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1. Introduction

For the last several years there has been significant progress in the development of new
piezoelectric materials (relaxor ferroelectric single crystals (Park & Shrout, 1997), solid
solutions with high transition temperature (Zhang et al., 2003), lead-free materials (Saito
et al., 2004)) and in understanding of mechanisms of the piezoelectric coupling in ferroelectric
piezoelectrics (Fu & Cohen, 2000; Guo et al., 2000). This progress was triggered in particular by
the wide use of piezoelectric effect in a variety of devices (resonators, tactile sensors, bandpass
filters, ceramic discriminators, SAW filters, piezoresponse force microscopes and others).
What concerns theoretical study of the piezoelectric effect, significant efforts were made
in first-principles calculations. Such calculations are possible for the ferroelectrics with
a relatively simple structure, in particular for simple and complex perovskites (Bellaiche
et al., 2000; Garcia & Vanderbilt, 1998). For compounds with a complex structure often
only the research within the Landau theory is possible. The structure complexity justifies
the application of semimicroscopic models considering only that characteristic feature of
the microscopic structure which is crucial in explaining the ferroelectric transition or the
piezoelectric effect. Such models are adequate for the crystal under study if they are able
to explain the wide range of physical properties.
In this chapter sodium potassium tartrate tetrahydrate NaKC4H4O6·4H2O (Rochelle salt or
RS) is studied on the base of the semimicroscopic Mitsui model.
The microscopic mechanism of ferroelectric phase transitions in RS was the subject of
numerous investigations. Studies based on x-ray diffraction data (Shiozaki et al., 1998) argued
that these were the order-disorder motions of O9 and O10 groups, coupled with the displacive
vibrations of O8 groups, which were responsible for the phase transitions in Rochelle salt as
well as for the spontaneous polarization. Later it was confirmed by the inelastic neutron
scattering data (Hlinka et al., 2001). Respective static displacements initiate the emergence
of dipole moments in local structure units in ferroelectric phase. Such displacements can
be interpreted also as changes in the population ratio of two equilibrium positions of sites
in the paraelectric structure (revealed in the structure studies (Noda et al., 2000; Shiozaki
et al., 2001)). The order-disorder pattern of phase transitions in RS forms the basis of the
semimicroscopic Mitsui model (Mitsui, 1958). In this model the asymmetry of occupancy
of double local atomic positions and compensation of electric dipole moments occurring in
paraelectric phases were taken into account.
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Recently (Levitskii et al., 2003) Mitsui model as applied to RS was extended by accounting
of the piezoelectric coupling between the order parameter and strain ε4. Later this model
was extended to the four sublattice type (Levitskii et al., 2009; Stasyuk & Velychko, 2005)
that gives more thorough consideration of real RS structure. We performed our research of
piezoelectric effect in Rochelle salt on the basis of the Mitsui-type model containing additional
term of transverse field type responsible for dynamic flipping of structural elements (Levitskii,
Andrusyk & Zachek, 2010; Levitskii, Zachek & Andrusyk, 2010). Originally, this term was
added with the aim to describe resonant dielectric response which takes place in RS in
submillimeter region. First, we provide characteristics of ferroelectric phase transitions in
RS and experimental data for constants of physical properties of RS. Then, we present our
study results (thermodynamic and dynamic characteristics) obtained within Mitsui model for
RS. Specifically, we calculate permittivity of free and clamped crystals, calculate piezoelectric
stress coefficient e14, elastic constant cE

44. The key attention is given to investigation of the
phenomenon of piezoelectric resonance.

2. Physical properties of Rochelle salt

Rochelle salt (RS), NaKC4H4O6·4H2O is the oldest and has been for a long time the only
known ferroelectrics. RS has been the subject of numerous studies over the past 60 years.
It is known for its remarkable ferroelectric state between two Curie points Tc1 = 255 K and
Tc2 = 297 K (Jona & Shirane, 1965). Second order phase transitions occur at both Curie points.
The crystalline structure of RS proved to be complex. It is orthorhombic (space group
D3

2—P21212) in the paraelectric phases and monoclinic (space group C2
2—P21) in the

ferroelectric phase (Solans et al., 1997). Spontaneous polarization is directed along the a crystal
axis; it is accompanied by a spontaneous shear strain ε4. There are four formula units (Z = 4;
112 atoms) in the unit cell of Rochelle salt in both ferroelectric and paraelectric phase. In
recent study (Görbitz & Sagstuen, 2008) the complete Rochelle salt structure in paraelectric
phase was described.
Due to the symmetry of RS crystal structure some elements of material tensors are zeroes. In
RS case material tensors in Voigt index notations are of the form presented below (Shuvalov,
1988).
Elastic stiffnesses or elastic constants (cE

ij = (∂σi/∂ε j)E):

(cE) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c11 c12 c13 c14 0 0
c12 c22 c23 c24 0 0
c13 c23 c33 c34 0 0
c14 c24 c34 c44 0 0
0 0 0 0 c55 c56

0 0 0 0 c56 c66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(1)

Coefficients of piezoelectric stress (eij = (∂Pi/∂ε j)E = −(∂σj/∂Ei)ε):

(e) =

⎛

⎝

e11 e12 e13 e14 0 0
0 0 0 0 e25 e26

0 0 0 0 e35 e36

⎞

⎠ (2)
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Dielectric permittivity (χα
ij = (∂Pi/∂Ej)α, where α is σ or ε):

(χσ,ε) =

⎛

⎝

χ11 0 0
0 χ22 χ23

0 χ23 χ33

⎞

⎠ (3)

It is necessary to make some comments about the notations. Superscripts to the matrices of
physical properties indicate that a physical characteristic denoted by a superscript is constant
or zero (for instance (c) with superscript E denotes matrix of elastic constants at constant
electric field: (cE)). We omitted superscripts E and σ, ε for components of tensors (cE) and
(χσ,ε) respectively but keep them in mind. Notation (χσ,ε) denotes two different tensors:
(χσ) and (χε) which we will call tensors of dielectric permittivity at constant stress and strain
respectively. We will also call them tensor of free crystal dielectric permittivity (zero stress is
assumed) and of clamped crystal dielectric permittivity. Hereinafter coefficients equal to zero
in paraelectric phases are presented in bold.
Experimental data for physical constants are presented in Figs. 1, 2, and 3.
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Fig. 1. Rochelle salt elastic constants. Solid lines for cij (i, j = 1, 2, 3) are experimental data
(Mason, 1950), ∗ correspond to c44 (Yu. Serdobolskaya, 1996), ◦ correspond to cE

24 + cE
34

(Shiozaki et al., 2006). Lines for cE
14, cE

24, cE
34 are the results of theoretical calculations (Levitskii

et al., 2005).
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Fig. 2. Rochelle salt coefficients of piezoelectric stress. Points � are experimental data (Beige
& Kühnel, 1984) for e14. Solid lines correspond to the results of theoretical calculations e1j

(j = 1, 2, 3) (Levitskii et al., 2005).
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Fig. 3. Experimental data for clamped and free crystal inverse dielectric permittivity of
Rochelle salt. 1/χε

11: � (Sandy & Jones, 1968), ♦ (Mueller, 1935). 1/χσ
11: + (Yurin, 1965), •

(Mason, 1939), � (Taylor et al., 1984).

As Fig. 1 shows elastic constants cE
ij (i, j = 1, 2, 3) do not change their behaviour in phase

transition points, whereas constant cE
44 becomes zero at the transition point. Besides, c44 is

strongly dependent on T as cE
ij (i, j = 1, 2, 3) are almost independent of T. Constants cE

14, cE
24,

cE
34, as it is expected on symmetry grounds, are equal to zero in paraelectric phases. There are

no experiments for cE
14 and there are no experiments for cE

24, cE
34 measured separately. There

is only the experiment for cE
24 + cE

34 (Shiozaki et al., 2006). However, cE
14, cE

24, and cE
34 were

estimated theoretically (Levitskii et al., 2005) and the result of estimation is presented in Fig. 1.
Correspondent result for cE

24 + cE
34 is compared to experimental data where good agreement

was derived.
Fig. 2 presents temperature dependencies of piezoelectric stress coefficients. As one can see
coefficients e11, e12, e13 differ from zero only inside ferroelectric phase. Coefficient e14 has
sharp (but finite) peak in the transition point, whereas coefficients e11, e12, e13 do not have it.
Free and clamped crystal longitudinal susceptibilities are presented in Fig. 3. Free crystal
susceptibility has singularities in transition point, whereas clamped susceptibility remains
finite.

3. Thermodynamic characteristics of Rochelle salt

3.1 Theoretical study of the Mitsui model

We give consideration to a two-sublattice order-disorder type system with an asymmetric
double-well potential. Hamiltonian of such system is referred to as the Mitsui Hamiltonian.
We assume this system has essential piezoelectric coupling of the order parameter with
component of strain tensor ε4 which should be accounted. We suppose the polarization is
directed along x-axes and arises due to the structural units ordering in the one of two possible
equilibrium positions. Precisely this case occurs in RS and such modified Mitsui model was
considered earlier (Levitskii et al., 2003). We complement this model with transverse field to
take into account the possibility of dynamic ordering units flipping between two equilibrium
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positions. The resulting Hamiltonian is of the following form:

H = U0 − ∑
q,q′

[

Jqq′

2
(Sz

q1Sz
q′1 + Sz

q2Sz
q′2) + Kqq′S

z
q1Sz

q′2

]

− ∑
q f

[

ΩSx
q f + (∆ f − 2ψ14ε4 + µE1)S

z
q f

]

.

(4)
where

U0 = N

[

1
2

vcE0
44 ε4

2 − ve0
14E1ε4 −

1
2

vχε0
11E2

1

]

. (5)

represent the elastic, piezoelectric, and electric energies attributed to a host lattice, in which
potential the pseudospin moves (with the ‘seed’ elastic constant cE0

44 , the coefficient of
piezoelectric stress e0

14, and dielectric susceptibility χε0
11); v is a volume of cell, containing a pair

of pseudospins (ordering units or dipoles) of one lattice site q and different sublattices f = 1, 2
(further we will call it a unit cell1), and N is a number of unit cells. The first sum describes
direct interaction of the ordering units: Jqq′ = Jq′q and Kqq′ = Kq′q are interaction potentials
between pseudospins belonging to the same and to different sublattices, respectively. The first
term in the second sum is the transverse field; the second term describes a) energy, associated
with asymmetry of the potential, where ∆ f is asymmetry parameter: ∆1 = −∆2 = ∆, b)
interaction energy of pseudospin with the field, arising due to the piezoelectric deformation
ε4 and ψ14 is parameter of piezoelectric coupling, c) interaction energy of pseudospin with
external electric field E1, where µ is effective dipole moment of the model unit cell.
We conduct the study within the mean field approximation (MFA). Performing identical
transformation

Sz
q f = 〈Sz

q f 〉+ ∆Sz
q f (6)

and neglecting the quadratic fluctuations, we rewrite the initial Hamiltonian (4) as

HMFA = U0 + ∑
qq′

[

Jqq′

2

(

〈Sz
q1〉〈Sz

q′1〉+ 〈Sz
q2〉〈Sz

q′2〉
)

+ Kqq′〈Sz
q1〉〈Sz

q′2〉
]

− ∑
q f

Hq fSq f , (7)

where Hq f are the mean local fields having effect on the pseudospins Sq f :

Hx
q f = Ω, Hy

q f = 0, Hz
q f = hq f ,

hq1 = ∑
q′

[

Jqq′〈Sz
q′1〉+ Kqq′〈Sz

q′2〉
]

+ ∆ − 2ψ14ε4 + µE1 (8a)

hq2 = ∑
q′

[

Jqq′ 〈Sz
q′2〉+ Kqq′〈Sz

q′1〉
]

− ∆ − 2ψ14ε4 + µE1. (8b)

Within MFA we can calculate mean equilibrium values of the pseudospin operators:

〈Sq f 〉 = Sp(Sq f ρMFA), (9)

1 Actual unit cell of the Rochelle salt crystal contains two pairs of pseudospins of two lattice sites and
different sublattices; therefore, we should set the value of the model unit cell volume to be half of the
crystal unit cell volume.
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where

ρMFA =
exp
(

− HMFA
kBT

)

Sp exp
(

− HMFA
kBT

) , (10)

and kB is the Boltzmann constant. After calculations we derive

〈Sq f 〉 =
1
2

Hq f

Hq f
tanh

Hq f

2kBT
, (11)

where Hq f ≡
∣

∣

∣Hq f

∣

∣

∣ = λq f =
√

Ω2 + h2
q f .

Free energy of a crystal within MFA

F(4) = −kBT ln Sp exp
(

− HMFA

kBT

)

is following:

F(4) =U0 + ∑
qq′

[

Jqq′

2

(

〈Sz
q1〉〈Sz

q′1〉+ 〈Sz
q2〉〈Sz

q′2〉
)

+ Kqq′〈Sz
q1〉〈Sz

q′2〉
]

− kBT ∑
q f

ln
(

2 cosh
λq f

2kBT

)

. (12)

In homogeneous external field the system of 6N equations (11) has a lot of solutions, with a
homogeneous one among others: 〈Sq f 〉 ≡ 〈Sq f 〉0 �= f (q). In case of a Rochelle salt crystal we
have Jqq′ > 0, Kqq′ > 0 and it is homogeneous solution which provides free energy minimum.
In this case, system of equations reduces into system

〈Sq f 〉0 =
1
2

H
(0)
f

H(0)
f

tanh
H(0)

f

2kBT
, (13)

where the local field H
(0)
f is following:

H(0)x
f = Ω, H(0)y

f = 0, H(0)z
f = h f ,

h1 = J0〈Sz
q1〉0 + K0〈Sz

q2〉0 + ∆ − 2ψ14ε4 + µE1, (14a)

h2 = J0〈Sz
q2〉0 + K0〈Sz

q1〉0 − ∆ − 2ψ14ε4 + µE1, (14b)

where
J0 = ∑

q′
Jqq′ , K0 = ∑

q′
Kqq′ ; H(0)

f ≡
∣

∣

∣
H

(0)
f

∣

∣

∣
= λ f , λ f =

√

Ω2 + h2
f .

z-component of this equation system forms two-equation system ( f = 1, 2) to determine
〈Sz

q f 〉0:

〈Sz
q f 〉0 =

h f

2λ f
tanh

λ f

2kBT
. (15)
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Having introduced new variables

ξ = 〈Sq1〉0 + 〈Sq2〉0, σ = 〈Sq1〉0 − 〈Sq2〉0 (16)

(ξz and σz are ferroelectric and antiferroelectric ordering parameters), we obtain system of
equations (15) in a form:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ξz =
1
2

[ h̃1

λ̃1
tanh

λ̃1

2T
+

h̃2

λ̃2
tanh

λ̃2

2T

]

,

σz =
1
2

[ h̃1

λ̃1
tanh

λ̃1
2T

− h̃2

λ̃2
tanh

λ̃2

2T

]

,
(17)

where unknowns ξz and σz are defined at given T, E1, ε4. In system (17) the following
notations are used:

h̃ f = h f /kB, λ̃ f =
√

Ω̃2 + h̃2
f ,

h̃1 = R̃+
0 ξz + R̃−

0 σz + ∆̃ − 2ψ̃14ε4 + µ̃E1,

h̃2 = R̃+
0 ξz − R̃−

0 σz − ∆̃ − 2ψ̃14ε4 + µ̃E1.

(18)

Here

Ω̃ =
Ω

kB
, ∆̃ =

∆

kB
, ψ̃14 =

ψ14

kB
, µ̃ =

µ

kB
, R̃±

0 =
J̃0 ± K̃0

2
, J̃0 =

J0

kB
, K̃0 =

K0

kB
. (19)

The system (17) is system of two equations with unknowns ξz and σz.
When values ξz and σz are defined, we can calculate values ξx and σx using (13) and (16):

ξx =
1
2

[ Ω̃

λ̃1
tanh

λ̃1

2T
+

Ω̃

λ̃2
tanh

λ̃2

2T

]

, σx =
1
2

[ Ω̃

λ̃1
tanh

λ̃1

2T
− Ω̃

λ̃2
tanh

λ̃2

2T

]

;

values ξy, σy are equal to zero.
Free energy per model unit cell f (4) = F(4)/(kB N) in variables ξz and σz is following:

f (4) =
ṽ

2
cE0

44 ε4
2 − ṽe0

14ε4E1 −
ṽ

2
χε0

11E1
2 +

R̃+
0

2
(ξz)2 +

R̃−
0

2
(σz)2 − T ∑

f

ln

(

2 cosh
λ̃ f

2T

)

, (20)

where ṽ =
v

kB
. By differentiating free energy we can find dielectric, elastic, and piezoelectric

properties of the Rochelle salt.
The conditions

1
ṽ

(

∂ f (4)
∂ε4

)

E1 ,T
= σ4,

1
ṽ

(

∂ f (4)
∂E1

)

ε4,T
= −P1

yield the following expression for stress σ4 and polarization P1:

σ4 = cE0
44 ε4 − e0

14E1 +
2ψ̃14

ṽ
ξz, (21a)

P1 = e0
14ε4 + χε0

11E1 +
µ̃

ṽ
ξz. (21b)
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Independent variable is stress rather than deformation, so we need express local fields in
terms of σ4 when solving system (17). Having used (21a) we derive

ε4 =
σ4

cE0
44

+
e0

14

cE0
44

E1 −
2ψ̃14

ṽcE0
44

ξz. (22)

On the basis of Eq. (22) we can rewrite local fields in the following way:

h̃1 = R̃′+
0 ξz + R̃−

0 σz + ∆̃ − 2ψ̃14

cE0
44

σ4 + µ̃′E1, (23a)

h̃2 = R̃′+
0 ξz − R̃−

0 σz − ∆̃ − 2ψ̃14

cE0
44

σ4 + µ̃′E1, (23b)

where R̃′+ and µ̃′ are following:

R̃′+
0 = R̃+

0 +
4ψ̃2

14

ṽcE0
44

, µ̃′ = µ̃ − 2ψ̃14e0
14

cE0
44

. (24)

System (17) with local fields (23), considered at σ4 = 0, E1 = 0, has solutions of two types:
ξz = 0 and ξz �= 0. The minimum Helmholtz free energy (g(4) = f (4) − ṽσ4ε4) condition
defines which of the solutions is actually realized at each particular T. The solution of first
type describes paraelectric phase and the solution of second type describes ferroelectric phase.
In paraelectric phase we have also σx = 0.
We will calculate elastic, piezoelectric, and dielectric constants by differentiation P1 (21b) and
σ4 (21a) at constant T:

d P1 = e14d ε4 + χε
11d E1, (25a)

d σ4 = cE
44d ε4 − e14d E1. (25b)

Here χε
11 is longitudinal dielectric susceptibility at constant strain, cE

44 is elastic constant at
constant field, e14 is coefficient of the piezoelectric stress.
The result is following:2

χε
11 =

(

∂P1

∂E1

)

ε4

= χε0
11 +

µ̃

ṽ

(

∂ξz

∂E1

)

ε4

= χε0
11 +

µ̃2

ṽ
f1(T, σ4, E1), (26)

where

f1(T, σ4, E1) =
e1 − R̃−

0 (e1
2 − e2

2)

1 − e1(R̃
+
0 + R̃−

0 ) + R̃+
0 R̃−

0 (e1
2 − e2

2)
(27)

and following notations are used:

e1 =
a1 + a2

4T
+

Ω̃2(b1 + b2)

2
, e2 =

a1 − a2

4T
+

Ω̃2(b1 − b2)

2
,

ai =
h̃2

i

λ̃2
i

− ηi
2, bi =

ηi

h̃iλ̃
2
i

, (i = 1, 2); η1 = ξz + σz, η2 = ξz − σz.
(28)

2 All partial derivatives of ξz were derived by differentiating Eq. (17).

202 Ferroelectrics – Physical Effects

www.intechopen.com



Piezoelectric Effect in Rochelle salt 9

Coefficient of the piezoelectric stress:

e14 =

(

∂P1

∂ε4

)

E1

= e0
14 −

2µ̃ψ̃14

ṽ
f1(T, σ4, E1). (29)

Elastic constant at constant field:

cE
44 =

(

∂σ4

∂ε4

)

E1

= cE0
44 − 4ψ̃2

14
ṽ

f1(T, σ4, E1). (30)

Coefficient of the piezoelectric strain d14 = (∂P1/∂σ4)E1 and dielectric susceptibility of free
crystal χσ

11 = (∂P1/∂E1)σ4 could be derived through e14, cE
44 and χε

11:

d14 =
e14

cE
44

, χσ
11 = χε

11 + e14d14.

We may notice that at Ω̃ = 0 all results presented here coincide with the results of previous
calculations (Levitskii et al., 2003), where transverse field was not taken into account.

3.2 Results of calculations for Rochelle salt

The proposed model was used for analysis of physical properties of Rochelle salt crystal that is
not externally affected (E1 = 0, σ4 = 0). To obtain specific numerical results it is necessary first
of all to derive theory model parameters for calculations. Deriving procedure was described
in (Levitskii, Zachek & Andrusyk, 2010) and here we will restrict ourselves to parameters
presenting:

Ω̃ = 113.467 K, J̃0 = 813.216 K, K̃0 = 1447.17 K, ∆̃ = 719.937 K, ψ̃4 = −720.0 K,

cE0
44 = 1.224 × 1010 Nm−2, e0

14 = 31.64 × 10−2 Cm−2, χε0
11 = 0.0,

µ(T) = a + k(T − 297), a = 8.157 × 10−30 Cm, k = −0.0185 × 10−30 CmK−1.

(31)

Unit cell volume (volume per two pseudospins from the same site and different sublattices) is
v = 5.219 × 10−22 cm3 (Bronowska, 1981).
The results of calculations made for static dielectric characteristics are shown together with
experimental data in Fig. 4. The derived agreement is very good considering that Mitsui
model is rather inaccurate model of RS and the used MFA is a weak approximation.
Besides, we derived that dielectric permittivity of the free crystal has singularity in the
transition points while dielectric permittivity of the clamped crystal doesn’t. Elastic constant
c44 becomes equal to zero at the transition points, coefficient of the piezoelectric stress e14
doesn’t have singularity in the transition point. All these results agree with the prediction of
the Landau theory for the behaviour of physical characteristics in the vicinity of the transition
points. However, presented semimicroscopic approach has an advantage over the Landau
theory: it allowed to explain physical properties of Rochelle salt in wide temperature rage
containing both transition points in natural way. Besides that Mitsui model gives some insight
into microscopical mechanism of the phase transition of Rochelle salt.
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Fig. 4. Theoretical and experimental physical characteristics of Rochelle salt. Solid line
corresponds to calculations, Points are the experimental data. P1(T): � (Cady, 1964), ε4(T): •
(Ubbelohde & Woodward, 1946), cE

44: ∗ (Yu. Serdobolskaya, 1996), 1/χε
11(T): � (Sandy &

Jones, 1968), ♦ (Mueller, 1935), 1/χσ
11(T): � (Taylor et al., 1984), e14(T): � (Beige & Kühnel,

1984).

4. Dynamic properties of Rochelle salt

4.1 Order parameter dynamics. Dielectric susceptibility of a clamped crystal

We consider dynamic properties of the system with Hamiltonian (4) within the Bloch
equations method

h̄
d〈Sq f 〉t

dt
= 〈Sq f 〉t ×Hq f (t)−

h̄

T1

[

〈Sq f 〉t‖ − 〈Sq f 〉t

]

. (32)

Right part of this equation consists of two terms.
The first term is Heisenberg part of the motion equation, calculated within random phase
approximation (RPA), where ‘×’ denotes the vector product and Hq f (t) are the instantaneous
values of the local fields:3

Hx
q f (t) = Ω, Hy

q f = 0, Hz
q f (t) = hq f (t), (33)

3 Original Heisenberg part of the motion equation is − i〈[Sq f , H]〉t. Within RPA mean value of
commutator with time dependent statistical operator in form of (10) is to be calculated. Doing necessary
calculations one can derive that

−i〈[Sq f , H]〉t = 〈Sq f 〉t ×Hq f (t).
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hq1(t) = ∑
q′

[

Jqq′〈Sz
q′1〉t + Kqq′〈Sz

q′2〉t

]

+ ∆ − 2ψ14ε4q(t) + µE1q(t), (34a)

hq2(t) = ∑
q′

[

Jqq′〈Sz
q′2〉t + Kqq′〈Sz

q′1〉t

]

− ∆ − 2ψ14ε4q(t) + µE1q(t). (34b)

The second term describes relaxation of the pseudospin component 〈Sq f 〉t‖ (longitudinal
to the instantaneous value of the local field) towards its quasiequilibrium value with a
characteristic time T1.4 Quasiequilibrium mean values 〈Sq f 〉t

are defined as (see Eq. (11)):

〈Sq f 〉t
=

1
2

Hq f (t)

Hq f (t)
tanh

[

1
2kBT

Hq f (t)

]

. (35)

Relaxation term describes non-equilibrium processes in a pseudospin system. In real
situation, a pseudospin system is not an isolated system, whereas it is a part of a larger system.
That part of extended system which is not a pseudospin subsystem appears as thermostat that
behaves without criticality. Respectively, pseudospin excitations relax due to the interaction
with thermostat to their quasiequilibrium values for a characteristic relaxation time T1. As
far as a phase transition is a collective effect and the relaxation term in Eq. (32) describes
individual relaxation of each pseudospin, it becomes clear that relaxation time T1 should have
no singularity at the Curie point. Relaxation time can be derived ab initio but we consider it to
be a model parameter and take it to be independent from temperature.
In the same way it can be explained why relaxation in Eq. (32) occurs towards
quasiequilibrium state and not to thermodynamic equilibrium state. Relaxation term
describes individual relaxation of pseudospin, which ‘is not aware’ of the state of
thermodynamic equilibrium but ‘is aware’ of the state of its environment at a particular
moment. At every moment this environment creates instantaneous molecular fields which
define quasiequilibrium state. Instantaneous quasiequilibrium average of pseudospin
operators are defined from Eq. (9), (10) but with molecular fields Eq. (33), (34). Making
necessary calculations we obtain quasiequilibrium average 〈Sq f 〉t

in form of Eq. (35).
Eventually, of course, quasiequilibrium values follow to equilibrium ones and relaxation leads
excited system to thermodynamic equilibrium state.
As we are interested in linear response of the system to a small external variable electric field

δE1q(t)
(

E1q(t) = E1 + δE1q(t)
)

,

it is sufficiently to present 〈Sq f 〉t as a sum of constant term 〈Sq f 〉0 (mean equilibrium value,
calculated in MFA) and time dependent small deviation δ〈Sq f 〉t:

〈Sq f 〉t = 〈Sq f 〉0 + δ〈Sq f 〉t. (36)

4 Sometimes one writes third term − h̄
T2
〈Sq f 〉t⊥, describing decay process of the transverse component of

pseudospin 〈Sq f 〉t⊥, though it can be shown (Levitskii, Andrusyk & Zachek, 2010) that its impact on
Rochelle salt dynamics is negligible.
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Similarly:

Hq f (t) = H
(0)
f + δHq f (t), 〈Sq f 〉t

= 〈Sq f 〉0 + δ〈Sq f 〉t
. (37)

Now, we can linearize motion equation (32) by retaining terms, which are linear in deviations
δ〈Sq f 〉t, δHq f (t), δ〈Sq f 〉t

:

h̄
dδ〈Sq f 〉t

dt
= δ〈Sq f 〉t ×H

(0)
f + 〈Sq f 〉0 × δHq f (t)−

h̄

T1

[

δ〈Sq f 〉t‖ − δ〈Sq f 〉t‖

]

, (38)

where

δHx
q f (t) = 0, δHy

q f (t) = 0,

δHz
q1(t) = ∑

q′
Jqq′δ〈Sz

q′1〉t + ∑
q′

Kqq′δ〈Sz
q′2〉t − 2ψ14δε4q(t) + µδE1q(t),

δHz
q2(t) = ∑

q′
Kqq′δ〈Sz

q′1〉t +∑
q′

Jqq′δ〈Sz
q′2〉t − 2ψ14δε4q(t) + µδE1q(t).

Now, we transform equation (38) into a form involving single variable δ〈Sq f 〉t, then Fourier
transform into the frequency domain and Fourier transform to k-space,5 introduce new theory
parameters

R̃+
k =

J̃k + K̃k

2
, R̃−

k =
J̃k − K̃k

2
( J̃k = Jk/kB, K̃k = Kk/kB), (39)

and introduce new variables δξk(t), δσk(t)

δ〈Sk1〉t =
δξk(t) + δσk(t)

2
, δ〈Sk2〉t =

δξk(t)− δσk(t)

2
. (40)

Upon application of these transformations, the Bloch equation (38) reduces to system of linear
differential equations of the following matrix form:

(

Ak − i h̄
kB

ω · I
)

δxk(ω) = (µ̃δE1k(ω)− 2ψ̃14δε4k(ω))b. (41)

5 Fourier transform to k-space is

Aq = ∑
k

ak exp (i kq), ak =
1
N ∑

q

Aq exp (− i kq)

for values dependent on q (like δ〈Sz
q1〉t and others) and

Mq1q2 =
1
N ∑

k

mk exp (i k(q1 − q2)), mk = ∑
q2

Mq1q2 exp (− i k(q1 − q2)).

for interaction constants dependent on q1 and q2 (like Jqq′ and others). Here the dependency of Mq1q2
on difference q1 − q2 was used.
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The following notations are used in this equation: I is identity matrix, i is the imaginary unit,

Ak =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 a12 −Ω̃ 0 a15 a16

a21 a22 0 −Ω̃ a16 a15

a31 a32 0 0 a35 a36

a41 a42 0 0 a36 a35

a51 a52 −a35 −a36 a55 a56

a61 a62 −a36 −a35 a56 a55

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, δxk(ω) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

δξz
k(ω)

δσz
k (ω)

δξ
y
k (ω)

δσ
y
k (ω)

δξx
k (ω)

δσx
k (ω)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, b =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1

b2

ξx

σx

b5

b6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (42)

Matrix Ak components:

a11 = U1 + R̃+
k G1, a12 = U2 + R̃−

k G2, a15 = V1, a16 = V2,

a21 = U2 + R̃+
k G2, a22 = U1 + R̃−

k G1,

a31 = Ω̃ − R̃+
k ξx, a32 = −R̃−

k σx , a35 = −
[

R̃+
0 ξz − 2ψ̃14ε4

]

, a36 = −
[

R̃−
0 σz + ∆̃

]

,

a41 = −R̃+
k σx, a42 = Ω̃ − R̃−

k ξx,

a51 = V1 + R̃+
k H1, a52 = V2 + R̃−

k H2, a55 = W1, a56 = W2,

a61 = V2 + R̃+
k H2, a62 = V1 + R̃−

k H1;

(43)

components of vector b:

b1 = −G1, b2 = −G2, b5 = −H1, b6 = −H2, (44)

where following notations were used

U1,2 = − 1
2T′

1

(

ε̃2
1

λ̃2
1
± ε̃2

2

λ̃2
2

)

, V1,2 = − 1
2T′

1

(

Ω̃ε̃1

λ̃2
1

± Ω̃ε̃2

λ̃2
2

)

, G1,2 = K1
ε̃2

1

λ̃2
1
± K2

ε̃2
2

λ̃2
2

,

W1,2 = − 1
2T′

1

(

Ω̃2

λ̃2
1
± Ω̃2

λ̃2
2

)

, H1,2 = K1
Ω̃ε̃1

λ̃2
1

± K2
Ω̃ε̃2

λ̃2
2

, K1,2 =
1
T′

1

1

4T cosh2 λ̃1,2
2T

,

and relaxation time T′
1 is

T′
1 =

kB

h̄
T1. (45)

It is convenient to present the solution of Eq. (41) in a form

δxk(ω) = (µ̃δE1k(ω)− 2ψ̃14δε4k(ω))

[

(

Ak − i h̄
kB

ω · I
)−1

b

]

, (46)

where we denote the inverse of matrix
(

Ak − i h̄
kB

ω · I
)

by
(

Ak − i h̄
kB

ω · I
)−1

.
Now it is useful to present all variables in Eq. (21b) as a sum of constant (equilibrium) term
and small variation term. The result for δP1k(ω) is

δP1k(ω) = e0
14δε4k(ω) + χε0

11 · δE1k(ω) +
µ̃

ṽ
· δξz

k(ω). (47)
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If to note that δξz
k(ω) is the first component of vector δxk(ω), variation of polarization can be

presented as

δP1k(ω) = e14(k, ω)δε4k(ω) + χε
11(k, ω)δE1k(ω). (48)

Here χε
11(k, ω) is dynamic susceptibility of a clamped crystal (δε4k(ω) = 0), and e14(k, ω) is

dynamic coefficient of the piezoelectric stress:

χε
11(k, ω) = χε0

11 +
µ̃2

ṽ
F1(k, iω), e14(k, ω) = e0

14 −
2ψ̃14µ̃

ṽ
F1(k, iω). (49)

The following notation was used:

F1(k, iω) =

[

(

Ak − i h̄
kB

ω · I
)−1

b

]

1
, (50)

where subscript ‘1’ denotes the first component of the vector derived by multiplication of

matrix
(

Ak − i h̄
kB

ω · I
)−1

and vector b.

Analysis shows that F1(0, 0) = f1(T, σ4, E1) at any relaxation times T1. Therefore, all dynamic
physical characteristics are equal to correspondent static characteristics at ω = 0.
The best agreement between theory and experiment for RS is reached at (Levitskii, Andrusyk
& Zachek, 2010)

T1 = 1.767 × 10−13 s (T′
1 = 2.313 × 10−2 K). (51)

It is easily seen that the function F1(k, iω) is a rational function of iω, where numerator is

polynomial function of degree not higher than 5 and denominator is polynomial function of
degree 6. Therefore, we can decompose function F1(k, iω) into partial fractions:

F1(k, iω) =
n

∑
i=1

kiτi

1 + iωτi
+

m

∑
j=1

Mj(iω) + Nj

(iω)2 + pj(iω) + qj
. (52)

Here coefficients ki, τi, Mj, Nj, pj, qj are real numbers, n is number of real (equal to −1/τi)
eigen values and 2m is number of complex eigen values of matrix Ak. Values n and 2m

are defined by theory parameters and temperature. However, matrix Ak has 6 eigen values
in total. The first sum in Eq. (52) is a contribution of Debye (relaxation) modes into order
parameter dynamics, and the second sum is a contribution of resonance modes. In RS case we
have n = 2, m = 2 at all temperatures.
The results of calculations performed in the center of the Brillouin zone (k = 0) are presented
below. Fig. 5 presents frequency dependencies of dielectric permittivity of clamped crystal in
dispersion region (109 Hz – 1011 Hz) calculated theoretically along with experimental data. As
figure shows, Mitsui model is able to describe dielectric permittivity in dispersion region.
The correspondence between theory and experimental data for dynamic dielectric
permittivity deserves special attention. Methods for experimental measurements of dynamic
dielectric permittivity does not allow to assert that namely clamped crystal permittivity was
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Fig. 5. The frequency dependence of the real and imaginary part of dielectric permittivity,
calculated theoretically (lines) at different temperatures T (K): (a) 235, (b) 245, (c) 265, (d) 285,
(e) 305, (f) 315. Points represent experimental data: � (Sandy & Jones, 1968), ◦ (Poplavko
et al., 1974), + (Pereverzeva, 1974), � (Deyda, 1967), • (Akao & Sasaki, 1955), � (Müser &
Potthaest, 1967), × (Kołodziej, 1975), ⋄ (Volkov et al., 1980), △ (Sandy & Jones, 1968), ▽
(Jäckle, 1960).

measured. However, in the next subsection it will be demonstrated that frequency clamping
of a crystal occurs in microwave region and the experimental data for dielectric permittivity
in this region correspond specifically to theoretically calculated dielectric permittivity of a
clamped crystal
Analysis testifies that the contribution of one relaxation mode constitutes more than 99% of
the total permittivity along the whole temperature range at frequencies 108 Hz – 1012 Hz. This
mode is responsible for ferroelectric instability. Thus, dynamics of RS within microwave
region is of Debye relaxation type. The same conclusion was derived within the model
without transverse field (Levitskii et al., 2003).
Temperature dependencies of relaxation time of the mode responsible for ferroelectric
instability obtained here and correspondent experimental data are presented in Fig. 6. As
this figure shows the model with the piezoelectric coupling successfully solves the problem
encountered by the conventional theories – incorrect temperature dependence of relaxation
times near the Curie points. Theoretical temperature curve of τ−1(T) obtained here has two
finite minima at the transition points, as opposed to vanishing of the inverse relaxation time
obtained within the Mitsui model without piezoelectric coupling (Žekš et al., 1971).
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Fig. 6. Dependency of inverse relaxation times on temperature. Solid line presents the result
of calculation. Points present experimental data: • (Müser & Potthaest, 1967), � (Sandy &
Jones, 1968), ◦ (Kołodziej, 1975), ⋄ (Volkov et al., 1980).

4.2 Dynamics of deformation. Dielectric susceptibility of a free crystal

We shall now give detailed consideration to dynamic dielectric response of a free crystal.
Expression for the stress variation is obtained in a similar way to Eq. (48)

δσ4k(ω) = c44(k, ω)δε4k(ω)− e14(k, ω)δE1k(ω), (53)

where

c44(k, ω) = cE0
44 − 4ψ̃2

14
ṽ

F1(k, iω) (54)

and e14(k, ω) is presented in Eq. (49).
Expressing Eq. (53) δε4k(ω) through δσ4k(ω) and taking account of Eq. (48) we can write:

δP1k(ω) = d14(k, ω)δσ4k(ω) + χσ
11(k, ω)δE1k(ω), (55)

where

d14(k, ω) =
e14(k, ω)

c44(k, ω)
, χσ

11(k, ω) = χε
11(k, ω) + e14(k, ω)d14(k, ω). (56)

It is well to bear in mind that value χσ
11(k, ω) is not free crystal permittivity. For the crystal

not affected by external mechanical stress the condition δσ4q = 0 is true for all sites on
the crystal surface, while all the internal stresses and strains are determined by Newtonian
equations. Thus, to study dynamic dielectric response of a free crystal, in addition to the study
of pseudospin system response it is needed to consider the dynamic deformation response of
a crystal lattice caused by piezoelectric coupling. We will describe internal stresses and strains
dynamics by Newtonian equations of motion for continuum (Authier, 2003, chap. 1.3). This
approach is justified by virtue of the fact that, as we will see, in the frequency range under the
study (104 Hz – 107 Hz), characteristic length of stress and strain change in the crystal is much
larger than unit cell size.
We will have to join Eq. (55) obtained for discrete medium with the equations describing
the dynamics of deformations, which are the continuum equations. This could be done by
considering that physical characteristics Ak(ω) (polarization, stress and electric field) change
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little within the unit cell. In our case this condition is satisfied very well. So, we can write:

Ak(ω) =
1
N ∑

q
aq exp (− ikq) ≃ 1

V

∫

V

a(r) exp (− ikr)d r. (57)

For simplicity we will assume that physical coefficients are not dependent on wavevector:

c44(k, ω) = c44(ω), e14(k, ω) = e14(ω), χε,σ
11 (k, ω) = χε,σ

11 (ω). (58)

Let us consider the equation describing the dynamics of deformations of a thin rectangular
plate a× b of Rochelle salt crystal cut in the (100) plane (X cut) (specific numerical calculations
will be made for the crystal plate of 1 × 1 cm2):

ρ
∂2ui

∂t2 = ∑
j

∂σij

∂xj
(59)

Here ρ = 1.767 g/cm3 is crystal density (we suppose it is not temperature dependent), ui are

components of the displacement vector, and σij are components of the stress tensor. Similarly
to above, we decompose all physical characteristics in Eq. (59) into the sum of equilibrium
static part and small deviation. We also assume that oscillating process occurs in yz-plane. It
means that all values are uniformed along x-axes and ux = 0. Then system of equations (59)
is reduced to

−ρω2δuy =
∂δσyy

∂y
+

∂δσyz

∂z

−ρω2δuz =
∂δσyz

∂y
+

∂δσzz

∂z

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(60)

where equations are already Fourier transformed into the frequency domain.

Strain tensor variations can be expressed in terms of displacements:

δε ij =
1
2

(

∂δui

∂xj
+

∂δuj

∂xi

)

. (61)

By differentiating system (60) we can transform it to the form with unknowns δεα:

−ρω2δε2 =
∂2δσ2

∂y2 +
∂2δσ4

∂y∂z

−ρω2δε3 =
∂2δσ4

∂y∂z
+

∂2δσ3

∂z2

−ρω2δε4 =
∂2δσ2

∂y∂z
+

∂2δσ3

∂y∂z
+

(

∂2

∂y2 +
∂2

∂z2

)

δσ4

(62)

where Voigt’s one-index notations and correspondence between strains in tensor and Voigt’s

notations δε2 = δεyy, δε3 = δεzz, δε4 = 2δεyz were used.
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Considering the form of elastic tensor Eq. (1) and tensor of piezoelectric stress Eq. (2) we can
write:

δσ2 = c22δε2 + c23δε3 + c24δε2 − e12δE1

δσ3 = c23δε2 + c33δε3 + c34δε4 − e13δE1

δσ4 = c24δε2 + c34δε3 + c44δε4 − e14δE1.

(63)

All stresses and strains are functions of both frequency and coordinates. Elastic constants
depend on frequency and are coordinates-independent (resulting from Eq. (58)).
We are interested in effects occurring at frequencies 104 Hz – 108 Hz, that is why for the crystal
plate 1 × 1 cm2 the field δE1 can be considered as homogeneous. Under these conditions, the
system Eq. (62) can be rewritten as:

−ρω2δε2 = c22
∂2δε2

∂y2 + c23
∂2δε3

∂y2 + c24
∂2δε4

∂y2 + c24
∂2δε2

∂y∂z
+ c34

∂2δε3

∂y∂z
+ c44

∂2δε4

∂y∂z

−ρω2δε3 = c23
∂2δε2

∂z2 + c33
∂2δε3

∂z2 + c34
∂2δε4

∂z2 + c24
∂2δε2

∂y∂z
+ c34

∂2δε3

∂y∂z
+ c44

∂2δε4

∂y∂z

−ρω2δε4 = (c22 + c23)
∂2δε2

∂y∂z
+ (c23 + c33)

∂2δε3

∂y∂z
+ (c24 + c34)

∂2δε4

∂y∂z
+ c24∆δε2

+ c34∆δε3 + c44∆δε4

(64)

where ∆ ≡
(

∂2

∂y2 +
∂2

∂z2

)

.
This system of equations should be supplemented by boundary conditions, which imply that
stress is equal to zero on the crystal boundaries:

(c22δε2 + c23δε3 + c24δε4 − e12δE1)|Σ = 0

(c23δε2 + c33δε3 + c34δε4 − e13δE1)|Σ = 0

(c24δε2 + c34δε3 + c44δε4 − e14δE1)|Σ = 0,

(65)

where Σ is a rectangle with sides a × b in yz-plane. This system is a closed equation system
and allows one to describe the dynamics of deformation of a Rochelle salt crystal. This system
of equations and its boundary conditions are of a simpler form in paraelectric phases:

−ρω2δε2 = c22
∂2δε2

∂y2 + c23
∂2δε3

∂y2 + c44
∂2δε4
∂y∂z

−ρω2δε3 = c23
∂2δε2

∂z2 + c33
∂2δε3

∂z2 + c44
∂2δε4

∂y∂z

−ρω2δε4 = (c22 + c23)
∂2δε2

∂y∂z
+ (c23 + c33)

∂2δε3

∂y∂z
+ c44∆δε4,

(66)
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(c22δε2 + c23δε3)|Σ = 0

(c23δε2 + c33δε3)|Σ = 0

(c44δε4 − e14δE1)|Σ = 0.

(67)

One can proceed with further simplifications. Consider that elastic constants c22, c23, c33 are of
the same order and are much larger than c44 (see Fig. 1), especially in the vicinity of a critical
point. Then δε2 and δε3 become small compared to δε4 and can be treated as zero. Therefore,
system Eq. (66) and boundary conditions Eq. (67) reduce to

∆δε4 +
ρω2

c44
δε4 = 0 (68a)

δε4|Σ =
e14
c44

δE1. (68b)

Similarly, equation (68) can be obtained for ferroelectric phase.

It is noteworthy that in paraelectric phase in case of small c22, c23, c33 we would receive
equation (68) again. However, in this case strains δε2 and δε3 are not equal to zero:

δε2 = δε3 = − c44

ρω2
∂2δε4

∂y∂z
.

It is more convenient to solve equation 68 by rewriting it in terms of the variation of stress.
Taking into account Eq. (53), from which

δε4(ω) =
1

c44(ω)
δσ4(ω) +

e14(ω)

c44(ω)
δE1(ω) (69)

and taking into account field homogeneity we can write:

∆δσ4 +
ρω2

c44
δσ4 = − ρω2

c44
e14δE1 (70a)

δσ4|Σ = 0. (70b)

By introducing a new variable u(ω, y, z), where

δσ4 = −u(ω, y, z) · e14(ω)δE1(ω) (71)

and considering Eq. (55) we obtain the expression for free crystal permittivity in the center of
the Brillouin zone:

χ̃σ
11(ω) = χσ

11(ω) + N(ω)(χε
11(ω)− χσ

11(ω)), (72)

where

N(ω) =
1
ab

a
∫

0

b
∫

0

d yd z u(ω, y, z), (73)
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and u(ω, y, z) is a solution for

∆u +
ρω2

c44(ω)
u =

ρω2

c44(ω)
(74a)

u|Σ = 0. (74b)

It is easy to see that in the limit of low and high frequencies one has:

ω → 0 : u(y, z) → 0 =⇒ N(ω) → 0 =⇒ χ̃σ
11(ω) → χσ

11(ω)

ω → ∞ : u(y, z) → 1 =⇒ N(ω) → 1 =⇒ χ̃σ
11(ω) → χε

11(ω).
(75)

From Eq. (74) and Eq. (75) it is clear that χσ
11(ω) would be the permittivity of free crystal in

case of completely rigid material of crystal (c44(ω) = ∞) or at its zero inertia (ρ = 0).
Eq. (74) is inhomogeneous Helmholtz equation with zero Dirichlet boundary conditions. It
has the following solution:6

u(ω, y, z) =
∞

∑
i,j=0

16

1 − c44(ω)

ρω2 π2
(

(2i + 1)2

a2 +
(2j + 1)2

b2

)
· 1

π2(2i + 1)(2j + 1)

× sin
π(2i + 1)y

a
sin

π(2j + 1)z
b

. (78)

6 The solution of Eq. (74) can be obtained in the following way. It can be written as

u(y, z) =
∞

∑
k,n=1

(ν, ψkn)

λkn
· ψkn(y, z), (76)

where ν ≡ ρω2

c44(ω)
, ( f , g) denotes scalar product of functions f (y, z) and g(y, z):

( f , g) =
∫

Σ
f g d Σ,

ψkn(y, z) and λkn are eigenfunctions and eigenvalues of the Helmholtz operator ∆ + ν on a domain Σ

(rectangle a × b):

ψkn(y, z) =
2√
ab

sin
πky

a
sin

πnz

b
,

λkn = −π2
(

k2

a2 +
n2

b2

)

+ ν,

which is easily checked directly. Let us use the known fact that the system of eigenfunctions of
a Hermitian operator (which is the Helmholtz operator) is a complete set of orthogonal functions.
Therefore, any analytic function can be decomposed into a series of functions ψkm. For ν treated as
a function the decomposition can be written

ν = ∑
k,n

aknψkn, (77)

where
apq = (ν, ψpq),

which is easy to obtain by calculating the scalar product of left and right parts of Eq. (77) and ψpq. Now,
by substitution of Eq. (76) into Eq. (74) we see that Eq. (76) is the needed solution.
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After performing the integration we get N(ω):

N(ω) =
∞

∑
i,j=0

64

1 − c44(ω)

ρω2 π2
(

(2i + 1)2

a2 +
(2j + 1)2

b2

)
· 1
[π2(2i + 1)(2j + 1)]2

, (79)

where at small Im[c44(ω)] resonance frequencies are equal

ωi,j =

√

c44(ω)

ρ
π

√

(2i + 1)2

a2 +
(2j + 1)2

b2 . (80)

Previously, for a square lattice the following resonance frequencies were obtained (Moina
et al., 2005):

ωi =

√

c44(ω)

ρ
π
(2i + 1)

a
, (81)

while our study has shown that resonance occurs at frequencies

ωi,j =

√

c44(ω)

ρ
π

√

(2i + 1)2 + (2j + 1)2

a2 . (82)

In particular, for the first resonance frequency we obtained a value

ω0,0 =
π

a

√

2c44(ω)

ρ
(83)

while the previous result claims

ω0 =
π

a

√

c44(ω)

ρ
. (84)

Besides, one can see that resonance frequencies derived here are more compact compared to
the previous result. Unfortunately, we have not found appropriate experimental data that
could verify which of the two is correct.
It should be noted that due to the presence of imaginary part in c44(ω), resonance peaks of
dielectric permittivity of free crystal do not have singularity. According to Eq. (80) when
approaching a phase transition point, the frequency of the first resonance peak tends to zero.
Analysis of Eq. (82) shows that in case of square plate resonance frequencies degeneracy ωi,j =
ωj,i occurs. And in case of rectangular plate with a and b, which are little different from each
other, resonance spectrum consists of couples of close resonance frequencies ωi,j and ωj,i.
Let us show the results of the calculation of dynamic permittivity of free crystal for a thin
plate of X-cut Rochelle salt crystal of size 1 × 1 cm2. Fig. 7 illustrates frequency dependence
of dynamic permittivity in the paraelectric phase at T = 305 K.
As it is illustrated in this figure, at ω → 0 we obtain static permittivity of free crystal.
Below the first resonance peak, the dielectric permittivity almost coincides with the static
permittivity of free crystal. In the range 104 Hz – 108 Hz one gets numerous resonance
peaks. Above the resonance range, crystal is ‘clamped’ by the frequency and at 109 Hz –
1011 Hz for dynamic permittivity one gets susceptibility of clamped crystal, considered in
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previous subsection. Similar behaviour of dynamic permittivity of free crystal is observed in
low-temperature paraelectric and ferroelectric phases.
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Fig. 7. Dynamic free crystal dielectric permittivity (solid line) at T = 305 K. Points ◦ present
clamped crystal dielectric permittivity at T = 305 K. Point � presents static free crystal
permittivity.

Figs. 8, 9, 10, 11 present distributions of absolute value, real part and imaginary part
of function u(y, z). White colour denotes small value, black colour denotes large value.
Calculations were performed for square plate 1× 1 cm2 at T = 305 K and different frequencies.
Internal stress is proportional to the function u (see Eq. (71)), while according to Eq. (69) strain
is

δε4 = (1 − u(ω, y, z))
e14(ω)

c44(ω)
δE1(ω). (85)

As might be expected, at low frequency (ν = 105 Hz, Fig. 8) the amplitude of stress in
the center of the plate is maximum and it gradually reduces to zero when approaching the
plate edge. When increasing the frequency (ν = 2.5 × 105 Hz and ν = 5.95 × 105 Hz) the
regions with large and small stress amplitude start alternating (Figs. 9 and 10). However, one
can see that characteristic length of stress (strain) altering is much greater than lattice sizes
and, hence, approach of continuum medium to considering of the deformation dynamics is
justified. Upon further increase of frequency, the stress becomes uniformed throughout the
crystal volume, but close to the crystal edge it slightly increases, and then is reduced to zero at
the crystal boundary. At frequencies higher than the piezoelectric resonance frequencies the
crystal is clamped by frequency and internal stress is defined as δσ4(ω) = −e14(ω)δE1(ω).
Crystal plate of 1× 1 cm2 can be considered as clamped at T = 305 K ν = 5× 107 Hz according
to Fig. 7. Distribution diagram of u in Fig. 11 visualize phenomenon of crystal clamping.

Concluding remarks

In this chapter we considered piezoelectric effect in Rochelle salt. We based our study on the
Mitsui model which explains the ferroelectric phase transition in Rochelle salt at microscopic
level and is able to describe its thermodynamic and dynamic (dielectric relaxation) properties.
Results obtained for the physical coefficients were used for study of piezoelectric resonance. It
should be noted that the ratio between the elastic constants of Rochelle salt allowed to reduce
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Fig. 8. Distributions of absolute value, real part and imaginary part of u(y, z) at ν = 105 Hz.
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Fig. 9. Distributions of absolute value, real part and imaginary part of u(y, z) at
ν = 2.6 × 105 Hz.
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Fig. 10. Distributions of absolute value, real part and imaginary part of u(y, z) at
ν = 5.95 × 105 Hz.

the original system of equations for the dynamics of deformations to Helmholtz equation with
known boundary condition. This simplification allowed to obtain the solution analytically.
Analytical solution, in turn, allowed to obtain resonant frequencies and explicitly showed the
phenomenon of frequency crystal clamping.
Nevertheless, the proposed approach has some drawbacks. Specifically, the dynamic strain
change along x axis was neglected. We assume that for a thin plate such neglect is justified,
but this assumption should be confirmed by numerical calculations. Consideration of strain
change along x axis will make it possible not to be restricted by a thin plate.
Also, some important issues remain unexplored. In particular, the influence of ferroelectric
phase transition on piezoelectric resonance remains open. The study of this issue requires to
consider the system Eq. (64), which can be performed only numerically.

217Piezoelectric Effect in Rochelle Salt

www.intechopen.com



24 Will-be-set-by-IN-TECH

0,2 0,4 0,6 0,8 1,0

0,2

0,4

0,6

0,8

1,0

Im[u]

0,2 0,4 0,6 0,8 1,0

0,2

0,4

0,6

0,8

1,0

(Re
2
[u]+Im

2
[u])

1/2

0,2 0,4 0,6 0,8 1,0

0,2

0,4

0,6

0,8

1,0

Re[u]

Fig. 11. Distributions of absolute value, real part and imaginary part of u(y, z) at
ν = 5 × 107 Hz.

The model approach applied in this paper provides certain advantages over the
phenomenological approaches. In particular, the Mitsui model allowed us to get cE

44(ω)
elastic constant, for which no experimental data are available, but which is needed for
the study of piezoelectric resonance. The Mitsui model describes physical properties of
other ferroelectric compounds, including RbHSO4, NH4HSO4 (which are piezoelectric in the
ferroelectric phase) and others. The results obtained here can be applied to these and other
ferroelectric compounds with piezoelectric effect.
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