus infeasible for even a
medium-size ontology.
Now, to avoid the weaknesses of the existing paradigms answer set programming (ASP) offers
flexible and high performance reasoning. ASP is a declarative approach for modeling and
solves search problems by representing them as logic programs.

2.1 Answer set programming

The importance of ASP lies in the fact that it provides meaning to logic programs with default
negation "not". Many interesting applications exist in planning, reasoning about action,
configuration, diagnosis, space shuttle control, spatial, temporal and probabilistic reasoning,
constraint programming, etc.
The Technical University of Vienna (TU-Wien) hosts a the research group "knowledge
based systems", whose members are running a project on "Answer Set Programming for
the Semantic Web". The goal of this project is research towards methods for providing
advanced reasoning services in the context of the Semantic Web, using declarative knowledge
representation and reasoning techniques (see Eiter et al. (2005)).
A logic program in the language of AnsProlog (also known as A-Prolog) is a set of rules of the
form:

a0 ← a1, . . . , am, not am+1, . . . , not an (1)

where 0 � m � n, each ai is an atom of some propositional language and not represents
negation-as-failure. A negation-as-failure literal (or naf-literal) has the form not a, where a is an
atom. Given a rule of this form, the left and right hand sides are called the head and body,
respectively. A rule may have either an empty head or an empty body, but not both. Rules
with an empty head are called constraints, while those with an empty body are known as facts.
A definite rule is a rule which does not contain naf-literals, and a definite program is solely
composed of definite rules (cf. Baral et al. (2010)).

82 Efficient Decision Support Systems – Practice and Challenges From Current to Future

www.intechopen.com

Fine-Grained Diagnostics of Ontologies

with Assurance 5

Let X be a set of ground atoms (i.e. all atoms constructed with the predicate in Herband base of
a logic program). The body of a rule of the form (1) is satisfied by X if {am+1, . . . , an}

⋂

X = ∅

and {a1, . . . , am} ⊆ X. A rule with a non-empty head is satisfied by X if either its body is not
satisfied by X, or a0 ∈ X. A constraint is satisfied by X if its body is not satisfied by X.
Since logic programs unify declarative and procedural representations of knowledge, one way
to reason is by using Horn clauses, backward reasoning and selective linear definite clause
(SLD) resolution. The reduct of a program is a possibility to generate answer sets. Given an
arbitrary program, Π and a set of ground atoms, X, the reduct of Π w.r.t. X, ΠX , is the definite
program obtained from the set of all ground instances of Π by:

1. deleting all the rules that have a naf-literal not a in the body where a ∈ X, and

2. removing all naf-literals in the bodies of the remaining rules.

A set of ground atoms X is an answer set of a program Π, if it satisfies the following conditions:

1. If Π is a definite program, then X is a minimal set of atoms that satisfies all the rules in Π.

2. If Π is not a definite program, then X is the answer set of ΠX . (Recall that ΠX is a definite
program, and its answer set is defined in the first item (cf. Baral et al. (2010)).

The other advantage of ASP is that the order of program rules does not matter and the order
of subgoals in a rule is also not relevant. For an example, if we have the famous problem
"3-colorability", where we have a map and we want to check whether 3 colors (blue, yellow
and red) are sufficient to color a map. A map is represented by a graph, with facts about nodes
and edges.

vertex(a), vertex(b), edge(a,b).

Every vertex must be colored with exactly one color:

color(V,r) :- vertex(V), not color(V,b), not color(V,y).

color(V,b) :- vertex(V), not color(V,r), not color(V,y).

color(V,y) :- vertex(V), not color(V,b), not color(V,r).

No adjacent vertices may be colored with the same color

:- vertex(V), vertex(U), edge(V,U), col(C), color(V,C), color(U,C).

Of course, we need to say what colors are:

col(r).

col(b).

col(y).

After running this program we will get all possible coloring cases to color the whole map with
three different colors. The other advantage of ASP that the order of program rules does not a
matter and the order of subgoals in a rule does not a matter also.

2.1.1 Logic programming with ordered disjunction

Logic programming can be extended to allow us to represent new options for problems in the
head of the rules. ASP gives us this ability by the way of ordered disjunctions. Using ASP
under specific conditions reasoning from most preferred answer sets gives optimal problem
solutions. Through logical programs with ordered disjunction (LPODs), such as normal logic
programs we are able to express incomplete and defeasible knowledge through the use of
default negation, they allow us to represent performances among intended properties of
problem solutions which depend on the current context. It is possible to use the degree
of satisfaction of a rule to define a preference relation on answer sets. We will present an
alternative on game-theoretic grounds in section 4. Brewka (2002) defines a rule as having

83Fine-Grained Diagnostics of Ontologies with Assurance

www.intechopen.com

6 Will-be-set-by-IN-TECH

degree 1 under the following condition: when A is an answer set of P, then A satisfies all rules
of P. For example, let us plan a vacation: Normally you prefer to go to Mallorca but also
to Stockholm (denoted by the preference relation ≺). Usually people prefer Mallorca over
Stockholm, unless it is hot. If it is hot Mallorca is preferred over Stockholm. In summer it is
normally hot, but there are exceptions. If it is winter, then Mallorca is no long considered (cf.
Brewka (2002)).

Stockholm ≺ Mallorca ← not hot (rule 1)
Mallorca ≺ Stockholm ← hot (rule 2)

hot ← not¬hot, summer (rule 3)
¬Mallorca ← rain (rule 4)

Without further information about the weather we obtain the single preferred answer set
A1 = {Stockholm}, there is no information that it might be hot, so rule 1 will determine
preferences. A1 satisfies all rules to degree 1. Now if we add a new fact summer, then the
new answer set is {summer, hot, Mallorca}. If we add the literal hot, then the new answer set
is {summer,¬hot, Stockholm}. Finally, if we add the facts summer and rain. The single answer
set is {summer, rain, hot,¬Mallorca, Stockholm}, we see that it is not possible to satisfy all rules
to degree 1. As in real life there are situations where the best options simply do not work out,
there for LPODs are very well suited for representing problems where a certain choice has to
be made. In general, using ASP we can optimize the solution we want to generate, we can
improve the rules and define the constraints we are using to get the maximum optimization
of the desired answer sets (solutions) (cf. Brewka (2002)). Assurance, as introduced in section
4, pursues similar goals.

2.1.2 Guess and check programs in answer set programming

Answer set programming (ASP) is widely used, expressing properties in NP (i.e. properties
whose verification can be done in polynomial time), where answer sets of normal logic
programs can be generated through solutions and polynomial time proofs for such properties.
The solution of such problems can be carried out in two steps:

1. Generate a candidate solution through a logic program

2. Check the solution by another logic program (cf. Eiter & Polleres (2006))

However, it is often not clear how to combine Πguess and Πcheck into a single program Πsolve
which solves the overall problem. If we simply take the union Πguess ∨ Πsolve does not work,
so we have to rewrite the program.
Theoretical results prove that for problems with ΣP

2 complexity, it is required that Πcheck is

rewritten into a disjunctive logic program Π̀check such that the answer sets of Πsolve = Πguess ∨

Π̀check yield the solutions of the problem, where Π̀check emulates the inconsistency check for
Π̀check as a minimal model check, which is co-NP-complete for disjunctive programs. This
becomes even more complicated by the fact that Π̀check must not crucially rely the use of
negation, since it is essentially determined by the Πguess part. These difficulties can make

rewriting Πcheck to Π̀check a formidable and challenging task (cf. Eiter & Polleres (2006)).
As an example, if we are talking about planning the problem to find a sequence of actions,
which it takes the system from an initial state p0 to a state pn, where the states are
changing over the time. Conformant planning looks for a plan L which works under all
contingencies cases that may be caused by incomplete information about the initial state
and/or nondeterministic actions effects which is ΣP

2 under certain restrictions (see Eiter &
Polleres (2006)). We consider the problem of the"fire alarm", we have an alarm that there is a

84 Efficient Decision Support Systems – Practice and Challenges From Current to Future

www.intechopen.com

Fine-Grained Diagnostics of Ontologies

with Assurance 7

fire in a building which is supported through a fire alarm system. Possible actions (states) of
the system turn off the electricity and then to pump water. After just having turned off the
electricity, it does not extinguish the fire, but only the pumping of water guarantees that it
is really extinguished. Using the following guess and check programs f ireguess and f irecheck
respectively, we can compute a plan for extinguishing the fire by two actions, f ireguess and
f irecheck, the program f ireguess guesses all candidate plans P = p1, p2, ..., pn using time points
for action execution,

fire_guess:

% Timestamps:

time(0).

time(1).

% Guess a plan:

turn_off(T) v -pump(T) :- time(T).

pump(T) v -pump(T) :- time(T).

% Forbid concurrent actions:

:- pump(T), turn_off(T).

while f irecheck checks whether any such plan P is conformant for the goal g =
not extinguished(2) The final constraint eliminates a plan execution if it reaches the goal; thus,
f irecheck has no answer set if the plan P is conformant.

fire_check:

% Initial state:

fired(0) v -fired(0).

% Frame Axioms:

fired(T1) :- fired(T),

time(T),

not -fired(T1),

T1 = T + 1.

turned_off(T1) :- turn_off(T),

T1 = T + 1.

% Effect of turning off:

turned_off(T1) :- turn_off(T),

T1 = T + 1.

fired(T1) v -fired(T1) :- turn_off(T),

fired(T),

T1 = T + 1.

% Effect of pumping:

-fired(T1) :- pump(T),

turn_off(T),

T1 = T + 1.

% Check goal in stage 2 (constraint):

:- not fired(2).

The program f ireguess generates the answer set S = {time(0), time(1), turno f f (0), pump(1)}

which corresponds to the (single) conformant plan {P = turno f f , pump} for goal not

f ired(2). Using the method f ireguess and f irecheck can be integrated automatically into a single

program f iresolve = f ireguess ∨ f̀ irecheck It has a single answer set, corresponding to the single
conformant plan P = {turno f f , pump} as desired.
With these examples in mind, we now turn to the problem of diagnosing such ontologies.
As should have become evident by now, spotting an error in a large-scale program is a
challenging task. We deliver a solution that is flexible and can be implemented with widely
standard components. In particular, our proposal does not require substantial changes to an

85Fine-Grained Diagnostics of Ontologies with Assurance

www.intechopen.com

8 Will-be-set-by-IN-TECH

Rtgrtqeguukpi

Qpvqnqi{"
*tg/+fgukip

Qrvkok¦cvkqpTgcuqpkpi

Fgdwiikpi

Kphgtgpeg

Fig. 1. Ontology design

existing diagnostic engine, so it can be seen as an "add-on" or refinement of a debugging
system.

3. Fine-grained axiom diagnosis

In order to generalize diagnostic methods to fine-grained axiom diagnosis, we review
the concepts behind model-based diagnosis. This prepares the ground for the diagnostic
algorithm that concludes this section. The workflow when designing and debugging an
ontology is briefly sketched in figure 1. Our focus in this section will be on debugging.
We assume the reader familiar with the resolution principle and predicate and propositional
logic. For convenience, however, we will briefly review some basics and results before going
into technical details (see (de Wolf & Nienhuys-Cheng, 1997, Chapter 2) for full details).
Let ψ be a first-order logic formula. An interpretation of ψ is an assignment of the variables
to values from a given domain, and an assignment of predicates over this domain to
truth-values, such that ψ becomes true. We write lit(Σ) for the set of literals appearing in
either a formula Σ or a set Σ of formulas. For a set of formulas Σ, a model is an interpretation
such that every ψ ∈ Σ is true. Let Σ be a set of formulas and let ψ be a formula. We say that
Σ logically implies ψ, writing Σ |= ψ, if every model of Σ is also a model of ψ. For sets of
formulas, we write Σ |= Γ, if Σ |= ψ for every ψ ∈ Γ.
A clause is basically a logical disjunction of literals. Let two clauses C1 = L1 ∨ . . . ∨ Lm and
C2 = M1 ∨ . . .∨ Mn be given and assume that there are two terms Li and Mj that can be unified
with each other such that Li = ¬Mj. The resolvent of C1, C2 is the expression C1 ∨ C2, having
the terms Li and Mj omitted. For the upcoming results, it is not necessary to fully introduce
the concept of clauses and resolution, and we will confine ourselves to the following informal
example of resolution: assume that we know that Peter plays either chess or football (clause
C1). In addition, we know that he does not play chess (clause C2). We conclude that he must
play football (the resolvent is thus C1 ∨ C2 without the assertion of Peter playing chess).
For a clause C, we say that it can be derived from a set Σ, if there is a finite sequence of clauses
R1, . . . , Rn = C such that each clause Ri is either in Σ or a resolvent of two (previous) clauses
Rj, Rk with j, k < i. In that case, we write Σ ⊢r C.
Finally, we denote the empty clause as ⊥, and note that a set of sentences is inconsistent, if it
models the empty clause. Hence, writing Σ |= ⊥ is equivalent to saying that a contradiction
is derivable from Σ.

86 Efficient Decision Support Systems – Practice and Challenges From Current to Future

www.intechopen.com

Fine-Grained Diagnostics of Ontologies

with Assurance 9

3.1 The general diagnosis problem

The theory of diagnosis as employed in this work is based on the seminal paper of Reiter
(1987), with corrections made by Greiner et al. (1989). The method devised in the sequel
proves axiom pinpointing to be a mere special case of standard diagnosis, except for some
preprocessing. Hence, competing alternative approaches to the same problem, such as
contrived by Schlobach & Cornet (2003) for instance, are technically interesting but come at the
disadvantage of calling for intricate extensions to a diagnostic engine. Our approach comes at
negligible additional computational cost, as we will need a parser for the axiom syntax (which
cannot be avoided anyway).
To reason within an ontology is the process of deriving assertions about individuals from
known facts and rules. Occasionally, we have certain facts and rules in φ that are undoubtedly
correct and consistent, and we collect these in a set B ⊆ φ, calling it the consistent background
theory. These are explicitly excluded from the diagnostic process. The remainder KB = φ \ B
is the set of facts and rules that are subject to the diagnosis. An ontology is usually verified by
testing it against positive and negative test-cases.
Informally, a diagnosis D is a minimal set of components whose replacement will create a
consistent ontology. This has been formally captured by Friedrich & Shchekotykhin (2005),
and is clearly defined in

Definition 3.1 (Diagnosis (Problem)). A diagnosis problem is a quadruple (KB, B, TC+, TC−),
where KB is an ontology, comprising a set of facts and rules to be diagnosed, B is a consistent set of facts
and rules (called the background theory, and TC+ and TC− are positive and negative test-cases. A
diagnosis D ⊂ KB is a minimal set (in terms of the subset-relation) of sentences such that there is an
extension EX, where EX is a set of logical sentences added to KB, such that

1. ∀e+ ∈ TC+ : (KB \ D) ∪ B ∪ EX ∪
{

e+
}

�|= ⊥,

2. ∀e− ∈ TC− : (KB \ D) ∪ B ∪ EX ∪
{

e−
}

|= ⊥.

Rephrasing this definition, in essence it states that by replacing the components in the
diagnosis D with the components in EX makes the ontology φ consistent with every positive
test-case and inconsistent with every negative test-case.
Example: for illustration, consider the following example ontology:

A1 : A1 → ¬A ∧ A2 ∧ A3 A2 : A2 → ¬D ∧ A4

A3 : A3 → A4 ∧ A5 A4 : A4 → ∀s : F ∧ C
A5 : A5 → ∃s : ¬F A6 : A6 → A4 ∧ D

The inconsistency is revealed by the following reasoning, starting with A1 as a known fact:
from A1, we can deduce (among others) the assertion that A3 holds true. This one in turn
implies the validity of A4 and A5 via rule A3. Yet A4 tells that all individuals s enjoy property
F, while A5 implies that there is at least one individual that does not fall into the class F. This
inconsistency is to be removed with the aid of diagnosis.
The problem tackled in the following is motivated by the (initially made) observation that the
process will not remain that simple in a real-life ontology. Facing very complicated axioms,
the diagnostic algorithms inspired by the work of Reiter (1987), essentially provide rather
coarse-grained pointers towards the error. We shall improve on this.
Computing a diagnosis relies on the concept of conflict sets as introduced by de Kleer (1976)
and adapted by Reiter (1987). Given a diagnosis problem (KB, B, TC+, TC−), a conflict set
C ⊆ KB is such that C ∪ B is inconsistent (either by itself or with any of the test-cases). A
conflict is said to be minimal, if no subset of C is a conflict. Computing conflict sets can be done

87Fine-Grained Diagnostics of Ontologies with Assurance

www.intechopen.com

10 Will-be-set-by-IN-TECH

with a divide-and-conquer approach, and we refer the reader to the QUICKXPLAIN-algorithm
by Junker (2004) for that matter.
Returning to the example, for illustrative purposes, one conflict for the ontology is found as:

C = {A3,A4,A5} .

Removing the set C from the ontology makes everything consistent again. It is easy to
construct examples where other conflicts can be found as well.
Computing a diagnosis then amounts to computing a hitting-set for the collection of all
conflicts that exist within KB. This is basically theorem 4.4 in Reiter (1987). This is not
surprising and easily justified intuitively: assume D to be a hitting-set for the set of minimal
conflicts. Then retracting D from KB will reduce every conflict set by at least one element,
thus destroying the conflict because those sets are minimal. Since this approach to diagnosis
has seen widespread implementation and many appropriate systems are in place, we leave
the details of the computation aside and concentrate on the problem of axiom pinpointing,
which arises from a shortcoming of the so-far described method.

3.2 Pinpointing erroneous parts of an axiom

Despite the elegance of the existing diagnosis theory, its accuracy is limited to pointing
towards entire axioms. Hence these can be rather complicated and lengthy, which makes
the actual debugging process, i.e. finding the replacement EX (cf. definition 3.1) actually
hard. Consequently, we would like to extend the scope of diagnosis to the smallest building
blocks of the sentences within φ. This problem is known as axiom diagnosis. The trick is using
the syntactical structure of a sentence to decompose a complicated axiom into a sequence of
simple axioms representing only single logical connectives, quantifiers, etc. We will call this
an irreducible decomposition, and the whole process of axiom pinpointing then boils down to
diagnosing such an irreducible decomposition of the axiom to be debugged. We will expand
the details in this section, strongly drawing from the work of Friedrich et al. (2006), whilst
presenting further theoretical results that do not appear in this reference.
To ease technicalities in the following, we need two technical yet mild assumptions:

• axioms obey a non-ambiguous formal grammar G, such that every application of a
production rule produces only one new logical connective or quantifier in each step of
the derivation. We denote the language induced by the grammar G as L(G), and assume
A ∈ L(G) for every axiom A, i.e. it is generated by G in a non-ambiguous manner.
Although the ambiguity decision problem is undecidable for general grammars, those
permitting disambiguation by lookahead tokens are provably unambiguous and thus
suitable for our needs.

• the open world assumption states that a proposition is true if it can be proven, and assumed
to be false if it can be disproved. Any non-present proposition remains unknown until
proven to be true or false. In other words, reasoning under the open-world assumption
demands first making choices before deducing anything.

Our first result formally captures the observation that the parse-tree of an axiom naturally
yields a decomposition that only consists of axioms of the simplest possible form.
Let A be an axiom with its associated parse-tree. As an example, the axiom A → (B ∧ C) ∨ D
can be decomposed into

ζ(A) = {A → X1 ∨ X2, X1 → X3 ∧ X4, X3 ≡ B, X4 ≡ C, X2 ≡ D} .

88 Efficient Decision Support Systems – Practice and Challenges From Current to Future

www.intechopen.com

Fine-Grained Diagnostics of Ontologies

with Assurance 11

In this sense, an "atomic" axiom in the above sense, i.e. an axiom A for which the set ζ(A) is
singleton, is said to be irreducible. For example, the formula A ∧ B is irreducible, as it involves
only a single connective between two literals. On the contrary, the formula A → ∃x : p(x) ∧
q(x) involves a quantifier, an implication and two unary predicates, and is therefore reducible.
This formula can be decomposed into

ζ(A) = {A → X, X → ∃x : R(x), R(x) ≡ P(x) ∧ Q(x), P ≡ p(x), Q ≡ q(x)} ,

which is a set of irreducible axioms. For sets C of axioms, we define ζ(C) =
⋃

A∈C ζ(A). Such
a decomposition is called irreducible, if each of its elements is irreducible.
For example, the statement

p(A) :- (q(A,B), r(B)) ; s(A)

is irreducibly decomposed into the set ζ being

{X0 → X1, X0 ≡ p(X2), X2 ≡ A, X1 ≡ X3 ∨ X4, X3 ≡ X5 ∧ X6, X5 ≡ q(X7, X8),
X7 ≡ A, X8 ≡ B, X6 ≡ r(X9), X9 ≡ B, X4 ≡ s(X10), X10 ≡ A}.

(2)

In the light of these considerations, the next result is immediately clear:

Lemma 3.1. Let G be a non-ambiguous grammar satisfying the assumption above, and let A denote
an axiom in L(G). Then there is a unique set of axioms of the form p(X, Y1, . . . , Yn), where p is a
logical connective or a quantifier, and X, Y1, . . . , Yn are literals.

We denote the decomposition implied by the lemma 3.1 by ζ(A). It is quite obvious that ζ(A)
is logically equivalent to A, as we can recover A by back-substituting the literals, which is
equivalent to stating that ζ(A) |= A and vice versa.
To ease notation, for logical implications or equivalences like A : X → p(Y1, . . . , Yn) or A :
X ≡ p(Y1, . . . , Yn), we write lhs(A) to denote the set {X}, and rhs(A) to collect all literals
appearing on the right-hand side of A, i.e. rhs(A) = {Y1, . . . , Yn}. Returning to the example
above, we would have lhs(X0 → X1) = {X0} and rhs(X0 → X1) = {X1}. For a set C of
axioms, we set lhs(C) =

⋃

A∈C lhs(A). The symbol rhs(C) is defined analogously.
As a mere technical tool, we introduce a graphic representation of the structure of an axiom.
It is closely related to the concept of parse-trees:

Definition 3.2 (structure graph). Let ζ(A) be an irreducible decomposition of an axiom. The vertices
of the structure graph Gs

A are given by V(Gs
A) = lhs(ζ(A)), i.e. the vertices are the names of all

axioms that appear in ζ(A). The graph has an edge between two axioms Ai and Aj, if and only if

rhs(Ai) ∩ lhs(Aj) �= ∅.

Graphically, the decomposition (2) would look like shown in figure 2. The vertices of the
structure graph are given by lhs(ζ) = {X0, . . . , X10}, reading off the left-hand sides from the
decomposition (2). An arc is present between two vertices, if they appear on different sides of
the corresponding axiom, i.e. X0 and X1 are connected because the decomposition contains
the rule "X0 → X1".
This provides us with an adequate tool for simplifying axioms before putting it to the
diagnosis. Indeed, the structure graph’s connectivity can be related to logical inconsistency:

Lemma 3.2 ((Rass, 2005, Proposition 5.3.3)). Let C be a minimal conflict of an irreducible axiom
decomposition ζ(C). Then the corresponding structure graph is connected.

89Fine-Grained Diagnostics of Ontologies with Assurance

www.intechopen.com

12 Will-be-set-by-IN-TECH

X0

X1 X2

X3 X4

X5 X6 X10

X7 X8 X9

Fig. 2. Structure graph for decomposition ζ (eq. (2))

Proof. By construction, an irreducible axiom decomposition is tree-structured, so let X0 denote
the top-level literal. Assume the proposition to be false: Let C be a minimal conflict and
let the corresponding structure graph be disconnected, having two non-empty connectivity
components C1 and C2 (C = C1 ∪ C2). Let S, S1 and S2 be standard forms of B, C1 and C2,
respectively. Then, by (de Wolf & Nienhuys-Cheng, 1997, theorem 5.20), we have

B ∪ C |= ⊥ ⇐⇒ S ∪ S1 ∪ S2 ⊢r ⊥.

By definition, this is the case if and only if

S ∪ S1 ∪ S2 ⊢r {R1, R2} ⊢r ⊥.

Since C is a minimal conflict, B ∪ C1 is consistent as well as B ∪ C2. Hence, we cannot have
both R1 and R2 derivable from the same connectivity component, say C1, for otherwise

S ∪ S1 ⊢r {R1, R2} ⊢r ⊥

and therefore B ∪ C1 |= ⊥ by (de Wolf & Nienhuys-Cheng, 1997, theorem 4.39). This would
mean that C1 is a smaller conflict set than C, contradicting the minimality of C. So assume
without loss of generality that

S ∪ S1 ⊢r R1 and S ∪ S2 ⊢r R2. (3)

By construction, there must be a sequence R′
1, R′

2, . . . , R′
n ≡ R1 with R′

i ∈ S ∪ S1 or R′
i a

resolvent of
{

R′
p, R′

q

}

for p, q < i. Since B is consistent, S �⊢r R1 and there must be an R′
j so

that a (leaf-)literal L1 in S1 occurs in R′
j, as no set of interior literals can solely contribute to

the derivation of R1. Hence we must have a path from X0 to Xk ≡ L1 by our assumptions
on the grammar and the method of construction, for otherwise Xk (and therefore L1) would
not occur anywhere during the inference. The same argument applies for the derivation of R2

from B ∪ C2, so any inference giving {R1, R2} necessarily induces paths from X0 to the node
Xk ≡ L1 ∈ lit(R′

1, R′
2, . . . , R1) and from X0 to Xl ≡ L2 ∈ lit(R′′

1 , R′′
2 , . . . , R2). Yet X0 ∈ C1

(without loss of generality), and C1 is not connected to C2 in the structure graph, so the path
from X0 to Xl does not exist. This contradicts (3) and completes the proof.

Based on the previous result, we can state an interesting criterion that permits further
minimizing conflict sets in terms of literals, even when they are already minimal in terms
of set inclusion.

90 Efficient Decision Support Systems – Practice and Challenges From Current to Future

www.intechopen.com

Fine-Grained Diagnostics of Ontologies

with Assurance 13

Proposition 3.3 ((Rass, 2005, Lemma 5.3.4)). Let K be a knowledge-base and C be a minimal and
irreducible conflict-set, and let A ∈ C be an axiom involving the literals X, Y1, . . . , Yn. Then X can be
removed without loosing the minimality or inconsistency if, and only if,

X ∈ (rhs(C) \ lhs(C)) ∩ lit(K).

Proof. ("if") Let C = {A1, . . . ,An} be inconsistent, that is B ∪ C |= ⊥ for some consistent
background theory B. Without loss of generality, we assume A1 : p(. . . , X, . . .) to be the
axiom that shall be simplified by removing X. Then it is clear that

B ∪ (C \ {A1}) ∪ {A1} |= ⊥. (4)

Since the literal X neither appears on the left-hand side of any axiom nor anywhere else in
the knowledge-base, we do not have any specification or information on it. Thus, by the
open-world assumption, equation (4) does especially hold if we assume an arbitrary but fixed
value c for X. Let c be the neutral element for the operator p (which would be false if p = ∨
or true if p = ∧, respectively). By setting X ≡ c we get

B ∪ [(C \ {A1}) ∪ {A1}] ∪ {X ≡ c} |= ⊥,

which can be rewritten as

B ∪ (C \ {A1}) ∪ ({A1} ∪ {X ≡ c}) |= ⊥,

being equivalent to
B ∪ (C \ {A1}) ∪ {A∗

1} |= ⊥

with A∗
1 being the axiom A1 having X removed.

If C is minimal, then so is (C \ {A1})∪
{

A∗
1

}

, because removing A∗
1 results in the set C \ {A1},

which is consistent due to the minimality of C.
("only if") we show that removing a literal in

(

(rhs(C) \ lhs(C)) ∩ lit(K)
)

= rhs(C) ∪ lhs(C) ∪ lit(K)

destroys either the conflict or the minimality: by the construction of an irreducible
decomposition as used in lemma 3.1, the structure graph induced by C is a tree. Assume
the existence of another axiom Ak : X ≡ q(. . .) ∈ C and that the set is still a minimal conflict
after having removed X from the right hand side of A1. However, if we do so, then the edge
between A1 and Ak disappears and the tree breaks up into two non-connected components.
By lemma 3.2, the resulting set is not a minimal conflict any more, thus contradicting our
assumption. Furthermore, we cannot remove any literal L ∈ lit(K), because the construction
employed by lemma 3.1 implies that all axioms having L appear on their right hand side are of
the form Y ≡ L. This does not involve any operator so no further simplification is possible.

Example: for illustrating the last result, take the set of three (inconsistent) rules

C = {X1 → X2 ∧ X3 ∧ X4, X2 → B, X3 → ¬B} .

They form a minimal conflict set for some axiom decomposition. The literal X4 appears on
the right-hand sides of C, but not on the left-hand side, since we have lhs(C) = {X1, X2, X3}

91Fine-Grained Diagnostics of Ontologies with Assurance

www.intechopen.com

14 Will-be-set-by-IN-TECH

and rhs(C) = {X2, X3, X4, B}. Since the literals Xi were auxiliary and introduced merely for
the decomposition, the literal X4 can be unhesitatingly deleted. This results in a simplified set

Csimplified = {X1 → X2 ∧ X3, X2 → B, X3 → ¬B} ,

which is still inconsistent for the same reasons as C is.

3.3 The axiom diagnosis algorithm

With all these preliminaries, the axiom pinpointing algorithm is essentially a standard
diagnosis with preprocessing. It comprises two stages:

1. Decompose the given set of axioms A1, . . . ,An irreducibly into the set KB =
⋃n

i=1 ζ(Ai).

2. Run a standard diagnosis on KB.

It is known that diagnosis is a computationally hard problem (due to the need of reasoning
for computing the conflict sets and the computation of hitting sets, which is an NP-complete
problem in general Garey & Johnson (1979)). While the algorithm above has been stated
previously in Friedrich et al. (2006), this preliminary work does not exploit the potential
simplification provided by proposition 3.3, by instantly drawing away the attention from
literals that cannot contribute to the inconsistency.
The idea of decomposing an axiom into (irreducible) sub-axioms permits controlling the
granularity as well as the scope of the diagnosis most easily.

Controlling the granularity: We are free to define the production rules of the underlying
grammar in such a way that more complicated axioms can be generated in one blow.
A simpler, yet equally effective, approach is backsubstituting a selection of irreducible
axioms, thus creating more complicated expressions, yet remaining structurally simpler
than the original axiom. Returning to the previous example, one could backsubstitute
some of the axioms in the decomposition (2) in order to obtain the (logically equivalent but
less fine-grained) decomposition

{X0 → X1, X0 ≡ p(X2), X2 ≡ A, X1 ≡ X3 ∨ X4,
X3 ≡ X5 ∧ X6, X5 ≡ q(A, B), X6 ≡ r(B), X4 ≡ s(A)}.

Diagnosing the latter decomposition obviously provides us with less precise information
than diagnosing the full decomposition (2).

Controlling the scope: If some parts of the axiom are correct beyond doubt, then we can
simply shift these to the background theory B when running the diagnostic engine. Hence,
the scope comprises all axioms in KB, explicitly excluding those in B.

Example: Reiter’s diagnostic algorithm, when applied to the example ontology given in
section 3.1 returns the following three diagnoses:

1. D1 = {A3 → A4 ∧ A5}

2. D2 = {A4 → ∀s : F ∧ C}

3. D3 = {A5 → ∃s : ¬F}

which just says that we may change one of three axioms in order to achieve a repair. Taking
the first of these diagnoses D1 and performing axiom-diagnosis on a decomposition of the
axiom provides us with the following diagnoses (among others):

92 Efficient Decision Support Systems – Practice and Challenges From Current to Future

www.intechopen.com

Fine-Grained Diagnostics of Ontologies

with Assurance 15

• X4 ≡ A5: This directly points at something wrong with the literal A5 in the axiom. Indeed,
A5 permits deriving the expression ∃s : ¬F which yields an inconsistency in connection
with ∀s : F (derived via A4).

• X2 ≡ X3 ∧ X4: This points at the ∧-operator as possible flaw. This is correct, since if
we replace the ∧ by a ∨, we can easily avoid the inconsistency. Moreover, the diagnosis
showed that both arguments of the ∧ are necessary for the inconsistency, which is also
correct as we have to be able to conclude A4 and A5 from A3 to be inconsistent.

Notice the appeal of this form of refined diagnosis, as the precise location of the error is
actually marked with an "X". By then, it is up to the human engineer to do the repair properly.

4. Assurance

Suppose that an ontology upon receiving the query has presented us with a number of, say
n1, answers from which we can choose one. From the viewpoint of the ontology, each answer
is logically correct, and in the absence of preferences, certainty factors, or other means of
selection, we can only choose the best one subjectively. The goal of assurance is making this
decision with a provable benefit. For that matter, we briefly introduce some elements from the
theory of games, which will become handy when putting things together to a reasoning engine
with assurance. The reader familiar with matrix games may safely skip section 4.1, and move
on to section 4.2 directly.

4.1 Matrix-games

A (non-cooperative n-person) game Γ = (N, PS, H) is a triple composed of a set N = {1, 2, . . . , n}
of players being able to choose actions from their corresponding strategies within the set
of sets PS = {PS1, PS2, . . . , PSn}. The i-th player, by taking action si ∈ PSi from his set
PSi of possible strategies, receives the payoff ui(si, s−i), where ui ∈ H and s−i denotes the
strategies chosen by i’s opponents. The set H thus comprises the set of payoff functions for
each player, i.e. H =

{

ui|ui : ×n
i=1PSi → R

}

. Although we will use the general definition
here, our application use of game-theory will be with 2-player games, with player 1 being the
user of the ontology, and player 2 being the whole set of remaining entities outside the user’s
scope.
A (Nash-)equilibrium is a choice s∗ = (s∗1 , . . . , s∗n) such that

u(si, s∗−i) ≤ u(s∗i , s∗−i) ∀si ∈ PSi

and for all i ∈ N, i.e. if any of the players solely chooses an action other than s∗i , his revenue
will decrease. It is easy to construct examples where equilibria are not existing among the
pure strategies in PSi. But, if strategies are understood as probabilities for taking certain
actions during repetitions of the game, then Glicksberg (1952) has proven that equilibria exist
for every game with continuous payoff functions. In that case, the payoff is averaged over the
repetitions of the game, i.e. we consider the expected payoff. Strategies which are interpreted as
probability distributions over the sets in PS are called mixed strategies, and we shall exclusively
refer to these in the sequel. The set Si consists of all mixed strategies over PSi. A game is
called zero-sum, if ∑i ui = 0, or in the two-person case, if u1 = −u2. The game is called finite,
if the sets in PS are all finite. For a finite zero-sum game Γ0, the average revenue under an
equilibrium strategy is the value of the game, denoted as v(Γ0) = maxx miny xT Ay.
How is this related to our above reasoning problem? Player 1 will be the user of the ontology,
and player 2 will be the collection of all other agents in the system. The use of zero-sum games
is convenient because it implicitly (and perhaps pessimistically) assumes the other agents to

93Fine-Grained Diagnostics of Ontologies with Assurance

www.intechopen.com

16 Will-be-set-by-IN-TECH

cooperate with each other so that they can cause as much harm to player 1 as possible. Of
course, this assumption is dramatic and most surely not correct, but as we seek to assure the
quality of decisions against all scenarios, it turns out as a sharp worst-case scenario sketch.
This is made explicit in the following result:

Proposition 4.1 (Rass & Schartner (2009)). Let Γ = (N, PS, H) with N = {1, 2},
PS = {PS1, PS2}, and H =

{

xT Ay, xT By
}

) be a bi-matrix game with game-matrices A ∈

R
|PS1|×|PS2|, B ∈ R|PS2|×|PS1| for player 1 (honest) and player 2 (adversary), respectively. Let Γ0 =

(N, PS,
{

xT Ay, xT(−A)y
}

) be the zero-sum game from player 1’s perspective (i.e. player 2 receives

the payoff −xT Ay), and let v(Γ0) denote its value (i.e. average outcome under a Nash-equilibrium
strategy in Γ0). Then

v(Γ0) ≤ (x∗)T Ay∗ (5)

for all Nash-equilibria (x∗, y∗) of the game Γ.

The proof is by simply observing that player 2 can either play the zero-sum strategy of Γ0 (in
this case the assumption is valid and we get equality in (5)) or act according to his own wishes.
In the latter case, he necessarily deviates from the zero-sum strategy and thus increases the
expected revenue for player 1.

4.2 Reasoning games

The observation that a zero-sum game soundly models a worst-case scenario from one
player’s point of view (proposition 4.1) leads to a simple way of assuring the quality of a
decision: whenever we are facing random behavior, proposition 4.1 permits calculating the
worst-case distribution and provides us with a behaviorial rule so that we get an assured
outcome under this worst imaginable scenario. This is what we call

Assurance: when facing an uncertain situation, our recommendation should be such
that it provides a guaranteed outcome, independently of how much the observed
behavior deviates from the assumptions under which a decision was made.

Proposition 4.1 is the key to do this, and the process is made rigorous after the following
Example: let us return to the introductory example sketched in section 1.1. We now invoke
the game-theory and the (properly debugged) ontology to get the best answer from the three
candidates.
Recall that the recommendations were PS1 = {(s, f), (l, m), (o, h)}, where

(s,f): drive straight (s) at high speed (f)

(l,m): turn left (l) at the next junction, speed can be moderate (m).

(o,h): turn over (o) with high speed (h).

The oncoming traffic can either be slow or fast, and is free to turn left, right or straight at
the next junction. Hence, the set PS2 is composed from each of possible combinations, i.e.
PS2 = {slow, fast} × {turn left, turn right, go straight}, making up 6 combinations, which we
abbreviate as pairs in PS2 = {(s, l), (f , l), (s, r), (f , r), (s, s), (f , s)}.
Assume that the ontology can decide upon the likelihood of an accident for each combination
in PS1 × PS2. For example, if the recommendation is to drive straight at high speed, and
the oncoming traffic goes left, then the likelihood of an accident is higher than it would be if
the oncoming traffic goes straight too (considering which driver has to give priority). If the

94 Efficient Decision Support Systems – Practice and Challenges From Current to Future

www.intechopen.com

Fine-Grained Diagnostics of Ontologies

with Assurance 17

ontology classifies the accident likelihood in discrete terms like "none" (value 0), "negligible"
(value 1) and "significant" (value 2), then the resulting matrix A could look like

A (s, l) (f , l) (s, r) (f , r) (s, s) (f , s)
(s, f) 1 2 0 0 0 0
(l, m) 0 0 1 2 1 2
(o, h) 0 0 0 0 1 2

Solving this game for its equilibrium value gives v(A) = 0.5 with equilibrium strategies
x∗ = (1/2, 1/2, 0) and y∗ = (1/2, 0, 1/2, 0, 0, 0). Observe that this indicates that – aiming at
maximal safety – we should never be advised to turn over, and can take either of the remaining
choices with equal probability. Following this rule, we end up having a less than negligible
chance (the value is 0.5 and as such strictly less than the negligible-value 1) of having an
accident.
This process can be repeated for different scenarios, but crucially hinges on the ontology to be
correct and perform reasoning efficiently.
Each query to the system yields a different matrix-game with strategy sets PS1, PS2, with
its own unique Nash-equilibrium solution (which can as well be pre-computed). The actual
recommendation provided to the user is a random selection from PS1, where the particular
choice is drawn from the equilibrium profile. This solution, among the valid alternatives,
is presented as the recommendation, along with possible alternatives that are not explicitly
recommended but possible.
This method is indeed computationally feasible, as a large set of possible games along
with their corresponding Nash-equilibria can be pre-computed and stored for later usage
in a game-database (indeed, all we need is the strategy set PS1 and the corresponding
Nash-equilibrium; the game matrix itself can be discarded). If the input parameters are
discrete, then the set of queries is finite and hence the number of such games remains tractable.
This is even more substantiated by the fact that a human operator will most likely not enter
more than a few parameters as well as these will not be entered at arbitrary precision. As
humans tend to reason in fuzzy terms, any natural mapping of these to parameters of a query
answering system will consist of a small number of inputs to specify within small ranges to
get an answer.
The ontology is then used to select the particular game at hand and provide the best
behavior under uncertain behavior of others. The overall workflow is depicted in figure 3.
The only block to be further explained in this picture is the sampler, drawing the concrete
recommendation from the set of possible ones according to the Nash-equilibrium. This is
a trivial task, as it amounts to sampling from a discrete probability distribution. We refer
the interested reader to Gibbons (1992) for a formal justification, as we will restrict our
presentation to giving the sampling algorithm: assume that a discrete distribution is given
by (p1, . . . , pn).

1. Generate a uniform random number x within the interval [0, 1].

2. Find and return (as the result) the smallest integer k such that x ≤ ∑
k
i=1 pi.

So the overall process of reasoning with assurance can be described in a sequence of simple
steps, presupposing a logically consistent ontology:

1. Unless the current query is found in the set of pre-computed ones,

2. generate the set of candidate recommendations,

95Fine-Grained Diagnostics of Ontologies with Assurance

www.intechopen.com

18 Will-be-set-by-IN-TECH

Game-Database

Sampler

Ontology

query

PS1

(set of solutions/

answer-set)

Nash-Equlibrium

Recommendation

User

Fig. 3. Reasoning with game-theoretic assurance

Intermediate

representation

Problem

representation

Variable

assignment

Grounder Solver

Fig. 4. Architecture of an ASP System (cf. Gebser (2008))

3. set up a game-matrix and solve for its equilibrium,

4. sample from the equilibrium profile and return the (so randomly selected)
recommendation to the user.

From this process, it is evident that ontology and query optimization are major concerns, and
therefore receive attention in the next section.

5. Maximizing reasoning performance

Optimization is the act of design and developing systems to take maximum advantage of the
resources available. Ontology optimization formally defines the vocabularies in describing
optimization methods and their configurations aiming to provide knowledge guidance in
optimization selection and configuration Tao et al. (2004). Query optimization over an
ontology consider the possible query plans to determine which of those plans will be most
efficient. An ASP system usually consists of a grounder a grounder and a solver (see figure 4).
First, a grounder translate A logic program in the language of AnsProlog s a non-ground
problem description into a propositional program, which can be processed by the second
component of the system, the solver (cf. Gebser (2008)).
There are algorithms that can be used for an effective optimization strategy for queries on
knowledge databases query optimization.
One of the hardest problems in query optimization is the accurate estimation of the costs of
alternative query plans. Cardinality estimation depend on estimates of the selection factor
of predicates in the query. The estimation of the cardinality of a query usually is used to
approximate the data transfer times of the result set, as part of the estimation of the total cost
of executing a query (cf. Gebser (2008)). As an example a maximal complete query pattern
path consists of a maximal query pattern path and a set of value constraints (cf. Shironoshita
et al. (2007)). The total cardinality of such a path is obtained by calculating the product of the
cardinality estimate of its maximal query path with all the value ratios for every variable in
the query pattern path (cf. Shironoshita et al. (2007)).
In a highly distributed architecture where data in different locations connected through
the internet, this is the most critical aspect of query execution time and the speed of the
connections and the amount of data plays an important role.

96 Efficient Decision Support Systems – Practice and Challenges From Current to Future

www.intechopen.com

Fine-Grained Diagnostics of Ontologies

with Assurance 19

A query optimization strategy is crucial to obtain reasonable performance over queries against
ontology data models, especially if they are done over a highly distributed architecture.
However, using the answer set programming paradigm, we are able to model the spatial
and temporal context models and define the relationships between classes and individuals
(rules) and generating the answer sets using advanced solvers that support binder splitting,
backjumping and all other features. The statements can be optimized to find the maximal or
the minimal answer set of the logic program. The statement can be weighted or not, therefore
weights can be omitted. If there are several minimize maximize statements in the logic
program the latter will be preferred. The difference between the performance of ASP solvers
and other existed ontology query languages is clearly high.The estimation of the cardinality
of a query usually is used to approximate the data transfer times of the result set, as part of
the estimation of the total cost of executing a query.

6. Conclusion

In the light of the growing importance and complexity of nowadays ontologies, tools that
support debugging of reasoning systems are as well an increasing demand. In many cases,
particularly for legacy systems, complex rules and facts that contribute to an inconsistency
can present themselves as mere "black-boxes" to the human engineer. Fine-grained diagnosis
targets at turning such black-boxes into white-boxes by enhancing the accuracy of the
diagnosis up to the smallest grammatical construct that the language permits. Even if an
ontology is consistent, the user should not be overloaded with (logically correct) answers,
without a tool for choosing among them. Besides taking the degree of satisfaction as
a selection criterion, the concept of assurance yields answers that are provably optimal
according to a user-definable goal. Hence, we can have the ontology give us the answer that
will maximize the benefit for the user. The process is cyclic in the sense that assurance hinges
on consistency and vice versa. Moreover, retrieving answers timely calls for optimization,
which in turn can make rules and facts even more complicated, again calling for fine-grained
diagnostics. This chapter is hoped to provide useful starting points to enter this (implicit)
cycle at any point for future research.

7. References

Baral, C., Gelfond, G., Son, T. & Pontelli, E. (2010), ‘Using answer set programming to
model multi-agent scenarios involving agents’ knowledge about other’s knowledge’,
pp. 259–266.

Brewka, G. (2002), ‘Logic programming with ordered disjunction’, pp. 100–105.
de Kleer, J. (1976), ‘Local methods for localizing faults in electronic circuits’, MIT AI Memo

394.
de Wolf, R. & Nienhuys-Cheng, S. H. (1997), Foundations of inductive logic programming,

Springer Verlag, Berlin, Heidelberg, New York.
Eiter, T., Ianni, G., Schindlauer, R. & Tompits, H. (2005), ‘Nonmonotonic description logic

programs: Implementation and experiments’, pp. 511–527.
Eiter, T. & Polleres, A. (2006), ‘Towards automated integration of guess and check programs

in answer set programming: a meta-interpreter and applications’, Theory and Practice
of Logic Programming 6(1-2), 23–60.

Friedrich, G., Rass, S. & Shchekotykhin, K. (2006), A general method for diagnosing axioms,
in ‘DX’06 - 17th International Workshop on Principles of Diagnosis’, C.A. Gonzalez,
T. Escobet, B. Pulido, Penaranda de Duero, Burgos, Spain, pp. 101–108.

97Fine-Grained Diagnostics of Ontologies with Assurance

www.intechopen.com

20 Will-be-set-by-IN-TECH

Friedrich, G. & Shchekotykhin, K. (2005), A general diagnosis method for ontologies, in ‘4th
ISWC’, LNCS volume 3729, Springer.

Fuchs, S. (2008), A komprehensive Knowledge Base for Context-Aware Tactical Driver Assistance
Systems, Shaker Verlag.

Garey, M. R. & Johnson, D. S. (1979), Computers and intractability, Freeman, New York.
Gebser, M, K. R. K. B. O. M. S. T. T. S. (2008), Using gringo, clingo and iclingo, UNI POTSDAM.
Ghose, D. & Prasad, U. R. (1989), ‘Solution concepts in two-person multicriteria games’,

Journal of Optimization Theory and Applications 63(2), 167–189.
Gibbons, R. (1992), A Primer in Game Theory, Pearson Education Ltd.
Glicksberg, I. L. (1952), A further generalization of the Kakutani fixed point theorem,

with application to nash equilibrium points, in ‘Proceedings of the American
Mathematical Society’, Vol. 3, pp. 170–174.

Greiner, R., Smith, B. A. & Wilkerson, R. W. (1989), ‘A correction to the algorithm in reiter’s
theory of diagnosis’, Artificial Intelligence 41(1), 79–88.

Junker, U. (2004), QUICKXPLAIN: Preferred explanations and relaxations for over-contrained
problems, in ‘Proceedings of AAAI 04’, San Jose, CA, USAs, pp. 167–172.

Kohler, J., Philippi, S. & Lange, M. (2003), ‘SEMEDA: ontology based semantic integration of
biological databases’, Bioinformatics 19(18), 2420.

Matheus, C., Baclawski, K., Kokar, M. & Letkowski, J. (2005), ‘Using SWRL and OWL to
capture domain knowledge for a situation awareness application applied to a supply
logistics scenario’, pp. 130–144.

Rass, S. (2005), The diagnosis problem for axioms, Master’s thesis, Universitaet Klagenfurt.
Rass, S. & Schartner, P. (2009), Game-theoretic security analysis of quantum networks, in

‘Proceedings of the Third International Conference on Quantum, Nano and Micro
Technologies’, IEEE Computer Society, pp. 20–25.

Reiter, R. (1987), ‘A theory of diagnosis from first prinicples’, Artificial Intelligence 32(1), 57–95.
Schlobach, S. & Cornet, R. (2003), Non-standard reasoning services for the debugging of

description logic terminologies, in ‘Proceedings of IJCAI 03’, Acapulco, Mexico,
pp. 355–362.

Shironoshita, E., Ryan, M. & Kabuka, M. (2007), ‘Cardinality estimation for the optimization
of queries on ontologies’, ACM SIGMOD Record 36(2), 13–18.

Snidaro, L., Belluz, M. & Foresti, G. (2008), ‘Representing and recognizing complex events in
surveillance applications’, pp. 493–498.

Tao, F., Chen, L., Shadbolt, N., Xu, F., Cox, S., Puleston, C. & Goble, C. (2004), ‘Semantic
web based content enrichment and knowledge reuse in e-science’, On the Move to
Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE pp. 654–669.

Wang, X., Da Qing Zhang, T. & Pung, H. (2004), ‘Ontology based context modeling and
reasoning using OWL’.

World Wide Web Consortium (2010), ‘Resource description framework (RDF)’, http://www.
w3.org/RDF/. (last accessed: 28th January, 2010).

98 Efficient Decision Support Systems – Practice and Challenges From Current to Future

www.intechopen.com

Efficient Decision Support Systems - Practice and Challenges From

Current to Future

Edited by Prof. Chiang Jao

ISBN 978-953-307-326-2

Hard cover, 542 pages

Publisher InTech

Published online 09, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This series is directed to diverse managerial professionals who are leading the transformation of individual

domains by using expert information and domain knowledge to drive decision support systems (DSSs). The

series offers a broad range of subjects addressed in specific areas such as health care, business

management, banking, agriculture, environmental improvement, natural resource and spatial management,

aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This

book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs;

Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications

of DSSs in multidisciplinary domains. The book is shaped upon decision support strategies in the new

infrastructure that assists the readers in full use of the creative technology to manipulate input data and to

transform information into useful decisions for decision makers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Stefan Rass, Fadi Al Machot and Kyandoghere Kyamakya (2011). Fine-Grained Diagnostics of Ontologies with

Assurance, Efficient Decision Support Systems - Practice and Challenges From Current to Future, Prof.

Chiang Jao (Ed.), ISBN: 978-953-307-326-2, InTech, Available from:

http://www.intechopen.com/books/efficient-decision-support-systems-practice-and-challenges-from-current-to-

future/fine-grained-diagnostics-of-ontologies-with-assurance1

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

