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1. Introduction 

Alzheimer's Disease is the most common neurodegenerative dementia of older age. 

Accurate diagnosis of this condition has important prognostic and therapeutic implications. 

In the latter, Amyloid-Beta is thought to be produced in excess and subsequently deposited 

in the brain as plaques, forming the pathological hallmark of Alzheimer's Disease. 

Interestingly, B- and T-lymphocytes have been implicated in the disease processes being 

responsible of Amyloid-Bata1-42 peptide removal and activation of inflammation response. 

Amyloid-Baeta1-42-specific T-cells are present in Alzheimer’s disease but not in other 

neurodegenerative conditions. By using multi-colour flow-cytometry it is possible to analyse 

cytokine production and Phosho-Protein-Kinase C expression of in vitro Amyloid-Beta 1-42 

stimulated T-cells. It has been demonstrated that a subset of Amyloid-Beta1-42-specific T-

cells, characterised by bright expression of Phosphorylated-Protein-Kinase C, distinguishes 

Alzheimer’s Disease from other neurodegenerative conditions. Therefore, such a  new 

marker might provide further prospective to the studies aimed at diagnosis of Alzheimer’s 

disease and its discrimination from other forms of dementia. 

2. T cell activation and lipidic-dependent signal transduction 

T cells recognize antigen (Ag) as a peptide– major histocompatibility complex (MHC) on 

Ag-presenting cells (APC) such as dendritic cells (DC) through direct cell–cell interactions. 

The T cell antigen receptor (TCR) binds to the Ag peptide–MHC complex and  triggers T cell 

activation by recruiting various signaling molecules. Early analysis of the signaling events 

related to T cell activation revealed that some intracellular proteins, such as phospholipase-

C (PLC), are involved (Bunnell et al., 2002). PLC is a member of phosphoinositide family, 

including phosphoinositide lipids within cellular membranes and soluble inositol 

phosphates (Ips). In most stimulatory cells, the plasma membrane phosphoinositide, 

phosphatidylinositol(4,5)bisphosphate (PIP2) is a key precursor for both other 

phosphoinositides and soluble IPs. Many of these regulate distinct and overlapping 
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downstream effectors (Irvine & Schell, 2001; Alcazar-Roman & Wente, 2008; Resnick & 

Saiardi, 2008; Sauer et al., 2009; Shears, 2009; Sauer & Cooke, 2010). In particular, class I 

phosphoinositide 3-kinases (PI3K) phosphorylate PIP2 at the 3-position of its inositol-ring 

into phosphatidylinositol(3,4,5)trisphosphate (PIP3) after receptor stimulation 

(Vanhaesebroeck et al., 2005; Juntilla & Koretzky, 2008; Fruman & Bismuth, 2009). Receptor-

induced PIP2-hydrolysis by phospholipases such as PLCg1/2 in lymphocytes generates the 

lipid diacylglycerol (DAG) and the soluble IP inositol(1,4,5)trisphosphate (IP3). PIP3, DAG, 

and IP3 have essential second messenger functions in many cells, including lymphocytes. It 

is now evident the importance of phosphoinositide signaling in T cells and highlight the 

importance of a recently identified, intriguing molecular interplay between second 

messenger lipids and their soluble IP counterparts. All phosphoinositides contain a 

hydrophobic membrane-embedded diacylglyceride and a hydrophilic solvent-exposed IP 

moiety. The inositol ring hydroxyl groups can be stereo-specifically phosphorylated by 

phosphoinositidekinases. Most phosphatidylinositol-bisphosphate in the plasma membrane 

of unstimulated cells is phosphorylated at the inositol 4- and 5-positions. PIP2 is an 

important second messenger, recruiting and regulating multiple signaling proteins 

(McLaughlin et al., 2002). Due to the constitutive PIP2 availability in resting cells, these 

PIP2-associated proteins likely maintain signaling pathways in a preactivation state (Han et 

al., 1998; Ang et al., 2007; Ceccarelli et al., 2007). Despite the importance of PIP2, much 

greater attention has been given to the products of PIP2 phosphorylation or PIP2 hydrolysis 

that are induced following receptor activation. PIP2 phosphorylation is mediated by PI3Ks. 

PI3Ks phosphorylate phosphatidylinositol (PI) into PIP and PIP2. PI3Ks are activated by 

most stimulatory receptors on lymphocytes including T- and B-cell antigen receptors (TCR, 

BCR), and co-stimulatory, Toll-like, and cytokine receptors (Vanhaesebroeck et al., 2005; 

Buitenhuis & Coffer 2009; Fruman & Bismuth 2009) and have important roles in T cell 

development and function (Sasaki et al., 2000; Okkenhaug et al., 2002; Okkenhaug et al., 

2006; Patton et al., 2006; Swat et al., 2006; Alcazar et al., 2007; Matheu et al., 2007; Liu et al., 

2009a; Liu & Uzonna, 2010; Soond et al., 2010). Taken together, immunoreceptor-induced 

PIP3 gneration is important for lymphocyte proliferation and differentiation (Juntilla & 

Koretzky, 2008; Buitenhuis & Coffer, 2009; Fruman & Bismuth, 2009). PIP3 mediates the 

cellular effects of PI3K activation by recruiting effector proteins binding to PIP3 (Haslam et 

al., 1993; Mayer et al., 1993), such as Akt (Protein kinase B) and Tec protein kinase families 

(August et al., 1997; Heyeck et al., 1997; Stokoe et al., 1997). In addition, Akt can also bind to 

PI(3,4)P2 (Cozier et al., 2004; James et al., 1996; Lemmon, 2008). Akt is particularly important 

during early T cell development (Juntilla et al., 2007; Juntilla & Koretzky, 2008). PIP2 is a 

substrate for another immunologically important enzyme, phosphatidylinositol-specific 

phospholipase-Cg (PLCg). PLCg hydrolyzes PIP2 into its hydrophobic and hydrophilic 

components, the membrane-lipid DAG and soluble IP3. Both are second messengers that 

regulate proteins through specific binding domains. The two mammalian PLCg isoforms, 

PLCg1 and 2, have partially overlapping expression patterns and functions (Wilde & 

Watson, 2001). T cells exclusively express PLCg1. T cell-specific PLCg1-deletion impaired 

thymocyte positive and negative selection, T regulatory cell development and function, 

TCR-induced peripheral T cell proliferation and cytokine production. Defective TCR 

activation of the MAP kinases Erk and Jnk, and of the transcription factors NFAT, AP-1, and 

NF-kB indicates the broad importance of PLCg1 in TCR signaling through several 
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pathways. Autoimmune disease symptoms show the physiological importance of PLCg1 in 

T cells (Fu et al., 2010). Severe blocks in T cell development and late onset autoimmunity in 

mice expressing a PLCg1-binding-deficient LAT allele indicate the importance of LAT 

interactions for PLCg1 function (Sommers et al., 2002; Sommers et al., 2005). Finally, severe 

defects in early hematopoiesis in chimeric mice generated with PLCg1-deficient embryonic 

stem cells suggest important PLCg1 functions in hematopoietic stem or progenitor cells 

(Shirane et al., 2001). In contrast, PLCg2-deficient mice are viable with specific defects in B 

cells, mast cells, dendritic cells, osteoclasts, and neutrophils (Wang et al., 2000; Graham et 

al., 2007; Cremasco et al., 2008; Epple et al., 2008; Cremasco et al., 2010).  The membrane 

second messenger, DAG, propagates signals via membrane recruitment of cytosolic 

signaling proteins by binding to their C1 domains, cysteine-rich domains of approximately 

50 amino acids. Several well-characterized DAG-effector families include Ras guanine-

nucleotide-exchangefactors/releasing proteins (RasGRPs), protein kinase C-related kinases 

(PKCs, PKD), chimaerin Rho/Rac-GTPase-activating proteins (Yang and Kazanietz, 2007), 

Munc13 proteins (Betz et al., 1998), and diacylglycerol kinases (DGKs). 

3. Protein Kinase C (PKC) and T cells 

Noticeable, among different proteins participating to the lipidic-dependent signal 
transduction, is the role of PKCs involved in TCR activation. PKCs are a family of 
serine/threonine protein kinases involved in different lipidic-dependent signal transduction 
events. PKCs were identified, for the first time, by Nishizuka and colleagues in 1977. To 
date, different PKC isoenzymes have been described in several tissues and with differential 
cellular localizations (Saito and Shirai 2002). PKCs can be grouped into three categories 
according to the presence of motifs dictating cofactor requirements for their optimal 
catalytic activity. Whereas conventional [cPKCs: alpha, beta I-II (spliced variants) and 
gamma] and novel [nPKCs: delta, epsilon, ni and theta] PKCs bind DAG which stimulates 
kinase catalytic activity, atypical [aPKCs: zeta, iota/lambda] PKCs do not interact with 
DAG. cPKCs but not nPKCs also require for their activation Ca2+.  
Each PKC contains a highly homologous C-terminal catalytic domain and an N-terminal 

regulatory domain, which mediates cofactor binding and substrate accessibility. PKCs also are 

characterised by the presence of a DAG/phorbol-ester-binding C1 domain, defined by the 

presence of two repeated cysteine-rich zinc-finger motifs (C1A and C1B); it is functional in 

cPKCs and nPKCs, but not in aPKCs. The C2 domain mediates Ca2+ binding in cPKCs but 

differences in key residues abolish this function in nPKCs. aPKCs have single modified C1 

domains. C3 and C4 domains are ATP- and substrate-binding lobes of the kinase core. The 

auto-inhibitory pseudosubstrate sequence (PS) present in the regulatory domain of all PKC 

isoenzymes interacts directly with the substrate-binding cavity in the catalytic domain, thereby 

sterically blocking access of substrates to the active site. The activation of signal transduction 

pathways, involving PKCs, leads to the hydrolysis of PIP2, and consequently to the formation 

of DAG and IP3. DAG binds to the PKC C1 domain; PKCs are activated by phosphorilation 

and can finally phosphorylate protein substrates. PKCs demonstrated broad substrate 

specificity in vitro related to several functions in vivo. Distinct roles of different PKC isoforms 

can be, at least in part, attributed to differences in their structures and to the different 

mechanisms modulating their activation (Figure 1). These different PKC roles are also evident 

in the context of intracellular immune cell signalling (Tan and Parker 2003).  
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Fig. 1. PKC structure  

The role of PKC in regulating T cell activation has been well characterised. The nPKC 

member PKC-theta which expression is largely restricted to T cells co-localised with the 

TCR was originally identified to play an important role in TCR-induced T cell activation 

(Baier 2003) (Isakov and Altman 2002). PKC-theta has also been involved in cell signalling 

events triggered by TCR engagement both in vitro in cell models and in vivo in knockout 

mice (Baier-Bitterlich, Uberall et al. 1996); (Lin, O'Mahony et al. 2000); (Bauer, Krumbock et 

al. 2000); (Sun, Arendt et al. 2000) (Pfeifhofer, Kofler et al. 2003). In particular PKC-theta 

mediates activation of the transcription factor activator protein-1 (AP-1) and of the nuclear 

factor κB (NF-κB) in response to TCR/CD28 co-stimulation in several T cell models (Baier-

Bitterlich, Uberall et al. 1996); (Lin, O'Mahony et al. 2000); (Bauer, Krumbock et al. 2000). It 

has been demonstrated that PKC-theta activation could also be linked to nuclear factor of 

activated T cells (NFAT) signaling (Pfeifhofer, Kofler et al. 2003) (Figure 2). Beside the well-

recognized role of PKC-theta for T cell receptor activation, other PKC isoforms seem to be 

involved in T cell signalling in an alternative or cooperative fashion.  

Among others, PKC-alpha has been suggested to play a potential role in thymocyte 
developmen. PKC-delta has been reported to be possibly involved in T cell migration 
(Volkov, Long et al. 1998). Self-reactive B-cells normally undergo either clonal deletion or 
tolerance to self-antigens (B-cell anergy), which is essential for the prevention of 
autoimmune disease. The physiological role of PKC-delta, the closest related PKC member 
to PKC-theta, in the control of B-cell tolerance has recently been uncovered by 
characterization of PKC-delta-knockout mice generated independently by two laboratories 
(Miyamoto et al., 2002; Mecklenbrauker et al., 2002). Loss of PKC-delta in mice leads to 
significant splenomegaly and lymphadenopathy because of increased numbers of peripheral 
B-cells, although no noteworthy abnormalities are observed in T cells (Miyamoto et al., 
2002). The mice die prematurely due to severe autoimmune disease, which is characterized 
by the detection of autoreactive antibodies, indicates that PKC-delta is essential for the 
prevention of autoimmune disease. Furthermore, PKC-delta deficiency prevents B-cell 
anergy, allowing maturation and differentiation of self-reactive B-cells, attributed to a defect 
in nuclear factor κB (NF-κB) activation, at least as judged by inefficient IκB degradation in 
the cytoplasm (Mecklenbrauker et al., 2002). Although the above studies suggest that PKC-
delta is involved in negative regulation of proliferation, there is no consensus on the 
mechanism. Mecklenbrauker et al. reported that the B-cells from PKC-delta-deficient mice 
have normal responses to antigenic stimulation and thereby concluded that PKC-delta −/− 
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B-cells have a specific defect in the induction of anergy. In contrast, Miyamoto et al. showed 
that the proliferation of B-cells from PKC-delta −/− mice was increased in response to 
several mitogenic stimuli, suggesting a generalized enhancement of signalling events. 
Whereas NF-κB activation remained unaffected, increased production of the growth-
promoting cytokine IL-6, as well as the DNA-binding activity of the nuclear factor IL-6 
(NFIL-6) transcription factor, was detected in the PKC-delta −/− B-cells, suggesting PKC-
delta might negatively regulate B-cell growth through transcriptional regulation of the IL-6 
gene.  
Intriguingly, PKC-zeta has also been implicated in the T cell-dependent immune response 

(Duran, Diaz-Meco et al. 2003); (Savkovic, Koutsouris et al. 2003). Targeted disruption of the 

PKC-zeta gene in mice indicates that the role of this aPKC within the immune system is also 

specific to B-cell function (Martin et al., 2000). B-cells from PKC-zeta-deficient mice showed 

increased spontaneous apoptosis, and impaired proliferation and survival in response to 

IgM cross-linking, whereas both peripheral T cells and thymocytes seemed to develop and 

proliferate normally. The defective survival of B-cells in these mice correlated with defects 

in the activation of extracellular-signalregulated kinase (ERK) (but not p38 MAPK or JNK) 

and the transcription of NF-κB-dependent genes, including Bcl-xL, IκB and IL-6. 

Furthermore, transcription of these NF-κB-dependent genes, but not NF-κB nuclear 

translocation, was inhibited in B-cells stimulated with IgM. PKC-zeta-null mice were unable 

to mount an optimal T cell-dependent immune response, in spite of the fact that, as adults, 

they exhibited no major defects in the subpopulations of B-cells, indicating that this is a 

post-B-cell maturation phenomenon. Although the possibility of a PKC cascade involving 

both PKC-beta and PKC-zeta has not been excluded, recent findings showed that PKC-zeta 

can regulate NF-κB via an IKK-independent pathway, by directly phosphorylating Ser311 of 

the pHealy et al., 1998 subunit (RelA) (Duran et al., 2003; Savkovic et al., 2003). 

Therefore, modulation of the expression and phosphorylation of different PKC isoforms 

might play critical independent or complementary roles in the context of the better known 

PKC-theta-driven T cell signalling in different normal and pathological conditions. As far as 

AD is concerned, while a body of literature refers to a possible involvement of PKC 

signalling in brain and skin tissues of these patients (Alkon, Sun et al. 2007), scarce or no 

knowledge is available about the behaviour of the above reported PKCs in peripheral T cells 

from AD patients. Recently, it was reported  that flow cytometric assessment of well defined 

bright P-PKC-delta and P-PKC-zeta T cell subpopulations (probably CD4+ T cells) after 

specific Abeta1–42 stimulation in the majority of AD patients, may refer to the development 

of T cell subpopulations reactive to Abeta1–42 and concomitantly expressing high levels of 

phosphorylated PKC-delta and PKC-zeta (Miscia, Ciccocioppo et al. 2009). 

4. Inflammation and T cells in Alzheimer’s disease  

Normal  aging in humans brings a progressive loss in memory and is often exacerbated by 
diseases such as Alzheimer’s disease (AD). Although many underlying processes have been 
invoked, one common ground that links many factors associated with cognitive aging is 
neuroinflammation. Markers of inflammation are associated directly with deficits in 
cognitive function and with diseases that are risk factors for cognitive decline (Gemma C, 
2010). Amelioration of brain inflammation with various treatments has beneficial actions on 
several indicators of impaired cognitive aging. Understanding how neuroinflammation 
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affects cognition may provide directions for useful interventions to prevent or treat an 
aberrant cognitive decline in older adults. 
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Fig. 2. Signal transduction pathways involving PKC in T (a) and B (b) cells 
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However, to better understand inflammation's role in disease, it is necessary to recognise 
that inflammation is a protective response of our body that occurs in response to an insult. 
In the case of infection, the immune system is activated to identify the foreign agent and 
neutralize it. This involves a series of events and requires the recruitment of a variety of 
immune cells. Throughout most of the body, cells known as macrophages, search for 
invaders, and then engulf and neutralizing them. The recognition of infectious non-self is 
mediated by a limited number of germline-encoded pattern-recognition receptors (PRRs), 
which trigger rapid responses. In the brain, supporting cells of the glial family comprise of 
astrocytes and microglia. Microglial cells, act as scavengers and are considered “the CNS 
professional macrophages”. Microglia are myeloid lineage cells expressing a wide range of 
PRRs and for this reason they embody the innate immune response of the brain, as they 
provide the first line of defense whenever there is an injury. They engulf and eliminate dead 
neurons that have been damaged by injury or illness. However, they also secrete harmful 
neurotoxins and toxic oxygen free radicals in an attempt to neutralize foreign or undesirable 
substances. Unfortunately, sometimes the injurious event overwhelms the protective effect 
and inflammation may become self-perpetuating. This is the case of normal aging, but it is 
much more rampant in neurodegenerative diseases such as Alzheimer's, Parkinson's, which 
are characterized by exacerbated microglial activity. To date, the neurotoxic and 
neuroprotective roles of innate immune reactions in brain injury, ischemia, autoimmune and 
neurodegenerative disorders of the CNS, altogether solicits an intensively investigated and 
debated scientific research issue. However, despite considerable work in this area, much 
more points remain to be elucidated, notably cellular events regarding the early 
dysregulating events that activate brain inflammatory pathways. If it will be possible to 
target and harness these inflammatory processes toward therapeutic application, then 
cognition could be protected during aging and disease by early intervention against the 
negative consequences of inflammation. 
It is now clear that inflammation plays an important pathogenethic role in Alzheimer’s 
disease (AD). At onset of pathology, the inflammatory changes are probably linked to 
misfolding and the consequent accumulation of Amyloid beta (Abeta) peptide in the limbic 
and associative cortices of AD brains (Rogers, Webster et al. 1996); (McGeer and McGeer 
1999; McGeer and McGeer 1999; McGeer and McGeer 2002). Many studies have 
demonstrated that such inflammation arises mainly from cellular (glial) sources within the 
central nervous system (CNS) rather than from external sources such as T cells. However, 
recent studies have suggested that systemic T cells, and in particular CD4+ T cells, can be 
recruited to the CNS to modify potential destructive local inflammation (Schwartz and 
Shechter 2010). As a consequence of increased damage to the blood–brain barrier (BBB) or in 
response to inflammatory signals T cells might more commonly cross the BBB and 
accumulate in AD brains (Rogers, Luber-Narod et al. 1988); (Togo, Akiyama et al. 2002). It 
remains to be determined whether brain penetration of T cells is involved in the 
etiopathogenesis of AD, or if it is simply an epiphenomenon.  

5. Peripheral T cell responses in Alzheimer’s Disease  

In humans, naïve T cells typically express CD45RA on the surface. When naïve T cells 
encounter their antigen they become activated and a CD45 isoform switching from RA to 
RO occurs consequently (Dutton, Bradley et al. 1998). This isoform switching can thus be 
taken as a marker of human T cell “memory” (Figura 3).  
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Fig. 3. Cell surface antigens on naïve and memory subsets 

It has been demonstrated that CD45RO expression was increased in T cells from AD patients 
compared to controls, when isolated T cells were placed in culture (Lombardi, Garcia et al. 
1999). Interestingly, Togo et al. reported the presence of CD45RO+ T cells in brains of AD 
patients (Togo, Akiyama et al. 2002). These findings demonstrated that T cells are indeed 
activated at some point during the clinical progression of AD. In an attempt to address this 
question, Lombardi et al. (Lombardi, Garcia et al. 1999) found an increase in CD4+ T cells 
and CD25+ T-regulatory cells in the AD group compared to healthy controls. Additional 
evidence of systemic T cell activation in AD comes from studies designed to measure Abeta 
auto-antibodies or Abeta-reactive T cells in AD patients and controls. Although antibody 
production is a B cell-dependent process, the response is supported by activated T cells. At 
least three studies to date found increased levels of circulating Abeta auto-antibodies in 
patients clinically diagnosed with dementia compared to non-demented controls (Nath, Hall 
et al. 2003) (Gruden, Davudova et al. 2004) (Mruthinti, Buccafusco et al. 2004). Using various 
peptides and specific assay systems to stimulate peripheral T cells from AD patients, it was 
also demonstrated that T cells specific for the fragment 1-42 of the Abeta peptide (Abeta1-
42) can be detected in peripheral blood (Monsonego, Zota et al. 2003). More recently, by 
applying a slightly modified system than the one used by Monsonego et al (2003), an 
increased T cell reactivity to Abeta1–42 peptide in peripheral blood from AD patients 
respect to control subjects was seen (Miscia, Ciccocioppo et al. 2009).  

6. T cell subsets in AD pathogenesis and diagnosis 

In vitro studies have shown that IFN-gamma-treated microglia are efficient antigen-
presenting cells (APCs) presenting Abeta and triggering Abeta-reactive T cell proliferation. 
Th1 Abeta-reactive cells become apoptotic after such stimulation, whereas Th2 cells 
stimulated by Abeta express the cardinal Th2 cytokines (Monsonego, Zota et al. 2003). It has 
been suggested that Th2-type Abeta-reactive T cells could be beneficial in AD by secreting 
cytokines which downregulate the proinflammatory environment. To date, the diagnosis of 
AD is based on neuropsychological examination using criteria such as insidious onset and 
progressive impairment of memory, as well as loss of other cognitive functions. The 
presence of plaques and tangles assessed after post mortem examination of brain tissue has 
been considered a strong marker for AD diagnosis (Hof 1997). Early inflammatory 

CD45RA+ 
CD45RO- 

CD45RA- 
CD45RO+ 

Naïve Memory 

www.intechopen.com



The Clinical Spectrum of Alzheimer’s Disease  
– The Charge Toward Comprehensive Diagnostic and Therapeutic Strategies 

 

252 

processes, identified at AD onset, suggest that specific inflammatory biomarkers in the 
peripheral blood, such as increased levels of TNFalpha, CD40L and other pro-inflammatory 
cytokines might support the diagnosis (Akiyama, Barger et al. 2000; Speciale, Calabrese et al. 
2007;     Schwartz and Shechter 2010). A definitive role of biomarkers in clinical practice has 
not been unequivocally accepted. As a novel approach to identify specific AD biomarkers, it 
could be hypothesised that peripheral immune changes could be a suitable and specific AD 
biomarker. Several reports showed the existence of Abeta1-42-responding T cells in the 
peripheral blood of AD patients (Monsonego, Zota et al. 2003; Miscia, Ciccocioppo et al. 
2009). The up-regulation of some PKC isoforms in T cells from AD patients has also been 
shown (Ciccocioppo, Lanuti et al. 2008; Miscia, Ciccocioppo et al. 2009). It could be observed 
that circulating T cells expressing high levels of P-PKC-delta and P-PKC-zeta after Abeta1-
42-specific stimulation are present in AD patients. By applying a multicolour flow cytometry 
method, an association between some activation marker production, such as IL-2, 
INFgamma, TNFalpha and CD40L and up-regulation of P-PKC-delta and P-PKC-zeta levels 
following Abeta1-42 stimulation was found in peripheral blood from AD patients but not in 
healthy subjects. This suggests that T cells expressing bright levels of P-PKC-delta and P-
PKC-zeta are Abeta1-42-specific, even if further characterisation of these T cells, in terms of 
phenotype and memory compartment, has to be addressed in future studies. 

7. Discrimating AD from other forms of dementia: possible biomarkers? 

After AD, Dementia with Lewy bodies (DLB) is the second most frequent cause of 
neurodegenerative dementia in the aged population. Neuropathologically, DLB is 
characterised by an accumulation of inclusion bodies (Lewy bodies) consisting of aggregated 
alpha-synuclein (Francis 2009). It is generally recognised that the clinical differentiation 
between AD and DLB is at best difficult (Geser, Wenning et al. 2005; McKeith, O'Brien et al. 
2007). Thus, the identification of biomarkers would facilitate the differential diagnosis of AD 
and DLB. Even though Abeta deposition is identified in DLB brain (Town, Tan et al. 2005), 
there is no Abeta-triggered inflammatory activity in DLB. It could be postulated that Abeta1-
42-specific T cells, expressing bright levels of P-PKC-delta and P-PKC-zeta are absent in DLB. 
In addition, preliminary experiments were carried out on some patients affected by two other 
different forms of amyloidopathies, used as controls: inclusion body myositis (IBM; n = 3) and 
cerebral Amyloid angiopathy (CAA; n = 5) patients. IBM is a rare, chronic and slowly 
progressing inflammatory myopathy, characterised by T cell invasion of muscle fibres 
(Askanas and Engel 2002). In IBM the peripheral accumulation of Abeta1-42 plays a critical 
role in skeletal muscle degeneration (Kitazawa, Green et al. 2006). CAA is instead 
characterised by predominant deposition of the Abeta1-40 fragment in cerebral blood vessels 
(Preston, Steart et al. 2003) and it is generally not associated with inflammation. P-PKC-delta 
and P-PKC-zeta bright T cell subsets were detectable in all IBM patients, while patients with 
CAA, mainly expressing the fragment Abeta1-40, do not show a similar T cell activation. These 
data indicate that Abeta1–42 does not induce P-PKC bright subpopulation in T cells from non-
AD, neurodegenerative diseases. 

8. Conclusion 

All thoghether these hypotheses could demontrate that in AD patients, CD4+ Abeta1-42-

specific T cells expressing high levels of P-PKC-delta and P-PKC-zeta could represent a 
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peripheral footprint of an Abeta1-42-mediated inflammation in the brain, related to protein 

deposition observed in AD. The presence of Abeta1-42-specific T cells, expressing bright 

levels of P-PKC-delta and P-PKC-zeta, might support clinical diagnosis of AD versus other 

forms of dementia.  
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