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1. Introduction  

Single photon emission computed tomography (SPECT) and positron emission tomography 
(PET) are functional nuclear medicine techniques which allow for accurate non-invasive in 
vivo measurements of a wide range of regional tissue functions in man. Brain functional 
imaging with SPECT and PET is based on the recording of the distribution of administered 
radionuclides in three dimensions, thus producing maps of brain biochemical and 
physiological processes. SPECT and PET techniques are able to image brain perfusion and 
metabolism, as well as various neurotransmission or other cellular processes using specific 
radioligands which mark in vivo receptors, transporters or enzymes. 
Brain SPECT and PET imaging - or molecular imaging -, has been applied to the study of 
Alzheimer’s disease (AD) for over two decades. These functional neuroimaging approaches 
have the capability of identifying subtle pathophysiologic changes in the brain before 
structural changes are present (Xu et al., 2000). Therefore they possess greater potential for 
accurate and early diagnosis, monitoring disease progression, and better treatment follow-
up. Furthermore, the application of SPECT and PET techniques to the study of AD has led to 
increased understanding of the underlying pathology and the disease processes and 
improved the differential diagnosis from other neurodegenerative causes of dementia.  

2. Clinical applications of SPECT and PET molecular imaging in AD  

2.1 Radiopharmaceuticals for SPECT and PET brain imaging 
Brain SPECT and PET imaging is performed using radiopharmaceuticals which utilize the 
highly selective properties of Blood Brain Barrier (BBB). The intact BBB has been a 
significant limitation whenever a nuclear imaging technique is employed to study the 
function of the living human brain since it may impede brain uptake of radiotracers (Jolliet 
Riant & Tillement, 1999). The main factors which regulate passage across the BBB are ionic 
selectivity and lipid solubility of substances (Costa, 2004). Osmotic pressure and specific and 
non-specific binding to plasma proteins, cell membranes and other components present in 
the bloodstream, may also affect the permeability of BBB and brain uptake of the 
administered radiopharmaceuticals (Tanaka & Mizojiri, 1999). In the absence of radiotracer 
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binding to these metabolic (biological) barriers, free diffusion of lipophilic small neutral 
compounds occurs directly through the endothelial cells of BBB (Waterhouse, 2003). 

2.1.1 Properties and mechanisms of brain uptake 
Radiopharmaceuticals used for brain perfusion SPECT imaging are lipophilic and neutral 
compounds with limited protein binding, which penetrate freely the intact BBB by simple 
diffusion (Costa, 2004). They distribute in proportion to regional cerebral blood flow (rCBF) 
and remain trapped in neuronal tissue without redistribution for a suitable amount of time 
to permit SPECT imaging.  
Brain perfusion SPECT radiopharmaceuticals are labeled with 99mTechnecium (99mTc) 
which has excellent physical characteristics for imaging purposes and dosimetry and it is 
always available at a low cost.  
99mTc-bicisate (ECD) and 99mTc-exametazime (HMPAO) are the most common 
radiopharmaceuticals used in routine clinical practice (Kung et al., 2003). They are both 
lipophilic and neutral tracer agents with suitable characteristics to pass the BBB by passive 
diffusion.  99mTc-bicisate (ECD) is retained in brain tissue after being hydrolysed to ionized 
non-diffusible metabolites by interaction with esterases in brain cells (Walovitch et al., 1994), 
while 99mTc- HMPAO is converted to one or more polar species by an assumed interaction 
with glutathione (Jacquier-Sarlin et al., 1996).  
The PET radiopharmaceuticals are labeled with isotopes of elements that naturally occur in 
the various substrates (Newberg & Alavi, 2003). The most common radioisotopes used for 
labeling are 18F and 11C. 18F labeled compounds have the advantage over 11C labeled 
compounds of the longer half life of 18F (110 min versus 20 min) which allows longer 
imaging protocols. The advantage of 11C labeling is that, theoretically, any organic molecule 
could be labeled by isotopic substitution of 11C for natural carbon, retaining the full 
properties of the parent molecule (Pimlott, 2005). 
The most common application of PET in AD is the study of regional cerebral glucose 
metabolism (rCGM) and to a lesser extent the measurements of regional cerebral blood flow 
(rCBF) and oxygen metabolism, with the use of radiotracer concentrations in the picomolar 
range which rarely exerts any pharmacological or toxicological effect (Gee, 2003).  
The radiofluorinated analogue 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) is used for brain 
glucose metabolism studies. 18F-FDG is transported into the brain cells by facilitated 
diffusion, then phosphorylated to FDG-6-PO4 and trapped intracellularly where it can be 
measured, without further metabolism (Newberg & Alavi, 2003). [15O] H2O and 15O2 are 
used for the measurement of rCBF and oxygen metabolism, respectively.  
SPECT and PET receptor imaging radioligands are neutral and lipophilic compounds with 
high plasma clearance and low plasma protein binding, and the ability to pass the intact 
BBB by simple diffusion, while regional cerebral distribution reflect receptor density 
(Pimlott, 2005). Furthermore they perform high affinity and specificity and/or selectivity for 
the specific receptor of interest over other receptors, limited or measurable metabolism, low 
toxicity and good in-vitro stability (Wong & Pomper, 2003).  
Although 99mTc has so far been incorporated in most SPECT imaging studies, a general 
problem with 99mTc complexes is the low brain uptake due to the large molecular weight of 
linking moieties required to radiolabel compounds with 99mTc (Johannsen & Pietzsch, 2002). 
The incorporation of the much smaller radioiodine into a radiotracer can increase brain 
uptake and currently most of the research studies on SPECT neuroreceptor brain imaging 
are performed using agents labeled with 123I (Pimlott, 2005). 
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2.2 Imaging of brain perfusion and glucose metabolism in AD 
A substantial number of rCBF and rCGM studies with SPECT and PET have been 
performed in AD patients as well as in other neurodegenerative disorders. These studies 
have demonstrated characteristic patterns of perfusion and metabolism abnormalities which 
distinguish AD from other types of dementia and supported the use of SPECT and PET 
imaging as biomarkers of AD for the detection of the underlying changes of perfusion and 
metabolism and monitoring disease progression and response to treatment. In general, there 
is a concordance between brain perfusion and metabolism deficits, exhibited on SPECT and 
PET studies, respectively.  
Brain perfusion SPECT imaging in AD patients typically shows bilateral hypoperfusion of 
the parietal and posterior temporal lobes (Ichimyia, 1998; Ishii et al., 1996; Lojkowska et al., 
2002). The perfusion deficits are frequently symmetric but not necessarily of the same 
magnitude and severity. Motor and sensory cortices are usually spared. Hypoperfusion of 
the posterior association cortices is a finding that some authors consider specific for AD and 
positive evidence for its diagnosis, although other conditions may display a similar pattern 
(Hirao et al., 2006). Prospective studies with histological confirmation in demented patients 
and control cases have shown that the sensitivity and specificity of rCBF SPECT imaging for 
the differentiation of patients with AD from control subjects is 89% and 80%, respectively 
(Jobst et al., 1998). With progression of the disease, hypoperfusion spreads from the 
posterior to the anterior temporal and frontal lobes (Fig. 1) (Brown et al., 1996). 
The pattern and degree of hypoperfusion have been correlated in many studies with the 
onset, the severity, the clinical features and the prognosis of the disease, although with 
contradictable results in several cases. Temporoparietal hypoperfusion has been shown to 
be more severe in early-onset than in late-onset AD (Weinstein et al., 1991). Late onset 
patients tend to present with the characteristic involvement of the medial temporal lobes 
producing marked memory loss whereas early onset patients present with predominant 
posterior cortical association area involvement (Kemp et al., 2003). The Mini Mental 
Examination scores in AD patients correlate with the rCBF in temporal and parietal regions 
(Rodriguez et al., 1999). Moreover, specific clinical symptoms that AD patients may present 
are associated with perfusion abnormalities in discrete cortical areas. The right middle 
medial temporal region emerged as an important neural correlate of aggression (Lanctôt et 
al., 2004); depressive symptoms were associated with relative hypoperfusion in the 
prefrontal cortex (Levy-Cooperman et al., 2008); a significant association was also found 
between anosognosia and decreased perfusion in the orbitofrontal cortex (Shibata et al., 
2008); hypoperfusion in the inferior, medial and orbital frontal lobes as well as the anterior 
cingulate gyri were found to be associated with the lack of awareness in patients with early 
AD (Hanyu et al., 2008); apathetic AD patients performed hypoperfusion in the left anterior 
cingulate and right orbitofrontal cortex (Lanctôt et al., 2007); hypoperfusion in prefrontal 
cortex, anterior cingulate gyri, inferior to middle temporal cortices, and parietal cortex of the 
right hemisphere has been observed in AD patients with delusions (Nakano et al., 2006); 
finally, hypoperfusion in the left anterior cingulate and left orbitofrontal cortices, and 
relative sparing of perfusion in the right anterior cingulate, right orbitofrontal and left 
middle mesial temporal cortices emerged as predictors of appetite loss in AD patients 
(Ismail et al., 2008). Decreased blood flow in the frontal lobe of AD patients is correlated not 
only with reduced cognitive function at the time of the evaluation but with rapid 
progression in the subsequent clinical course, as well (Nishimura et al., 2007). 
Hypoperfusion in the left temporal region has been associated with lowering of the median 
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survival and higher death rates (Claus et al., 1999), though perfusion in the right parietal 
lobe has also found to be a significant predictor of survival in patients with AD (Jagust et al., 
1998).  
 

 

Fig. 1. Brain perfusion SPECT study in a patient with Alzheimer’s disease. Reduced 99mTc-
HMPAO uptake in parietal, temporal and frontal lobes. Hypoperfusion is more severe on 
the left hemisphere. 

FDG PET studies in AD patients have demonstrated a typical pattern of reduced 
temporoparietal FDG uptake with sparing of the basal ganglia, thalamus and cerebellum 
(Coleman, 2005). Hypometabolism begins typically in the superior parietal cortex, then 
spreads inferiorly and anteriorly to involve the inferior parietal, superior temporal, and 
prefrontal cortices. The extent of hypometabolism correlates with the severity of cognitive 
impairment and often shows right/left hemispheric asymmetry (Haxby et al., 1990). More 
recent studies using higher resolution PET scanning have reported marked hypometabolism 
of the hippocampal head and amygdala in AD (Stein et al., 1998).  
FDG PET demonstrated high sensitivity and specificity (94% and 73%, respectively) for 
detecting the presence of AD in histopathologically confirmed demented patients. In 
contrast, clinical evaluation without FDG PET showed lower sensitivity and specificity 
(83%–85% and 50%–55%, respectively), as determined by an entire series of evaluations 
repeated over a period of years (Silverman et al., 2002). Even early in the disease process, 
before the appearance of volume loss, FDG PET has been helpful in diagnosing AD, with a 
sensitivity and specificity of about 90%, irrespective of the degree of cognitive impairment 
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(Hoffman et al., 2000). It is the neuroimaging technique that has been shown to yield the 
highest prognostic value for providing a diagnosis of presymptomatic AD 2 years or more 
before the full dementia picture is manifested (Silverman et al. 2001). Thus, PET is able to 
measure cognitive decline at some of the earliest possible stages, providing evidence of its 
usefulness for early AD detection. 
SPECT and FDG PET studies have also been applied in patients with mild cognitive 

impairment (MCI) in order to predict progression from MCI to AD. Reduced glucose 

metabolism in the inferior parietal cortex and hypoperfusion in the parahippocampus, 

lateral parietal and posterior cingulate in converters as compared with non-converters have 

been reported (Ishiwata et al., 2006; Mosconi et al., 2004). Longitudinal FDG PET and 

perfusion SPECT studies have shown that hypometabolism in the parietal association areas 

and hypoperfusion in the bilateral inferior parietal areas, angular gyrus and the precunei 

had a high predictive value and discriminative ability of converters and non-converters, 

while hypometabolism in the posterior cingulate gyrus had a lower predictive value 

(Chetelat et al., 2003; Hirao et al., 2005). Combined baseline memory deficits and rCBF 

SPECT images identified pre-clinical AD with a sensitivity and specificity of 77.8% (Borroni 

et al., 2006). These SPECT and PET findings suggest that initial functional neuroimaging 

studies of individuals with MCI may be useful in predicting who will convert to AD in the 

near future. 

2.3 Beta amyloid imaging 
In the last years, the detection of senile plaques (SPs) and neurofibrillary tangles (NFTs) has 

been a target for nuclear molecular imaging in the field of AD. The development of 

radiotracers able to localize SPs and NFTs could be useful not only in the diagnosis of AD 

but also in the investigation of the temporal relationship between amyloid deposition, 

neuronal loss, and cognitive decline and assessment of the effects of drugs in disease 

progression. Also, these radiotracers could provide treatment for AD patients early in the 

course of the disease when response to treatment is usually better. 

The development of plaque-binding compounds started with monoclonal antibodies against 

beta-amyloid (Aβ) and self-associating Aβ fragments, and was followed by analogues of 

histopathological dyes such as Congo Red, Chrysamine G, and Thioflavin T, which are used 

to stain SPs and NFTs in postmortem AD brain sections (Valotassiou et al., 2010; Villemagne 

et al., 2005). Recently, malononitrile analogues, which share the same binding site on Aβ 

peptides with the nonsteroidal anti-inflammatory drugs (NSAIDs), have been developed as 

potential tracers for Aβ  imaging (Agdeppa et al., 2001, 2003a;  Shoghi-Jadid et al., 2002). 

2.3.1 Radiolabeled antibodies 
Several radiolabeled anti-Αβ antibodies and self- associating Αβ amyloid fragments have 

been developed for potential in vivo SPECT amyloid imaging in AD. 99mTc-10H3, 111Indium 

(111In) AMY33 and 10D5 (Bickel et al., 1994; L.C. Walker et al., 1994) although gave 

promising results in vitro, however, they didn’t meet success for in vivo studies mainly due 

to poor BBB penetration. Despite the efforts that have been made to modify the structure of 

antibodies and to develop different drug delivery methods suitable for brain studies in vivo, 

significant problems still constrain the potential application of these probes in human 

subjects.  
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2.3.2 Radiolabeled derivatives of histopathological dyes 
The first chemically modified neutral thioflavin derivatives were labelled with I-123 in an 

effort to develop radioiodinated tracers for SPECT imaging of Aβ plaques. Radioiodinated 

TZDM, TZPI, IBOX and IMPY showed good Aβ plaque binding in vitro but low brain 

uptake in vivo since they lack sufficient hydrophobicity for diffusion through the BBB, 

except IMPY which exhibited more promising binding properties (Ono et al., 2002; Zhuang 

et al., 2001). [11C]-SB-13, a radiolabeled Congo Red derivative, (Verhoeff et al., 2004) has 

been recently evaluated in AD patients and healthy control subjects. [11C]-SB-13 showed 

increased retention in the frontal and posterior temporal-inferior parietal association cortices 

in the AD patients, but not in the comparison subjects. 

Another radiolabeled benzothiazole aniline (BTA) analogue [N-methyl-11C]-2-(4’-

methylaminophenyl)-6-hydroxylbenzothiazole ([11C]6-OH-BTA-1), which is a neutral 

derivative of thioflavin T, has been studied extensively, in both preclinical and clinical 

studies (Klunk et al., 2001; Mathis et al., 2002). It was named “Pittsburgh Compound-B’ or 

PIB and exhibited high affinity for aggregated amyloid but not for NFTs (Ye et al., 2005), 

and reasonable lipophilicities for crossing the BBB. In AD patients, the distribution pattern 

of 11C-PIB is characterized by significantly great uptake in the frontal, temporal, parietal, 

and occipital cortices and the striatum but low entry into the cerebellum and subcortical 

white matter (Nordberg, 2008). The retention of PIB in cortical AD brain regions was found 

to be inversely related to the rCGM as measured by FDG PET in the same brain regions. 11C-

PIB uptake did not show significant correlation with the degree of cognitive impairment. 

Similar PIB retention was observed in both AD patients and controls in areas with low Αβ 

amyloid deposition (Klunk et al., 2004). Elevated 11C-PIB uptake was also observed in 

dementia with lewy bodies and about 50% of mild cognitive impairment subjects, compared 

to healthy controls (Morris & Price, 2001). Interestingly, about 25% of the healthy controls 

demonstrated cortical binding of 11C-PIB, predominantly in the prefrontal cortex, a finding 

which supports the in vitro observations that Aβ aggregation predominantly occurs before 

onset of dementia. 18F-flutemetamol (or 18F-GE067), a fluorolabeled structural thioflavin 

analogue of PIB, was developed recently. The spatial distribution of 18F-flutemetamol uptake 

in AD resembles closely the distribution typically seen with 11C-PIB binding (Nelissen et al., 

2009). High 18F-flutemetamol uptake was observed in striatum while the uptake in medial 

temporal cortex, one of the areas of predilection for neurofibrillary tangles in AD, was 

relatively low. Furthermore, the retention of the radioligand was similar in AD patients and 

healthy controls in brain regions known to be relatively unaffected by amyloid deposition. 

2.3.3 Radiolabeled malononitrile analogues 
Newer radioligands such as the radiofluorinated [18F]FDDNP and [18F]FENE, which are 
analogues of the 2-{1-[6-(dimethylamino)-2-naphthyl]ethylidene} malononitrile (DDNP), 
have been used to label not only SPs but also NFTs for the first time in the living brain of 
AD patients with PET (Agdeppa et al., 2003b). FDDNP and NSAIDs share a previously 
unrecognized common binding site on Aβ (1-40) fibrils and senile plaques and also exhibit 
anti-aggregation effects on Aβ peptides.  
The PET imaging data showed increased retention of [18F]FDDNP in the hippocampus, 
amygdale, entorhinal and temporal lobe regions of the brain, which are consistent with 
areas known to develop SPs and NFTs. The findings were associated with hypometabolism, 
as measured with FDG PET, and atrophy, as observed with MRI, in the same brain areas 
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and correlated with lower memory performance scores (Agdeppa et al., 2001; Shoghi-Jadid 
et al., 2002). [18F]FDDNP provides a disease-specific, in vivo imaging tool for localization 
and loading of AD-related lesions, which in turn, could aid in early diagnosis of AD in 
combination with other diagnostic tests (Agdeppa et al., 2003a). Indeed, [18F]FDDNP has 
greater sensitivity at early stages of AD, before clinical evidence of cognitive decline.  
Moreover, [18F]FDDNP-PET may contribute in the elucidation of the relation between 
possible neuroprotective NSAIDs and Aβ aggregates. The shared binding site on Aβ fibrils 
and plaques may be a site of anti-aggregation drug action (e.g., naproxen and ibuprofen). 
Naproxen, ibuprofen and even FDDNP significantly inhibit aggregation of the Aβ (1-40) 
peptide in the micromolar range (Agdeppa et al., 2003b). Therefore, [18F]FDDNP-PET could 
be used in determining the occupancy rate of NSAIDs and experimental drugs in plaques in 
the living brain of AD patients, thus offering new opportunities for early diagnosis, 
prevention and treatment of AD. 

2.3.4 Flavonoids 
Flavonoids and their derivatives (chalcones and aurones) have been proved to have anti-
oxidant effect due to matrix metalloproteinases (MMP) inhibitory activity (Calliste et al., 
2001), as well as anti-inflammatory and neuroprotective properties by modulating 
microglia-related immune responses in the brain (Rezai-Zadeh et al., 2008). Radioiodinated 
flavones have also been used in experimental studies as possible amyloid imaging probes. 
They displayed high brain penetration, high brain uptake, fast washout from the brain and 
good binding affinity not only on Aβ1-40 aggregates but on Aβ1-42 aggregates as well. 
Moreover, they showed high binding affinity for NFTs, too (Ono et al., 2005, 2007). 

2.4 Imaging of the acetylcholine system 
PET and SPECT can evaluate noninvasively the acetylcholine system in the human brain 
with the use of appropriate radiotracers, in order to detect impairments even at the 
presymptomatic stage of AD as well as monitoring treatment outcomes of the drugs that 
enhance acetylcholine activity in AD.  
The available radiotracers target various elements and processes involved with cholinergic 
neurotransmission and function. These include the study of acetylcholine receptors and 
acetylcholine neuronal integrity.  
Radioligands have been developed to measure both nicotinic and muscarinic receptors. 11C-
labeled nicotine (Nordberg et al., 1991) as well as epibatidine and azetidine derivatives 
labeled with 11C or 18F were used to visualize and quantify nicotinic receptors in the brain. 
Although epibatidine demonstrated high affinity and specificity for nicotinic receptors, 
unfortunately is very toxic, which may preclude its use in humans (Villemagne et al., 1997). 
Nevertheless, epibatidine and azetidine analogs didn’t meet clinical application (Sihver et 
al., 1999). Early in the course of AD, PET studies revealed a reduced 11C-nicotine uptake to 
nicotinic receptors in frontal and temporal cortex and in the hippocampus in comparison 
with that of age-matched healthy control subjects (Volkow et al., 2001).  
Several radiotracers have been developed for mapping muscarinic receptors. For the most 
part these radiotracers are limited by the lack of selectivity for the muscarinic receptor 
subtypes (M1–M4), except for [18F]FP-TZTP, which appears to bind predominantly to M2 
receptors (Carson et al., 1998). 
For the study of acetylcholine neuronal integrity, radioigands have been developed to 
measure both the activity of acetylcholinesterase and the acetylcholine vesicular transporter.  
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The activity of acetylcholinesterase can be measured with PET either using radiolabeled 
acetylcholine analogues that serve as substrates for acetylcholinesterase and hydrolyze to a 
hydrophilic product that is trapped in the cell or using radioligands that directly bind to 
acetylcholinesterase (Kuhl et al., 1999; Pappata et al., 1996). Radiolabeled acetylcholine 
analogues N-methyl-3-piperydyl-acetate [MP3A], N-methylpiperidin- 4-yl-acetate [MP4A], 
and N-methylpiperidin-4-yl-propionate [PMP] have been used for this purpose. PET studies 
in patients with AD demonstrated a widespread reduction of acetylcholinesterase activity in 
the cerebral cortex. In normal aging no changes were observed. Additionally, the early loss 
of cholinergic transmission in the cortex could be shown with these tracers, which precedes 
the loss of cholinergic neurons in the nucleus basalis of Meynert (Herholz et al., 2004). 
Several radioligands that target the acetylcholine vesicular transporter have been labelled 
but only (2)-5 [123I]iodobenzovesamicol (123I-IBVM) has been used in SPECT studies to image 
the living human brain (Kuhl et al., 1994). 123I-IBVM is an analogue of vesamicol that binds 
to the acetylcholine vesicular transporter. Cortical binding of 123I-IBVM in normal subjects 
was found to decline only mildly with age (3.7% per decade), but it was markedly reduced 
in AD patients. The reductions predicted dementia severity while the binding levels were 
also determined by the age of disease onset (Kuhl et al., 1996). Patients with an early onset 
demonstrated reductions throughout the cortex and hippocampus, whereas patients with 
late onset had reductions only in the temporal cortex and hippocampus. This finding may 
reflect the greater cholinergic loss in early- rather than in late-onset AD (Rossor et al., 1984). 

2.5 Imaging of neuroinflammation 
The process of neurodegeneration in AD is associated with activation of resting microglial 
cells and local glial responses. Peripheral benzodiazepine receptors are the mediators of 
central nervous system inflammation. Radiolabelled isoquinoline ([11C]R-PK11195) has been 
used in PET studies as an indicator of microglia activation in AD. [11C](R)-PK11195 is a 
ligand for the peripheral benzodiazepine receptors which binds to the outer mitochondrial 
membrane of activated, but not resting, microglia (Banati, 2002). PET studies in AD patients 
demonstrated increased [11C](R)-PK11195 uptake in the temporal cortex (particularly the 
fusiform, the parahippocampal and the inferior temporal gyri), the inferior parietal cortex, 
the posterior cingulate and the amygdala (Cagnin et al., 2002). These areas with high 
[11C](R)-PK11195 uptake subsequently underwent the most marked atrophic changes within 
the following year as shown by a longitudinal serial volumetric MRI scan. This suggests that 
an in vivo measure of activated microglia provides an indirect index of disease activity. 
123I-PK11195, a SPECT ligand for the peripheral benzodiazepine receptors, has been recently 
studied in AD patients. Significantly increased uptake was found in the frontal and right 
mesotemporal regions which correlated with cognitive deficits (Versijpt  et al., 2003). 

2.6 Imaging of the serotonergic system 
Several SPECT and PET studies have investigated the implication of serotonin (5HT) in the 
modulation of cognitive and behaviorial/neuropsychiatric disturbances of 
neurodegenerative dementias (Meltzer et al., 1998). Post-synaptic 5HT2A receptors and pre- 
and post-synaptic 5HT1A receptors have been studied in vivo in AD.  
PET studies with 18F-setoperone, a 5HT2A receptor antagonist, demonstrated reduced 
parietal, temporal, frontal and occipital cortical binding in untreated moderate-severe AD 
patients (Blin et al., 1993), while reduced 18F-altanserin binding were also observed in mild-
moderate AD in the anterior cingulate, prefontal, temporal, and sensorimotor cortices 

www.intechopen.com



 
The Clinical Use of SPECT and PET Molecular Imaging in Alzheimer’s Disease 

 

189 

(Meltzer et al., 1999). No correlation was found between cortical 18F-altanserin binding and 
MMSE scores. Pre- and post-synaptic 5HT1A receptors studies with 18F-MPPF have shown 
decreased binding in the hippocampus and the raphe nucleus of AD patients (Kepe et al., 
2006). 

2.7 Differential diagnosis 
2.7.1 Differential diagnosis of AD from dementia with lewy bodies 
The discrimination of AD from dementia with lewy bodies (DLB) is difficult since these 
disorders share common scintigraphic findings. Temporoparietal hypoperfusion and 
hypometabolism on SPECT and FDG PET studies is common to both AD and DLB 
(Minoshima et al., 2001; Pasquier et al., 2002), although subtle differences in perfusion and 
metabolism patterns have been reported (Colloby et al., 2002), with a relative preservation of 
medial temporal lobe structures and rCBF in DLB and more extended biparietal 
hypoperfusion in DLB compared to AD patients.  
The differential diagnosis of AD from DLB is based on the greater degree of occipital 
hypoperfusion or hypometabolism in DLB than in AD. The reported sensitivity and 
specificity for the accuracy of discriminating AD from DLB on the basis of the finding of 
hypoperfusion and hypometabolism in the occipital cortex ranged between 65-90% and 80-
87%, respectively (Lobotesis et al., 2001; Minoshima et al., 2001). 
Post mortem brain studies have shown that the presynaptic dopaminergic terminals in the 

putamen of DLB patients show a 57% reduction compared to controls. This reduction in 

dopaminergic terminals leads to loss of the presynaptic dopamine transporter system (DAT) 

(Piggott et al., 1999). If one considers the DAT a surrogate marker of dopaminergic 

nigrostriatal neurons, imaging of the DAT sites with a specific marker, will be able to 

identify nigrostriatal dopaminergic degeneration in DLB patients during life. [123I]-ioflupane 

is a cocaine analogue that binds specifically to the DAT in the membrane of the presynaptic 

dopaminergic neurones. SPECT studies with [123I]-ioflupane in DLB patients demonstrated 

reduction of the presynaptic tracer uptake in the striata of both hemispheres, which was 

clearly more marked in the putamen than caudate nucleus and linked to significant loss of 

DAT (Z. Walker et al., 2002). This finding enabled the clear differentiation from AD that 

showed the striatal uptake to be within the normal range. Separation between DLB and AD 

based on [123I]-ioflupane SPECT imaging is achieved with sensitivity, specificity, and 

positive predictive value of 78%, 94%, and 90%, respectively (O’Brien et al., 2004). 

Recently, an alternative scintigraphic method - cardiac uptake of 123I-

metaiodobenzylguanidine (MIBG) - for differentiating AD from DLB was reported. 

Markedly decreased cardiac uptake was observed in DLB because of cardiac sympathetic 

denervation (Tateno et al., 2008). Thereafter, the combination of perfusion and [123I]-

ioflupane SPECT and MIBG scintigraphy could increase the accuracy of clinical diagnosis of 

DLB. 

2.7.2 Differential diagnosis of AD from vascular dementia 
The pattern of hypoperfusion and hypometabolism on brain perfusion SPECT and FDG PET 
studies in vascular dementia (VaD) varies greatly and depends on the location of the 
ischemic lesions (Mori et al., 1999). In the multi-infarct type of VaD, the pattern of perfusion 
and metabolism is characterized by small or large, single or multiple cortical defects 
randomly distributed. Motor and sensory cortices may also be involved (DeReuck et al., 
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1998). In demented patients with white matter lesions, hypoperfusion and hypometabolism 
are seen mainly in frontal, posterior frontal and anterior temporoparietal cortical regions 
due to disruption of cortico-cortical connections. In VaD patients with subcortical lesions 
alone, without cortical lesions on CT, remote cortical metabolism and perfusion defects on 
intact cortical and subcortical structures are seen, due to disconnection or diaschisis of 
cortico-subcortical pathways (Kwan et al., 1999).  
The great overlapping of hypoperfusion and hypometabolism patterns between AD and 
VaD, which some times reflect the presence of mixed dementia too, may complicate the 
interpretation of SPECT and PET images, making the differential diagnosis of AD and VaD 
difficult. In such cases the administration of acetazolamide has been proved to be a useful 
tool in the evaluation of vascular reserve capacity (Tikofsky & Hellman, 1991) and can 
contribute significantly in the differential diagnosis. Acetazolamide is a carbonic anhydrase 
inhibitor which increases the local pCO2 in the brain tissue leading to arteriolar dilatation 
and local increase of rCBF. In AD, vascular reserve capacity is preserved and the 
administration of acetazolamide results in increased rCBF in the hypoperfused areas seen on 
SPECT perfusion study. In VaD, acetazolamide fails to increase rCBF in areas with vascular 
lesions where the vascular reserve capacity is impaired (Pavics et al., 1999). 

2.7.3 Differential diagnosis of AD from frontotemporal lobar degeneration  
In patients with frontotemporal lobar degeneration (FTLD), PET and SPECT studies 
revealed the preferential involvement of the frontotemporal regions (Jeong et al., 2005; 
McNeill et al., 2007). More specifically, these studies demonstrated an extensive decrease of 
glucose metabolism and perfusion in the frontal and temporal areas, cingulate gyri, uncus, 
and insula, and subcortical areas, including the basal ganglia and medial thalamic regions 
(Fig. 2).  
The widespread abnormalities observed in FTLD patients may reflect the cumulative 
findings of the specific variants of FTLD i.e. the frontal or behavioural variant (bvFTD) and 
the temporal variants of semantic dementia (SD) and progressive non fluent aphasia 
(PNFA). FDG PET and perfusion SPECT studies in patients with PNFA and SD showed 
hypometabolism and hypoperfusion in the left hemisphere including the temporal, parietal 
and middle frontal lobe, whereas in bvFTD patients prominent frontal lobes deficits have 
been demonstrated (Perneczky et al., 2007; Sinnatamby et al., 1996).  
PIB PET studies could potentially aid in differentiating between FTLD and AD patients. 
FTLD patients showed significantly lower PIB retention compared to AD in frontal, parietal, 
temporal, and occipital cortices as well as in putamen. The PIB uptake in these FTLD 
patients did not differ significantly from the healthy controls in any region (Engler et al., 
2008). 

2.7.4 Differential diagnosis of AD from other dementias 
In Creutzfeldt-Jakob encephalopathy, brain perfusion and metabolism studies have revealed 
various degrees of focal or diffuse hypoperfusion and hypometabolism, which correlated 
with the severity of the disease, while the use of [11C]-L deuterodeprenyl (DED) -a tracer to 
assess astrocytosis- showed parallel increases in DED uptake indicating astrocytosis (Engler 
et al., 2003). Use of iomazemil SPECT to bind with benzodiazepine receptors in a case of 
Creutzfeldt–Jakob disease has been described with reduced uptake in later stages 
suggesting neuronal degeneration (Itoh et al., 1998). 
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Fig. 2. Brain perfusion SPECT study in a patient with Frontotemporal lobar degeneration. 
Reduced 99mTc-HMPAO uptake is observed in frontotemporal cortical areas, more marked 
in the frontal lobes.  

In acute immunodeficiency syndrome (AIDS) dementia, brain perfusion SPECT and FDG 

PET images demonstrated randomly distributed multiple focal cortical and subcortical 

deficits of perfusion and metabolism with a predilection for the basal ganglia. These 

perfusion and metabolism abnormalities may be present even when patients are 

asymptomatic and correlate better with cognitive improvement after therapy than do 

structural images (Kim et al., 1996; Tatsch et al., 1990). 

Demented patients with Parkinson’s disease or other parkinsonian syndromes such as 

corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and multiple system 

atrophy (MSA) may present overlapping perfusion and metabolism templates with AD 

patients. Demented patients with Parkinson’s disease and AD share a common pattern of 

marked posterior hypoperfusion involving the parietal, temporal, and occipital lobes, as 

well as hypoperfusion in the dorsolateral prefrontal cortex (Eckert et al., 2005; Spampinato 

et al., 1991). In PSP, glucose metabolism and perfusion was decreased in the midbrain and 

medial frontal cortex (Eckert et al., 2005; Okuda et al., 2000). Relative hypometabolism and 

hypoperfusion in the basal ganglia and fronto-parietal cortex contralateral to the most 

affected side was a characteristic finding in CBD (Eckert et al., 2005; Hossain et al., 2003). 

MSA patients exhibited a pattern characterized by marked bilateral reductions of perfusion 

and metabolism in the lentiform nuclei, the pons and the cerebellum (Cilia et al., 2005; 

www.intechopen.com



 The Clinical Spectrum of Alzheimer’s Disease  
– The Charge Toward Comprehensive Diagnostic and Therapeutic Strategies 

 

192 

Eckert et al., 2005). Recent neuroreceptor studies have found that decreased striatum uptake 

on the presynaptic DAT SPECT imaging in demented patients with Parkinson’s disease or 

other parkinsonian syndromes, may be a useful marker for the discrimination from AD 

(Hilker et al., 2005; Pirker et al., 2000). 

In symptomatic patients with Huntington’s disease (HD) brain perfusion SPECT imaging 
shows decreased or absent tracer uptake in the caudate nucleus or basal ganglia (Nagel et 
al., 1991). The impairment of basal ganglia may not be permanent and tracer uptake may 
return to normal after therapy with olanzapine (Etchebehere et al. 1999). 

2.8 Assessment of treatment 
Acetylcholinesterase inhibitors have been the most widely used drugs to treat AD. 

Perfusion, metabolism and nicotinic receptors SPECT and PET imaging can be used to 

assess the efficacy of these drugs in inhibiting acetylcholinesterase, to determine the doses 

required to achieve optimal inhibition and identify patients in whom the concentration of 

acetylcholinesterase may be too low for acetylcholinesterase inhibitors to be effective (Kuhl 

et al., 2000). 

Perfusion SPECT studies have shown that treatment with donepezil appeared to reduce the 

decline in rCBF, suggesting a preservation of functional brain activity (Nakano et al., 2001; 

Staff et al., 2000). Increases in rCBF in anterior cingulate, lateral orbitofrontal, dorsolateral 

prefrontal, and temporoparietal areas after short term acetylcholinesterase inhibitor therapy 

was significantly related to behaviors of irritability, disinhibition, and euphoria (Ceravolo et 

al., 2004; Nakano et al., 2001). These data suggest that cognitive or behavioral benefits after 

cholinesterase inhibitor therapy are related to clear increases in rCBF in crucial areas 

specifically involved in the attention and limbic networks.  

Increases in rCBF in AD patients have also been reported after acute and fairly short periods 
of treatment with other cholinesterase inhibitors such as tacrine and velnacrine, and with 
the acetylcholine releaser linopirdine (van Dyck et al., 1997). Tacrine treatment increased 
cerebral blood flow, cerebral glucose metabolism, and uptake of 11C-nicotine to the brain 
paralleled by improvement in neuropsychological performance. Though the effects of 
tacrine on nicotine receptors occurred early in the course of treatment (3 weeks), those in 
metabolism were observed only after months of treatment (Nordberg et al., 1998). Tacrine 
increased binding of 11C-nicotine in the temporal cortex of AD patients was interpreted as 
reflecting a restoration of nicotinic receptors (Nordberg et al., 1997). These results are in 
agreement with preclinical data showing that cholinergic stimulation leads to upregulation 
of nicotinic receptors (Svensson & Nordberg, 1996).  
Acetylcholinesterase inhibitors can be labeled with positron emitters without changing their 
pharmacologic properties. This would allow for the investigation of their regional 
distribution and pharmacokinetics in the human brain. Studies that have assess the effects of 
these drugs at their molecular target show the relationship between doses of a drug and 
percent occupancy of receptors or transporters, or percent of enzyme inhibition. This can be 
achieved either by using the radiolabeled drug itself, if it has a good specific-to-nonspecific 
binding ratio, or by using a radioligand that binds to the same site as the drug (Traykov et 
al., 1999). This same strategy can be applied to measure the receptor occupancies achieved 
by nicotinic or muscarinic drugs at doses that improve cognitive or behavioral function 
(Ding et al., 2000). Equivalent studies can also be done to assess the efficacy of cholinesterase 
inhibitors in inhibiting acetylcholinesterase (Pappata et al., 1996). Acetylcholine-enhancing 
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drugs that have been labelled with positron emitters include nicotine, tacrine, and 
physostigmine.  

2.9 Genetic risk for AD and PET 
Subtle changes in brain function may occur prior to overt manifestations of the disease in 
genetically at-risk individuals. The combination of functional brain imaging with genetic 
risk factors may enhance the ability to detect differences predictive of disease development 
prior to onset and assist in the potential for increasing the efficacy of therapeutic treatments 
(Reiman et al., 2001). FDG PET studies in asymptomatic apolipoprotein ε4 allele (APOE e4) 
carriers demonstrated a decline of metabolism in the left posterior cingulated, inferior 
parietal, and lateral temporal regions (Kennedy et al., 1995; Small et al., 2000). Likewise, 
perfusion SPECT studies in asymptomatic presenilin-1 mutation subjects demonstrated 
reduced perfusion in the hippocampal complex, anterior and posterior cingulate, posterior 
parietal lobe, and anterior frontal lobe (Johnson et al., 2001). 

3. Conclusion 

The application of SPECT and PET techniques to the study of AD patients has elucidated the 
in vivo understanding of the underlying pathology of the disease. The variety of the 
available radiotracers has rendered SPECT and PET objective biomarkers for monitoring of 
biochemical processes altered by neuronal loss. Nuclear molecular imaging of changes in 
brain Aβ deposition, perfusion, metabolism and neurotransmitter turnover, as well as 
alterations in receptor, transporter or enzyme concentrations can provide unique 
information not attainable by other methods. The noninvasive PET and SPECT imaging   
provided novel ways to improve early and differential diagnosis of AD and monitor the 
disease progression and the effects of symptomatic or disease modifying therapies. 
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