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1. Introduction 

The Rho family of small GTP-binding proteins is comprised of 22 members, including the 
most well characterized members RhoA, Rac1 and Cdc42 (Jaffe and Hall 2005). The Rho 
family proteins share a high degree of homology with the Ras proto-oncogene, and indeed 
were first identified as a result of this similarity (Ras homologue). Activity of these proteins 
is dependent upon their nucleotide binding state; inactive when associated with GDP but 
active following exchange of GDP for GTP, which induces conformational changes that 
promote association/activation of downstream effector proteins. The GDP/GTP cycle is 
regulated by GAPs that accelerate GTP hydrolysis by providing a critical catalytic amino 
acid leading to a return to the inactive state (Bernards and Settleman 2005), and GEFs that 
promote guanine nucleotide exchange and consequent Rho activation (Rossman et al. 2005). 
The number of GAPs and GEFs far exceeds the number of Rho proteins, and the roles of 
individual GAPs and GEFs in specific cell types and biological processes is currently an 
intensively studied field. 
Although united by homology and function as regulators of the actin cytoskeleton, each of 
RhoA, Rac1 and Cdc42 has a distinct role in the organization of actin structures (Figure 1). 
RhoA is principally involved with the production of actin-myosin bundles and the 
generation of actomyosin contractile force. Rac1 contributes to the formation of actin 
meshworks that result in the emergence of large protrusive structures that lead to spreading 
or, if occurring in a polarized manner, will contribute to motility. Cdc42 promotes the 
formation of actin-rich filopodia. Together, coordinated programs of RhoA, Rac1 and Cdc42 
activation/inactivation play prominent roles in processes such as endocytosis/exocytosis, 
adhesion and motility, which may subsequently impact upon proliferation and 
death/survival. Recent advances in the development of activation-state sensitive fluorescent 
probes have allowed temporal and spatial analysis of Rho protein activation, which has 
added significantly to our appreciation of Rho regulation and function (Hodgson et al. 
2010). Much of the early research on Rho protein function relied upon over-expression of 
dominant-negative mutants that reduced affinity for GTP and constitutively-active mutants 
that reduced GTP hydrolysis; however, more refined analysis has become possible with the 
rise of RNAi and knockout methodologies (Heasman and Ridley 2008). 
The study of Rho family proteins has historically focused on their roles as molecular 
switches acting downstream of cell surface receptors to regulate the actin cytoskeleton (Jaffe 
and Hall 2005). Significant effort has gone into classifying signaling from Rho proteins into  
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Fig. 1. Diagram of actin structures regulated by RhoA, Rac1 and Cdc42. 

linear cascades, similarly to the classical Ras/Raf/MEK/ERK kinase cascade. However, 
recently a greater appreciation of the role of mechanical forces as fundamental influences in 
biology has emerged (Puceat et al. 2003). As central regulators of the actin-myosin 
cytoskeleton, an emerging concept is that many of the activities of Rho proteins may not be 
attributable to simple linear pathways, but instead are the product of modulating 
contraction and relaxation at the cellular and subcellular levels, with consequent effects on 
development and function at the tissue and organismal levels. 

2. Embryonic Stem Cells 

Pluripotent stem cells were first isolated from testicular teratocarcinoma (Pierce and Dixon 
1959), a germ cell tumor type containing a population of pluripotent stem cells together with 
embryonic and extra-embryonic tissues that arise from these stem cells. Pluripotent stem 
cells of testicular teratocarcinomas are termed Embryonal Carcinoma (EC) cells and can give 
rise to collections of tumor cells having morphological characteristics of each of the three 
embryonic germ layers. In mice, EC cells have been demonstrated to be capable of 
contributing to every germ layer including the germ-line when injected into host blastocysts 
(Brinster 1974; Mintz and Illmensee 1975; Illmensee and Mintz 1976). Interestingly, under 
these conditions, EC cells are non-malignant, and chimeric mice containing tissues 
differentiated from EC cells are generally healthy. These observations formed the basis for 
the isolation of Embryonic Stem (ES) cells, which were derived from the pre-implantation 
embryo, arising when cells constituting the inner cell mass (ICM) of the pre-implantation 
blastocyst or the epiblast of the post-implantation blastocyst were placed in 2D-culture 
(Evans and Kaufman 1981; Martin 1981). Like EC cells, ES cells are pluripotent, being 
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capable of giving rise to all tissues of the adult organism originating from the three germ 
layers, upon injection into a host blastocyst (Bradley et al. 1984). The great similarities 
observed between EC cells and ES cells led to an appreciation of the importance of the tissue 
microenvironment in informing cell behavior and fate. 
A major attraction of murine ESC (mESC) research stemmed from the realization that 
mutations introduced into the mESC genome would be readily transmitted through the germ-
line, enabling the establishment of strains of mice harboring specific genetic mutations 
(Capecchi 1989), thereby facilitating the elegant functional characterization of virtually any 
gene of interest. The first gene to be targeted and inactivated in mES cells was the X-linked 
gene Hprt, which encodes hypoxanthine guanine phosphoribosyltransferase, an enzyme 
involved in purine metabolism (Thomas and Capecchi 1987). In turn, an Hprt-deficient ES cell 
line was engineered to re-introduce the Hprt coding sequence and used to produce knock-in 
gene-targeted mice for the first time, which faithfully recapitulated the wild-type Hprt 
expression pattern (Thompson et al. 1989). Following on from these pioneering studies, 
techniques for establishing gene-targeted mice have been considerably improved and refined. 
Gene targeting in mES cells to generate loss of function or gain of function mutations with an 
exquisite degree of subtlety and control is now an established tool in biological research. 

2.1 Maintenance of pluripotency 

ES cells express markers of their undifferentiated state such as the octamer binding protein 4 

(Oct4) (Rosner et al. 1990; Scholer et al. 1990), the SRY-related HMG-box gene 2 (Sox2) (Yuan 

et al. 1995), signal transducer and activator of transcription 3 (Stat3) (Niwa et al. 1998), the 

homeobox protein Nanog (Chambers et al. 2003; Mitsui et al. 2003) and alkaline phosphatase 

(AP) (Hahnel et al. 1990) that denote their capacity for both self-renewal and pluripotency. 

Of these, Oct4 and Sox2 have key roles in the maintenance of ES cell self-renewing capacity 

such that their expression is essential for the maintenance of pluripotency and their ectopic 

expression in somatic cells contributes to the generation of induced pluripotent (iPS) cells 

(Takahashi and Yamanaka 2006; Yu et al. 2007; Nakagawa et al. 2008).  

Oct4 is a POU-domain transcription factor also termed POU5F1 and is indispensable for 

plutipotency. Oct4 deficient embryos develop to the morula stage, but are unable to form an 

ICM (Nichols et al. 1998) and in vitro culture of Oct4 deficient embryos failed to yield ES 

cells (Nichols et al. 1998). These observations are further elaborated by more recent work 

showing that selective deletion of the Oct4 gene in primordial germ cells (PGC) results in 

their death by apoptosis (Kehler et al. 2004). Oct4 expression is very tightly regulated and its 

transient increase and decrease during early stages of embryonic development have been 

termed the totipotent cycle (Yeom et al. 1996). While evidence for the absolute requirement 

for Oct4 in the maintenance of ES cells is very strong, there is controversy on whether it is 

required for the maintenance of adult stem cells. Although there are numerous reports of 

Oct4 expression in adult stem cells including in hematopoietic and mesenchymal stem cells 

and stem cells of epithelial tissues such as the pancreas, kidney, breast, uterus, lung and 

skin, a recent study in which its expression was systematically abrogated in several of these 

tissues has revealed that Oct4 is required for neither the maintenance of adult stem cells nor 

for wound healing (Lengner et al. 2007). 

Sox2 is a HMG-box containing transcription factor closely related to the Y-chromosome 
located sex determining gene SRY. Its main role in the maintenance of pluripotency is 
thought to be closely related to the regulation of Oct4 transcription. Indeed Sox2 and Oct4 
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can jointly bind regulatory chromosomal regions associated with both the Oct4 and Sox2 
genes (Chew et al. 2005; Masui et al. 2007) as well as regulating Nanog expression (Kuroda 
et al. 2005; Rodda et al. 2005). 

2.2 Culturing ES cells 

Since the initial isolation of ICM-derived mESCs in the early 1980s (Evans and Kaufman 
1981; Martin 1981), conditions for the culture of ESCs have been developed and 
progressively refined. mESCs are propagated on a feeder layer of murine embryonic 
fibroblasts (MEFs) or in media containing leukemia inhibitory factor (LIF), under which 
conditions they maintain a pluripotent state (Williams et al. 1988). Withdrawal of LIF or 
culture in the absence of fibroblasts results in spontaneous differentiation of mESCs into a 
variety of lineages (Evans and Kaufman 1981; Martin 1981; Williams et al. 1988). The 
dependence of mES cells on LIF is thought to be related to LIF mediated activation of STAT3 
signaling (Smith et al. 1988) which together with Oct4/Sox2, has a possible role in the 
regulation of Nanog expression.  
Human ESCs (hESCs), which have been isolated from the epiblasts of human blastocysts 
(Thomson et al. 1998; Reubinoff et al. 2000) are also propagated on a feeder layer of MEFs, 
but LIF has no role in maintaining their pluripotency (Thomson et al. 1998; Reubinoff et al. 
2000). Instead, a balance between Tgfβ/activin/nodal signaling and suppression of BMP 
signaling together with the FGF signaling pathway are important for self-renewal and the 
maintenance of pluripotency in this system (James et al. 2005; Vallier et al. 2005; Xu et al. 
2005). However, as yet no reliable defined medium has been developed to enable the culture 
of hES cells in the absence of feeder cells. Like mESCs, hESCs spontaneously differentiate if 
cultured in the absence of a feeder layer, but unlike mESCs they undergo blebbing and 
apoptosis when maintained in a dissociated state (Watanabe et al. 2007).  
hESCs are not only a valuable tool for the study of human development, but also have 
applications in regenerative medicine, toxicology and the development of new drugs to 
target human disease (Murry and Keller 2008). mESCs and hESCs are thus examples of the 
two major types of pluripotent stem cells, derived as they are from the ICM and the epiblast 
respectively. 

3. Rho family GTPases in embryonic stem cells 

One of the most interesting recent developments in ES research is the revelation that signaling 
through RhoA plays a key role in the survival of human embryonic stem cells. This was first 
appreciated in 2007, following a cell-based screen of biologically active compounds that 
promoted survival and proliferation of dissociated hESCs that identified Y27632, a selective 
inhibitor of the Rho-effector protein ROCK (Watanabe et al. 2007). The ROCK1 and ROCK2 
serine/threonine kinases are central and critical regulators of actomyosin contractility 
(Coleman et al. 2001). Typically, these kinases are activated by association with active GTP-
bound Rho proteins. Active ROCK promotes actomyosin contractility through a dual 
mechanism of simultaneously phosphorylating and activating the contractile force-generating 
regulatory myosin light chain (MLC) and the LIM kinases (Sugihara et al. 1998), which 
modulate filamentous actin stability. In contrast to hESC, mES cells do not require ROCK 
inhibition for survival even when disaggregated to a single cell suspension. Since that initial 
study, subsequent screens have identified additional ROCK selective inhibitors that promote 
the survival of hESC (Andrews et al. 2010; Pakzad et al. 2010) and neural stem cells (Xu et al. 
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2010), thereby independently validating the role of ROCK as a key regulator of ESC survival. 
The addition of Y27632 to the culture media is now standard practice and has greatly 
improved the reliability of hES cell survival (Olson 2008; Krawetz et al. 2009). The addition of 
Y-27632 can be directly to the cell culture medium or into the extracellular matrix upon which 
the hESCs are plated (Danovi et al. 2010). ROCK inhibitors have also been shown to improve 
recovery of cryopreserved ESC  (Scott and Olson 2007; Wickman et al. 2010) and increase the 
efficiency of adenovirus-mediated gene transfer (Patwari and Lee 2008).  

3.1 Rho signaling in ES cells 

Recently, it has become clear that the actomyosin machinery downstream of Rho activation is 
essential for the blebbing and apoptosis that follow dissociation of hESCs (Martin 1981; Chen 
et al. 2010; Ohgushi et al. 2010), as inhibition of the myosin heavy chain ATPase with 
Blebbistatin, the use of actin disruption drugs or selective knock-down of ROCK1, ROCK2 or 
the myosin heavy and light chains all prolong survival of dissociated hESCs. Rho activation, 
coupled with Rac inhibition, was determined to be the driver of dissociation-induced hESC 
apoptosis via ROCK-mediated myosin light chain phosphorylation (Ohgushi et al. 2010). 
Activation of ROCK1 by caspase-mediated cleavage (Buecker et al. 2010) does not appear to 
contribute to apoptosis induced in this manner (Ohgushi et al. 2010). Overexpression of an 
active form of Ezrin, which strengthens the physical coupling between the plasma membrane 
and cortical actin cytoskeleton, was sufficient to block blebbing but not the dissociation-
induced cell death, indicating that apoptosis was not caused by blebbing itself but the result of 
actomyosin contraction (Ohgushi et al. 2010). Although the dissociation-induced cell death 
was linked back to mitochondrial depolarization and cytochrome c release, further study will 
be required to determine how actomyosin contractility is coupled to the mitochondrial 
pathway of apoptosis (Ohgushi et al. 2010). It is also becoming clear that the particular sub-
embryonic origin of the embryonic stem cell line determines whether Rho signaling is 
detrimental to survival on dissociation. While epiblast-derived hESCs are acutely sensitive to 
Rho signaling following dissociation, ICM-derived mESC have the capacity to survive 
dissociation without the need for inhibition of the actomyosin machinery (Ohgushi et al. 2010), 
a characteristic they share with human induced pluripotent stem cells (hiPSC), which display 
mESC-like morphological features (Evans and Kaufman 1981). On the other hand, epiblast-
derived murine epiblast stem cells (mEpiSC) or mESCs differentiated into epiblast-like cells 
acquire a dependence on ROCK-inhibition in order to survive dissociation (Ohgushi et al. 
2010). One theoretical possibility to account for these observations is that external pulling 
forces from adjacent cells in an epithelial sheet counteract the internal actomyosin contractile 
forces within individual cells such that the internal and external mechanical forces become 
balanced in all directions along the epithelial plane, thereby limiting their pro-apoptotic 
effects. Since mESCs are derived from the ICM prior to differentiation into epithelial-type cells 
and grow in disorganized three-dimensional cell collectives similar to the bona fide  inner cell 
mass, they may not be dependent on external tension derived from cell-cell adhesions, such as 
those that occur in an epithelial sheet, for survival. In contrast, hESCs grow as tightly adherent 
two-dimensional sheets similar to the epiblast where pulling forces from adjacent cells would 
be sensed. In agreement with this model, when human induced pluriopotent stem cells 
(hiPSCs) were reprogrammed from fibroblasts through the expression of five reprogramming 
factors plus LIF, they acquired the ability to grow at low density or in suspension in parallel 
with changed in vitro growth characteristics to mESC-like disorganized three-dimensional 
structures (Tashiro et al. 2010). This exquisite sensitivity of epiblast and epiblast-like stem cells 
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may reflect the critical importance of proper differentiation and spatial organization of the 
epiblast stage during embryonic development. If any individual cell in the epiblast layer were 
improperly positioned in the epithelial sheet, the potential consequences to the subsequent 
developmental stages and ultimately to the organism as a whole could be catastrophic. 

3.2 Rac signaling in ES cells 

The pro-apoptotic effect of Rho signaling in dissociated hESC is strongly counteracted by 
signaling through Rac. Indeed it has been shown that Rac1 is required for the survival of 
epiblast cells within the blastocyst during morphogenesis of the murine peri-implantation egg 
cylinder (He et al. 2010). During this process, the apoptosis mediated clearance of cells that are 
not in contact with the basement membrane (known as cavitation) is counteracted by signaling 
through Rac in those cells that remain apposed to the basement membrane (BM). In the 
absence of Rac1, cells in contact with the BM undergo apoptosis despite the survival signals 
that it normally provides (Kim et al. 2011). It is these BM-associated cells that give rise to the 
epiblast (He et al. 2010). Activation of Rac in the epiblast is mediated by the recruitment of the 
Crk adaptor protein and DOCK180 GEF (He et al. 2010). In turn, active Rac signals via PI3K 
and Akt to promote survival (He et al. 2010). Interestingly, a single dual-function protein, Abr, 
acts as Rho-GEF and Rac-GAP within dissociated hES cells in culture, simultaneously 
activating Rho and inactivating Rac upon cell dissociation, in a manner dependent on cell-cell 
interactions involving E-cadherin (Martin 1981; Ohgushi et al. 2010). The role of E-cadherin in 
hESC survival was also revealed in a chemical biology screen for small molecules that affected 
survival (Pakzad et al. 2010). One compound increased the survival of dissociated cells by 
reducing E-cadherin endocytosis, thus increasing the levels of cell-surface E-cadherin and 
consequently promoting cell-cell adhesions. In agreement with these observations, ectopic 
over-expression of E-cadherin was also sufficient to increase survival of dissociated hESCs 
(Rizzino 2010). However, when dissociated hESCs were grown on E-cadherin coated plates, 
they still underwent membrane blebbing and had significantly lower survival, indicating that 
homotypic E-cadherin interactions alone were not sufficient to promote survival (Ohgushi et 
al. 2010). These observations suggest the existence of a yet uncharacterized sensor that 
transmits a complementary signal derived from cell-cell adhesion that acts in concert with, or 
in parallel to, E-cadherin activation to repress actomyosin contractility and consequent cell 
death. Although mESCs are not sensitive to the same sort of dissociation-induced cell death, 
constitutive Rac1 deletion was found to induce membrane blebbing and eventual apoptosis of 
epiblast derived stem cells, possibly due to the lack of Rac1 activity to counter-balance the 
effect of RhoA activation (Kim et al. 2011). These Rac1 deleted cells also were defective in the 
formation of actin cytoskeleton structures such as lamellipodia and were significantly slower 
in migrating on collagen I coated dishes, revealing the critical role played by Rac1 in these 
biological activities. Similarly, Rac1 was found to be an important contributor to mESC 
migration on laminin (Li et al. 2010).  

3.3 Cdc42 signaling in ES cells 

Also implicated in murine peri-implantation development is the Cdc42 GTP-binding 
protein. Mouse embryoid bodies deficient for Cdc42 exhibited polarization defects 
characterized by aberrant adherens and tight cell-cell junction formation and failure of 
cavitation (Wu et al. 2007), in a process mediated by the atypical protein kinase C (aPKC) 
family of kinases. Despite the polarization defects, basement membrane formation, which 
requires polarized deposition and assembly of basement membrane components at the basal 
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side of a cell layer, was unaffected by deletion of Cdc42 (Wu et al. 2007). Interestingly mES 
cells lacking Cdc42 had lower levels of active Rac1 although total Rac1 protein levels were 
unaffected (Wu et al. 2007), suggesting that some of the observed defects could be the result 
of reduced Rac1 activity. However, unlike Rac1 deficient mES cells that would undergo 
apoptosis while in contact with the basement membrane (Kim et al. 2011), deletion of Cdc42 
still allowed survival of cells in contact with the BM (Wu et al. 2007). Additional defects in 
PIP2-induced actin polymerization and cytoskeletal organization were likely to also 
contribute to defective adhesion and migration of mESC deleted of Cdc42 (Chambers et al. 
2003; Wu et al. 2007). The motility of mESC plated on plated on laminin also were 
dependent on Cdc42 as revealed by siRNA-mediated knockdown (Li et al. 2010). These 
morphological, polarization and motility defects almost certainly contributed to early 
embryonic lethality in Cdc42 deficient mice (Chambers et al. 2003). These tantalizing 
observations point to complementary functions for Rho, Rac and Cdc42 during the 
processes of cavitation and the appearance of the epiblast, and underscore the importance of 
these proteins in appropriately mediating the survival or apoptotic clearance of cells during 
early morphogenesis. It therefore appears that the activity of the Rho family GTPases 
crucially determines the fate of pluripotent stem cells within the early developing embryo. 

4. Additional functions of Rho proteins in ES cells 

An interesting aspect of ESC is that under the right conditions, such as hanging drop 
suspension leading to the formation of embryoid bodies (Kurosawa 2007) , differentiation 
results in the production of cardiomyocytes that spontaneously contact and relax (beating) as 
they would in an intact heart (Wobus et al. 1991). Human ESC can also be differentiated into 
cardiomyocytes, which has generated considerable excitement in the field because of their 
value in examining the role of specific proteins in cardiac disease phenotypes, and also due to 
the eventual possibility that they might have therapeutic utility (Brinster 1974). To examine the 
role of Rac1 in the differentiation of mESC into cardiomyocytes, ectopic expression of 
constitutively-active Rac 1 deficient in GTPase activity (Rac1V12) or dominant-negative Rac1 
with reduced affinity for GTP (Rac1N17 was used to elucidate the consequences of Rac1 gain-
of-function and loss-of-function, respectively (Puceat et al. 2003). Expression of active Rac1V12 
blocked the characteristic beating of embryoid bodies, due to a differentiation defect as 
indicated by reduced expression of cardiomyocyte differentiation markers such as MEF2C and 
ventricular myosin light chain 2 (MLCv2). In contrast, expression of a constitutively active 
form of RhoA did not block cardiomyocyte differentiation. Previous research had revealed 
that Rac1 regulates the activity of the NADPH oxidase that generates reactive oxygen species 
(ROS) (Di-Poi et al. 2001) , and when H2O2 was added to embryoid bodies for up to 7 days the 
effect on blocking cardiomyocyte differentiation by active Rac1V12 was mimicked, while the 
ROS scavenger catalase reduced the differentiation block induced by active Rac1V12 (Puceat et 
al. 2003). Consistent with this conclusion, expression of a point-mutant form of Rac1 that does 
not activate the NADPH oxidase (Rac1V12D38) did not block cardiomyocyte differentiation. 
Expression of the dominant-negative Rac1N17 to examine loss-of-function did not affect 
differentiation but did impair beating by interfering with the organization of sarcomeric units 
required for contraction (Puceat et al. 2003). In contrast to what occurred when Rac1 was 
expressed early, when the MLCv2 promoter was used to express active Rac1 in differentiated 
cardiomyocytes, increased beating was observed due to a facilitation of differentiation and 
prolonged proliferation (Puceat et al. 2003). Expression of dominant-negative Rac1N17 from 
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the MLCv2 promoter had a similar effect as early expression on the organization of sarcomeric 
units. These results revealed that the role of Rac1 in cardiac differentiation is likely dependent 
on the developmental stage. Given the availability of mESC in which Rac1 can be conditionally 
deleted (Yuan et al. 1995), more refined analysis of the role of Rac1 in cardiac differentiation 
and disease should be possible.  

5. Activating ROCK in mouse ICM-derived ES cells 

Mechanical forces are increasingly appreciated as major influences in embryonic 
development. External mechanical forces can be produced by physical alterations to the 
microenvironment. These external forces are sensed by cells, leading to responses that allow 
the cell to adapt to the changed environmental circumstances. One way that cells respond to 
mechanical force is via integrin-mediated activation of Rho and ROCK resulting in increased 
cellular stiffness via increased actomyosin contracility, which is also known as 
reinforcement (Guilluy et al. 2011). There is considerable evidence that suppression of  
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Fig. 2. Mechanism of conditional activation of ROCK. 1: Diagram of ROCK domains, RBD = 
Rho Binding Domain, PH = Pleckstrin Homology domain, CRD = Cysteine-Rich Domain. 2: 
Kinase domain of ROCK2 was fused to Enhanced Green Fluorescent Protein (EGFP) and the 
hormone-binding domain of Estrogen Receptor (ER) to create conditionally regulated 
ROCK:ER. 3: In the absence of ligand, Heat Shock Protein 90 (Hsp90) binds to the ER domain 
and represses catalytic activity. 4: Upon binding of estrogen analogues such as 4-
hydroxytamoxifen (4HT), 5: Hsp90 is displaced thereby allowing for ROCK catalytic activity.  
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actomyosin contractility by inhibition of ROCK promotes the survival and continued 
proliferation of epiblast-derived hES cells. It is suggested, however, that this signaling axis is 
less important in ICM-derived mES cells. We therefore decided to take advantage of a 
system to conditionally activate ROCK within mES cells to determine whether ROCK 
activation and consequent actomyosin contractility had a role in their proliferation, survival 
and/or maintenance of pluripotency. Accordingly, we transduced G4 mES cells (George et 
al. 2007) with a pBabe-Puro retroviral vector (Morgenstern and Land 1990) encoding a 
conditionally-active version of ROCK fused to the hormone-binding domain of the estrogen 
receptor (Figure 2) (Croft and Olson 2006) to establish the pBabe-Puro-ROCK:ER mES cell 
line in which ROCK activity could be elicited by treatment with the estrogen analog 4-
hydroxytamoxifen (4HT). As a negative control, cells were transduced with pBabe-Puro 
encoding a kinase-dead counterpart (KD:ER) to produce control pBabe-Puro-KD:ER mES 
cells that express of  catalytically inactive control ROCK protein. 
When maintained in 4HT, pBabe-Puro-ROCK:ER mES cells exhibited robust growth and a 
large number of colonies exhibiting a refractive colony morphology under transmitted light 
and fewer colonies exhibiting a differentiated morphology, consistent with a high degree of 
pluripotency (Figure 3). Consistent with this observation, 4HT treated pBabe-Puro-ROCK:ER 
mES cells express significantly higher levels of the pluripotency marker alkaline phosphatase 
(ALP) than 4HT treated pBabe-Puro-KD:ER mES cells or vehicle treated pBabe-Puro-ROCK:ER  
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Fig. 3. Conditional ROCK activation in mES cells elicits a highly refractive colony 
morphology. Panels show brightfield images of pBabe-Puro-ROCK:ER and pBabe-Puro-
KD:ER mES cells treated with Vehicle or 4HT. Flat colonies containing mainly differentiated 
cells (purple arrows) and raised colonies containing mainly undifferentiated cells (white 
arrows) are indicated. Scale bar denotes 500µm.  
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and pBabe-Puro-KD:ER mES cells (Figure 4A). To determine whether the increased ALP 
activity observed upon ROCK activation correlated with an increase in stemness, we then 
assessed the expression of two classical markers of pluripotency, Oct4 and Nanog. 4HT treated 
pBabe-Puro-ROCK:ER mES cells express significantly higher levels of Oct4 and Nanog than 
4HT treated pBabe-Puro-KD:ER mES cells or vehicle treated pBabe-Puro-ROCK:ER and 
pBabe-Puro-KD:ER mES cells (Figure 4B). Consistent with this effect being mediated by the 
activity of ROCK, co-treatment of pBabe-Puro-ROCK:ER mES cells with 4HT and the selective 
ROCK inhibitor Y-27632 failed to induce Oct4 or Nanog expression (Figure 4B).  
Taken together, these results strongly suggest that ROCK activation in mES cells promotes 
stemness and facilitates proliferation and survival. These observations are consistent with a 
previous report that inhibition of ROCK activity or silencing of ROCK expression in mESC 
causes a reduction in stem like properties including alkaline phosphatase activity and 
Oct3/4 expression, and increased expression of differentiation markers SOX-1, nestin and 
MAP2c when grown at high seeding densities (Chang et al. 2010). Interestingly, the effects 
of ROCK inhibition on morphology and colony formation were reversible if cells had been   
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Fig. 4. Conditional ROCK activation in mES cells increases stemness. (A) Histogram shows 
alkaline phosphatase activity in pBabe-Puro-ROCK:ER and pBabe-Puro-KD:ER mES cells 
treated with Vehicle or 4HT. (B) Histograms show expression at the mRNA level of the stem 
cell markers Oct4 and Nanog in pBabe-Puro-ROCK:ER and pBabe-Puro-KD:ER mES cells 
treated with Vehicle or 4HT. All values are expressed as mean ± SD. P values were 
calculated using the Student’s t-test. 
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grown at low initial densities where the reduction in stem like properties were not observed. 
However, at high cell densities where ROCK inhibition had repressed stem cell properties 
the effects were not reversible, suggesting that epigenetic reprogramming had occurred. It 
would be very interesting to determine whether the effects of ROCK activation on the 
maintenance of stemness would persist upon removal of tamoxifen and return of 
actomyosin contractility to basal levels. 

6. Rho signalling in ES cell maintenance, proliferation, survival 

There have been significant recent advances in our understanding of the requirement for 
specific Rho GTPases and downstream signaling pathways in ES cells from gene knockouts, 
RNAi and small molecule inhibitors. However, what has been missing is an understanding 
of where and when Rho proteins are activated and inactivated, for example during adhesion 
or differentiation. Activation-state sensitive fluorescent probes have been developed and 
used to characterize the temporal and spatial patterns of Rho activation during tumor cell 
migration and invasion (Vega et al. 2011). One exciting complementary area of research will 
be the determination of Rho protein activation with spatial and temporal resolution during 
ES cell growth and differentiation, ultimately through progressive developmental stages 

7. References 

Andrews, P. D. et al. (2010). "High-content screening of feeder-free human embryonic stem 
cells to identify pro-survival small molecules." Biochem J 432(1): 21-33. 

Bernards, A. and J. Settleman (2005). "GAPs in growth factor signalling." Growth Factors 
23(2): 143-149. 

Bradley, A. et al. (1984). "Formation of germ-line chimaeras from embryo-derived 
teratocarcinoma cell lines." Nature 309(5965): 255-256. 

Brinster, R. L. (1974). "The effect of cells transferred into the mouse blastocyst on subsequent 
development." J Exp Med 140(4): 1049-1056. 

Buecker, C. et al. (2010). "A murine ESC-like state facilitates transgenesis and homologous 
recombination in human pluripotent stem cells." Cell Stem Cell 6(6): 535-546. 

Capecchi, M. R. (1989). "Altering the genome by homologous recombination." Science 
244(4910): 1288-1292. 

Chambers, I. et al. (2003). "Functional expression cloning of Nanog, a pluripotency 
sustaining factor in embryonic stem cells." Cell 113(5): 643-655. 

Chang, T. C. et al. (2010). "Rho kinases regulate the renewal and neural differentiation of 
embryonic stem cells in a cell plating density-dependent manner." PLoS One 5(2): 
e9187. 

Chen, G. et al. (2010). "Actin-myosin contractility is reponsible for the reduced viability of 
dissociated human embryonic stem cells." Cell Stem Cell. 

Chew, J. L. et al. (2005). "Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the 
Oct4/Sox2 complex in embryonic stem cells." Mol Cell Biol 25(14): 6031-6046. 

Coleman, M. L. et al. (2001). "Membrane blebbing during apoptosis results from caspase-
mediated activation of ROCK I." Nat Cell Biol 3(4): 339-345. 

Croft, D. R. and M. F. Olson (2006). "Conditional regulation of a ROCK-estrogen receptor 
fusion protein." Methods Enzymol 406: 541-553. 

www.intechopen.com



 
Embryonic Stem Cells – Basic Biology to Bioengineering  

 

344 

Danovi, D. et al. (2010). "Imaging-based chemical screens using normal and glioma-derived 
neural stem cells." Biochem Soc Trans 38(4): 1067-1071. 

Di-Poi, N. et al. (2001). "Mechanism of NADPH oxidase activation by the Rac/Rho-GDI 
complex." Biochemistry 40(34): 10014-10022. 

Evans, M. J. and M. H. Kaufman (1981). "Establishment in culture of pluripotential cells 
from mouse embryos." Nature 292(5819): 154-156. 

George, S. H. et al. (2007). "Developmental and adult phenotyping directly from mutant 
embryonic stem cells." Proc Natl Acad Sci U S A 104(11): 4455-4460. 

Guilluy, C. et al. (2011). "The Rho GEFs LARG and GEF-H1 regulate the mechanical 
response to force on integrins." Nat Cell Biol 13(6): 724-729. 

Hahnel, A. C. et al. (1990). "Two alkaline phosphatase genes are expressed during early 
development in the mouse embryo." Development 110(2): 555-564. 

He, X. et al. (2010). "Rac1 is essential for basement membrane-dependent epiblast survival." 
Mol Cell Biol 30(14): 3569-3581. 

Heasman, S. J. and A. J. Ridley (2008). "Mammalian Rho GTPases: new insights into their 
functions from in vivo studies." Nat Rev Mol Cell Biol 9(9): 690-701. 

Hodgson, L. et al. (2010). "Biosensors for characterizing the dynamics of rho family GTPases 
in living cells." Curr Protoc Cell Biol Chapter 14: Unit 14 11 11-26. 

Illmensee, K. and B. Mintz (1976). "Totipotency and normal differentiation of single 
teratocarcinoma cells cloned by injection into blastocysts." Proc Natl Acad Sci U S A 
73(2): 549-553. 

Jaffe, A. B. and A. Hall (2005). "Rho GTPases: biochemistry and biology." Annu Rev Cell Dev 
Biol 21: 247-269. 

James, D. et al. (2005). "TGFbeta/activin/nodal signaling is necessary for the maintenance of 
pluripotency in human embryonic stem cells." Development 132(6): 1273-1282. 

Kehler, J. et al. (2004). "Oct4 is required for primordial germ cell survival." EMBO Rep 5(11): 
1078-1083. 

Kim, Y. Y. et al. (2011). "Cryopreservation of human embryonic stem cells derived-
cardiomyocytes induced by BMP2 in serum-free condition." Reprod Sci 18(3): 252-
260. 

Krawetz, R. J. et al. (2009). "Human embryonic stem cells: caught between a ROCK inhibitor 
and a hard place." Bioessays 31(3): 336-343. 

Kuroda, T. et al. (2005). "Octamer and Sox elements are required for transcriptional cis 
regulation of Nanog gene expression." Mol Cell Biol 25(6): 2475-2485. 

Kurosawa, H. (2007). "Methods for inducing embryoid body formation: in vitro 
differentiation system of embryonic stem cells." Journal of bioscience and 
bioengineering 103(5): 389-398. 

Lengner, C. J. et al. (2007). "Oct4 expression is not required for mouse somatic stem cell self-
renewal." Cell Stem Cell 1(4): 403-415. 

Li, L. et al. (2010). "Individual cell movement, asymmetric colony expansion, rho-associated 
kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells." 
Biophys J 98(11): 2442-2451. 

Martin, G. R. (1981). "Isolation of a pluripotent cell line from early mouse embryos cultured 
in medium conditioned by teratocarcinoma stem cells." Proc Natl Acad Sci U S A 
78(12): 7634-7638. 

www.intechopen.com



 
Rho-GTPases in Embryonic Stem Cells 

 

345 

Masui, S. et al. (2007). "Pluripotency governed by Sox2 via regulation of Oct3/4 expression 
in mouse embryonic stem cells." Nat Cell Biol 9(6): 625-635. 

Mintz, B. and K. Illmensee (1975). "Normal genetically mosaic mice produced from 
malignant teratocarcinoma cells." Proc Natl Acad Sci U S A 72(9): 3585-3589. 

Mitsui, K. et al. (2003). "The homeoprotein Nanog is required for maintenance of 
pluripotency in mouse epiblast and ES cells." Cell 113(5): 631-642. 

Morgenstern, J. P. and H. Land (1990). "Advanced mammalian gene transfer: high titre 
retroviral vectors with multiple drug selection markers and a complementary 
helper-free packaging cell line." Nucleic Acids Res 18(12): 3587-3596. 

Murry, C. E. and G. Keller (2008). "Differentiation of embryonic stem cells to clinically 
relevant populations: lessons from embryonic development." Cell 132(4): 661-680. 

Nakagawa, M. et al. (2008). "Generation of induced pluripotent stem cells without Myc from 
mouse and human fibroblasts." Nat Biotechnol 26(1): 101-106. 

Nichols, J. et al. (1998). "Formation of pluripotent stem cells in the mammalian embryo 
depends on the POU transcription factor Oct4." Cell 95(3): 379-391. 

Niwa, H. et al. (1998). "Self-renewal of pluripotent embryonic stem cells is mediated via 
activation of STAT3." Genes Dev 12(13): 2048-2060. 

Ohgushi, M. et al. (2010). "Molecular pathway and cell state responsible for dissociation-
induced apoptosis in human pluripotent stem cells." Cell Stem Cell. 

Olson, M. F. (2008). "Applications for ROCK kinase inhibition." Curr Opin Cell Biol 20(2): 
242-248. 

Pakzad, M. et al. (2010). "Presence of a ROCK inhibitor in extracellular matrix supports more 
undifferentiated growth of feeder-free human embryonic and induced pluripotent 
stem cells upon passaging." Stem Cell Rev 6(1): 96-107. 

Patwari, P. and R. T. Lee (2008). "Mechanical control of tissue morphogenesis." Circ Res 
103(3): 234-243. 

Pierce, G. B. and F. J. Dixon, Jr. (1959). "Testicular teratomas. I. Demonstration of 
teratogenesis by metamorphosis of multipotential cells." Cancer 12(3): 573-583. 

Puceat, M. et al. (2003). "A dual role of the GTPase Rac in cardiac differentiation of stem 
cells." Mol Biol Cell 14(7): 2781-2792. 

Reubinoff, B. E. et al. (2000). "Embryonic stem cell lines from human blastocysts: somatic 
differentiation in vitro." Nat Biotechnol 18(4): 399-404. 

Rizzino, A. (2010). "Stimulating progress in regenerative medicine: improving the cloning 
and recovery of cryopreserved human pluripotent stem cells with ROCK 
inhibitors." Regen Med 5(5): 799-807. 

Rodda, D. J. et al. (2005). "Transcriptional regulation of nanog by OCT4 and SOX2." J Biol 
Chem 280(26): 24731-24737. 

Rosner, M. H. et al. (1990). "A POU-domain transcription factor in early stem cells and germ 
cells of the mammalian embryo." Nature 345(6277): 686-692. 

Rossman, K. L. et al. (2005). "GEF means go: turning on RHO GTPases with guanine 
nucleotide-exchange factors." Nat Rev Mol Cell Biol 6(2): 167-180. 

Scholer, H. R. et al. (1990). "Oct-4: a germline-specific transcription factor mapping to the 
mouse t-complex." Embo J 9(7): 2185-2195. 

Scott, R. W. and M. F. Olson (2007). "LIM kinases: function, regulation and association with 
human disease." J Mol Med 85(6): 555-568. 

www.intechopen.com



 
Embryonic Stem Cells – Basic Biology to Bioengineering  

 

346 

Smith, A. G. et al. (1988). "Inhibition of pluripotential embryonic stem cell differentiation by 
purified polypeptides." Nature 336(6200): 688-690. 

Sugihara, K. et al. (1998). "Rac1 is required for the formation of three germ layers during 
gastrulation." Oncogene 17(26): 3427-3433. 

Takahashi, K. and S. Yamanaka (2006). "Induction of pluripotent stem cells from mouse 
embryonic and adult fibroblast cultures by defined factors." Cell 126(4): 663-676. 

Tashiro, K. et al. (2010). "Adenovirus vector-mediated efficient transduction into human 
embryonic and induced pluripotent stem cells." Cell Reprogram 12(5): 501-507. 

Thomas, K. R. and M. R. Capecchi (1987). "Site-directed mutagenesis by gene targeting in 
mouse embryo-derived stem cells." Cell 51(3): 503-512. 

Thompson, S. et al. (1989). "Germ line transmission and expression of a corrected HPRT 
gene produced by gene targeting in embryonic stem cells." Cell 56(2): 313-321. 

Thomson, J. A. et al. (1998). "Embryonic stem cell lines derived from human blastocysts." 
Science 282(5391): 1145-1147. 

Vallier, L. et al. (2005). "Activin/Nodal and FGF pathways cooperate to maintain 
pluripotency of human embryonic stem cells." J Cell Sci 118(Pt 19): 4495-4509. 

Vega, F. M. et al. (2011). "RhoA and RhoC have distinct roles in migration and invasion by 
acting through different targets." J Cell Biol 193(4): 655-665. 

Watanabe, K. et al. (2007). "A ROCK inhibitor permits survival of dissociated human 
embryonic stem cells." Nat Biotechnol 25(6): 681-686. 

Wickman, G. R. et al. (2010). The Rho-Regulated ROCK Kinases in Cancer. The Rho GTPases 
in Cancer. K. L. van Golen, Springer New York: 163-192. 

Williams, R. L. et al. (1988). "Myeloid leukaemia inhibitory factor maintains the 
developmental potential of embryonic stem cells." Nature 336(6200): 684-687. 

Wobus, A. M. et al. (1991). "Pluripotent mouse embryonic stem cells are able to differentiate 
into cardiomyocytes expressing chronotropic responses to adrenergic and 
cholinergic agents and Ca2+ channel blockers." Differentiation; research in 
biological diversity 48(3): 173-182. 

Wu, X. et al. (2007). "Cdc42 is crucial for the establishment of epithelial polarity during early 
mammalian development." Dev Dyn 236(10): 2767-2778. 

Xu, R. H. et al. (2005). "Basic FGF and suppression of BMP signaling sustain undifferentiated 
proliferation of human ES cells." Nat Methods 2(3): 185-190. 

Xu, Y. et al. (2010). "Revealing a core signaling regulatory mechanism for pluripotent stem 
cell survival and self-renewal by small molecules." Proc Natl Acad Sci U S A 
107(18): 8129-8134. 

Yeom, Y. I. et al. (1996). "Germline regulatory element of Oct-4 specific for the totipotent 
cycle of embryonal cells." Development 122(3): 881-894. 

Yu, J. et al. (2007). "Induced pluripotent stem cell lines derived from human somatic cells." 
Science 318(5858): 1917-1920. 

Yuan, H. et al. (1995). "Developmental-specific activity of the FGF-4 enhancer requires the 
synergistic action of Sox2 and Oct-3." Genes Dev 9(21): 2635-2645. 

 

www.intechopen.com



Embryonic Stem Cells - Basic Biology to Bioengineering

Edited by Prof. Michael Kallos

ISBN 978-953-307-278-4

Hard cover, 478 pages

Publisher InTech

Published online 15, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Embryonic stem cells are one of the key building blocks of the emerging multidisciplinary field of regenerative

medicine, and discoveries and new technology related to embryonic stem cells are being made at an ever

increasing rate. This book provides a snapshot of some of the research occurring across a wide range of

areas related to embryonic stem cells, including new methods, tools and technologies; new understandings

about the molecular biology and pluripotency of these cells; as well as new uses for and sources of embryonic

stem cells. The book will serve as a valuable resource for engineers, scientists, and clinicians as well as

students in a wide range of disciplines.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Michael S. Samuel and Michael F. Olson (2011). Rho-GTPases in Embryonic Stem Cells, Embryonic Stem

Cells - Basic Biology to Bioengineering, Prof. Michael Kallos (Ed.), ISBN: 978-953-307-278-4, InTech, Available

from: http://www.intechopen.com/books/embryonic-stem-cells-basic-biology-to-bioengineering/rho-gtpases-in-

embryonic-stem-cells



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


