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1. Introduction

We present a simple global asymptotic stability analysis, by using passivity theory for a
class of nonlinear PID regulators for robot manipulators. Nonlinear control structures based
on the classical PID controller, which assure global asymptotic stability of the closed-loop
system, have emerged. Some works that deal with global nonlinear PID regulators based
on Lyapunov theory have been reported by (Arimoto, 1995a), (Kelly, 1998) and (Santibáñez
& Kelly, 1998). Recently, a particular case of the class of nonlinear PID global regulators
originally proposed in (Santibáñez & Kelly, 1998) was presented by (Sun et al., 2009). Few
saturated PID controllers (that is, bounded PID controllers taking into account the actuator
torque constraints) have been reported: for the case of semiglobal asymptotic stability, a
saturated linear PID controller was presented in (Alvarez et al., 2003) and (Alvarez et al.,
2008); for the case of global asymptotic stability, saturated nonlinear PID controllers were
introduced in (Gorez, 1999), (Meza et al., 2005), (Santibáñez et al., 2008). The work introduced
by (Gorez, 1999) was the first bounded PID-like controller in assuring global regulation; the
latter works, introduced in (Meza et al., 2005) and (Santibáñez et al., 2008), also guarantee
global regulation, but with the advantage of a controller structure which is simpler than that
presented in (Gorez, 1999). A local adaptive bounded regulator was presented by (Laib,
2000). Recently a new saturated nonlinear PID regulator for robots has been proposed in
(Santibáñez et al., 2010), the controller structure considers the saturation phenomena of the
control computer, the velocity servo-drivers and the torque constraints of the actuators. The
work in (Orrante et al., 2010) presents a variant of the work presented by (Santibáñez et al.,
2010), where now the controller is composed by a saturated velocity proportional (P) inner
loop, provided by the servo-driver, and a saturated position proportional-integral (PI) outer
loop, supplied by the control computer.
In this chapter we use a passivity based approach to explain the results of global regulation
of a class of nonlinear PID controllers proposed by (Santibáñez & Kelly, 1998), that include
the particular cases reported by (Arimoto, 1995a) and (Kelly, 1998). At the end of the 80’s, it
was established in (Kelly & Ortega, 1988) and (Landau & Horowitz, 1988) that the nonlinear
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2 Will-be-set-by-IN-TECH

dynamics of rigid robots describe a passivity mapping from torque input to velocity output.
This property is know as the passive structure of rigid robots (Ortega & Spong, 1989). The
controller design methodology for robot manipulators introduced by (Takegaki & Arimoto,
1981), also called energy shaping plus damping injection technique, allows to naturally split
the controller tasks into potential energy shaping for stabilization at the desired equilibrium,
and damping injection, to make this equilibrium attractive (Ortega et al., 1995b). As a feature
of this kind of controllers, it can be shown that the passivity property, from a new input
torque to output velocity, is preserved for robots in closed-loop with the energy shaping term
and damping injection term of the controller. Furthermore, considering that corresponding
feedback to the integral action define a passive mapping, then it is possible to use a passivity
theorem of interconnected systems to explain the stability of a class of nonlinear PID global
regulators for robots. The theorem used allows to conclude global asymptotic stability of the
origin of an unforced feedback system, which is composed by the feedback interconnection of
state strictly passive dynamic systems with a passive and zero state observable system.
The objective of this chapter is to present in a simple framework the global asymptotic
stability analysis, by using passivity theory for a class of nonlinear PID regulators for robot
manipulators. The remainder of this chapter is organized as follows: Section 2 summarizes
the dynamics for rigid robots and also recalls some of their important properties. The
rationale behind the energy shaping plus damping injection technique for rigid robots are
given in Section 3. The class of nonlinear PID regulators is given in Section 4. In Section
5 we recall the definition of the passivity concepts for dynamical systems and we present
the passivity theorem useful for asymptotic stability analysis of interconnected systems. In
Section 6 we present a passivity analysis and application of passivity theorem to conclude
global asymptotic stability. An Evaluation in simulation to verify the theoretical results is
presented in Section 7. Finally, our conclusions are shown in Section 8. Throughout this

chapter, the norm of a vector x is defined as ‖x‖ =
√

xT x and that of a matrix A is defined

as the corresponding induced norm ‖A‖ =
√

λM{AT A}. Ln
2 and Ln

2e denote the space of
n–dimensional square integrable functions and its extension, respectively.

2. Robot dynamics

For control design purposes, it is necessary to have a mathematical model that reveals the
dynamical behavior of a system. Robots manipulators are articulated mechanical systems
composed of links connected by joints. Links and joints are usually made as rigid as possible
so as to achieve high precision in robot positioning. The joints are mainly of two types:
revolute and prismatic. Its dynamic model is characterized by nonlinear coupled second-
order differential equations, which describe the temporal interactions of the joint motions in
response to the inertial, centrifugal and Coriolis, gravitational and actuating torques or forces.
The most commonly used equations to model the dynamics of a robot are the Euler-Lagrange
and Newton-Euler formulations. Here we use the Euler - Lagrange formulation. In this section
we consider robot manipulators formed by an open kinematic chain. We assume that all the
links are joined together by revolute joints. In the absence of friction and other disturbances,
the Lagrangian L(q, q̇) of a mechanical system is defined by

L(q, q̇) = K(q, q̇)− U (q),
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Analysis via Passivity Theory of a Class of Nonlinear PID Global Regulators for Robot Manipulators 3

where K(q, q̇) y U (q) represent the kinetic and potential energy of the system respectively.
The equation of motion of Euler - Lagrange for a manipulator of n degrees of freedom are
given by:

d

dt

(
∂L(q, q̇)

∂q̇

)

− ∂L(q, q̇)

∂q
= τ (1)

where τ ∈ IRn is the vector of external generalized forces acting on each joint of robot, q ∈
IRn represents the vector of generalized coordinates of the system, q̇ = d

dt q is the vector of
generalized velocities. In the case of a robot manipulator of n degrees of freedom, kinetic
energy is a quadratic function of the velocity vector q̇ of the form:

K(q, q̇) =
1

2
q̇T M(q)q̇

where M(q) ∈ IRn×n is the manipulator inertia matrix, which is symmetric and positive
definite. The equations of motion of Euler - Lagrange provide the following dynamic model
(Spong et al., 2006):

M(q)q̈ + Ṁ(q)q̇ − 1

2

∂

∂q
(q̇T M(q)q̇) +

∂U (q)
∂q

= τ

or in compact form, the dynamics of a serial n-link rigid robot can be written as:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (2)

where C(q, q̇)q̇ and g(q) are given by:

C(q, q̇)q̇ = Ṁ(q)q̇ − 1

2

∂

∂q
(q̇T M(q)q̇)

g(q) =
∂U (q)

∂q
. (3)

C(q, q̇)q̇ ∈ IRn is the vector of centrifugal and Coriolis forces, and g(q) ∈ IRn is the vector of
gravitational forces or torques obtained as the gradient of the potential energy of robot U (q).
In terms of the state vector [qT q̇T ]T , the robot dynamics given by equation (2) can be written
as:

d

dt

[
q
q̇

]

=

[
q̇

M(q)−1(q)[τ(t)− C(q, q̇)q̇ − g(q)].

]

(4)

2.1 Planar robot of 2 degrees of freedom

The equation of motion of Euler-Lagrange (1) for a robot of n degrees of freedom can be
equivalently written as:

d

dt

(
∂L(q, q̇)

∂q̇i

)

− ∂L(q, q̇)

∂q̇i
= τi i = 1, · · · , n.

In the particular case of a planar robot of n = 2 degrees of freedom rotational joints, consider
the diagram shown in Fig. 1 (Reyes & Kelly, 2001). It is known that the compact form (2) of
the dynamics of a robot for two degrees of freedom with rigid links can be written as:

45Analysis via Passivity Theory 
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4 Will-be-set-by-IN-TECH

[
M11(q) M11(q)
M11(q) M11(q)

] [
q̈1

q̈2

]

+

[
C11(q, q̇) C12(q, q̇)
C21(q, q̇) C22(q, q̇)

] [
q̇1

q̇2

]

+

[
g1(q)
g2(q)

]

=

[
τ1

τ2

]

(5)

Fig. 1. Diagram of the prototype planar robot with 2 degrees of freedom.

The meaning of the parameters of the prototype planar robot is shown in Table 1.

Description notation

Angular displacement of link 1 q1

Angular displacement of link 2 q2

Length link 1 l1
Length link 2 l2

Link (1) center of mass lc1

Link (2) center of mass lc2

Mass link 1 m1

Mass link 2 m2

Inertia link 1 I1

Inertia link 2 I2

Gravity acceleration g

Table 1. Parameters of prototype planar robot with 2 degrees of freedom
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Analysis via Passivity Theory of a Class of Nonlinear PID Global Regulators for Robot Manipulators 5

The elements of the inertia matrix M(q) in terms of the parameters of the robot, are given by

M11(q) = m1l2
c1 + m2

(

l2
1 + l2

c2 + 2l1lc2 cos(q2)
)

+ I1 + I2

M12(q) = m2

(

l2
c2 + l1lc2 cos(q2)

)

+ I2

M21(q) = m2

(

l2
c2 + l1lc2 cos(q2)

)

+ I2

M22(q) = m2l2
c2 + I2.

The matrix elements Cij(q, q̇) (i, j = 1, 2) of centrifugal and Coriolis forces C(q, q̇) are

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2

C12(q, q̇) = −m2l1lc2 sin(q2) (q̇1 + q̇2)

C21(q, q̇) = m2l1lc2 sin(q2)q̇1

C22(q, q̇) = 0.

Finally the elements of the vector of gravitational torques g(q) are given by:

g1(q) = (m1lc1 + m2l1)g sin(q1) + m2lc2g sin(q1 + q2)

g2(q) = m2lc2g sin(q1 + q2).

2.2 Properties of the robot dynamics

Although the equation of motion (2) is complex, it has several fundamental properties which
can be exploited to facilitate the analysis of stability. Three important properties of the robot
dynamics are the following:
Property 1. (Koditschek, 1984) The matrix C(q, q̇) and the time derivative Ṁ(q) of the inertia
matrix satisfy:

q̇T

[
1

2
Ṁ(q)− C(q, q̇)

]

q̇ = 0 ∀ q, q̇ ∈ IRn.

Property 2. (Tomei, 1991) There exists a positive constant kg such that

kg ≥
∥
∥
∥
∥

∂g(q)

∂q

∥
∥
∥
∥

∀ q ∈ IR,

and
‖g(x)− g(y)‖ ≤ kg‖x − y‖ ∀ x, y ∈ IRn.

Property 3. (Passive structure of rigid robots) In relation to the dynamic model (2). The
operator

HR : Ln
2e → Ln

2e

: τ 	→ q̇

is passive (Kelly & Ortega, 1988; Landau & Horowitz, 1988; Ortega & Spong, 1989), i.e.:

∫ T

0
q̇(t)T

τ(t) dt
︸ ︷︷ ︸

applied−energy

= V1(T)− V1(0)
︸ ︷︷ ︸

stored−energy

, (6)

47Analysis via Passivity Theory 
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which can be expressed as
∫ T

0
q̇(t)T

τ(t) dt ≥ −Va(0), (7)

where Va(t) is the total energy of robot plus a suitable constant which is introduced so that
Va(t) is a nonnegative function (Ortega et al., 1995b):

Va(t) =
1

2
q̇(t)T M(q(t))q̇(t) + U (q(t))− ku (8)

being 1
2 q̇T(t)M(q(t))q̇(t) energy kinetic, U (q(t)) the potential energy of robot due to gravity,

y
ku = minq U (q(t)).

3. Energy shaping methodology

Energy is one of the fundamental concepts in control of mechanical systems with multi-
degrees-of-freedom. The action of a controller can be understood in energy terms as a
dynamical system called "actuator" that supplies energies to the controlled system, upon
interconnection, to modify desirably the behavior of the closed-loop (interconnected) system.
This idea has its origin in (Takegaki & Arimoto, 1981) and is later called the "energy-shaping"
approach, which is now known as a basic controller design technique common in control of
mechanical systems. Its systematic interpretation is called "passivity-based control" (Arimoto,
2009).
The main idea of this methodology is to reshape the robot system’s natural energy and inject
damping via velocity feedback, for asymptotic stabilization purposes, such that a regulation
objective is reached . This is achieved by choosing a controller structure such that, first, the
total potential energy function of the closed–loop system due to gravity and the controller
is radially unbounded function in the position error with a unique and global minimum at
zero position error, and second, it injects damping via velocity feedback. The resulting closed
loop system is an autonomous one which has the nice property that zero position error and
zero velocity form always the unique equilibrium point. By using the total energy, i.e., the
kinetic plus total potential energy, as a Lyapunov function, it follows that this equilibrium
is stable. In order to prove that the equilibrium is in fact globally asymptotically stable,
the final key step is to exploit the autonomous nature of the closed loop system to invoke
the Krasovskii–LaSalle’s theorem. This approach has been continued by their colleagues and
several researchers (Arimoto, 1995a; Nijmeijer & Van der Schaft, 1990; Wen & Bayard, 1988),
who have offered extensions and improvements (Ailon & Ortega, 1993; Berghuis & Nijmeijer,
1993b; Kelly, 1993; Ortega et al., 1998) and (Ortega & Garcia-Canseco, 2004; Ortega et al., 2008;
Sepulchre et al., 1997; Vander, 1999).
As a feature of this kind of controllers, it can be shown that the passivity property, from a
new input torque to output velocity, is preserved either for rigid robots or elastic joint robots
in closed loop with the energy shaping term of the controller. The damping injection term,
via velocity feedback or by way of a suitable filtering of position, defines an input, output
or state strictly passive mapping from velocity input to damping output, and asymptotically
stabilizes the desired equilibrium of the closed loop system.
We broach the regulation problem whose goal is to find τ(t) such that

lim
t→∞

q(t) = qd

48 Advances in PID Control
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Analysis via Passivity Theory of a Class of Nonlinear PID Global Regulators for Robot Manipulators 7

where qd ∈ IRn is a vector of constant desired joint displacements. The features of the system
can be enhanced by reshaping its total potential energy. This can be done by constructing a
controller to meet a desired energy function for the closed-loop system, and inject damping,
via velocity feedback, for asymptotic stabilization purposes (Nijmeijer & Van der Schaft, 1990).
To this end, in this section we consider controllers whose control law can be written by

τ =
∂Ua(qd, q̃)

∂q̃
− ∂F (q̇)

∂q̇
(9)

where F (q̇) is some kind of dissipation function from which the damping force can be
derived, an example is the so called Rayleigh dissipative function F (q̇) = 1

2 q̇TKvq̇, where
Kv is the matrix of coefficient of viscous friction, q̃ = qd − q ∈ IRn denotes the joint position
error and Ua(qd, q̃) is some kind of artificial potential energy provided by the controller whose
properties will be established later. The first right hand side term of (9) corresponds to the
energy shaping part and the other one to the damping injection part.
We assume the dissipation function F (q̇) satisfies the following conditions:

∂F (q̇)

∂q̇
= 0 ⇔ q̇ = 0 (10)

q̇T ∂F (q̇)

∂q̇
> 0 ∀ q̇ �= 0. (11)

The closed-loop system equation obtained by substituting the control law (9) into the robot
dynamics (2) leads to

d

dt

[
q̃
q̇

]

= (12)

[ −q̇

M−1[ ∂
∂q̃ {U (qd − q̃) + Ua(qd, q̃)} − ∂F (q̇)

∂q̇ − C(q, q̇)q̇]

]

(13)

where (3) has been used. If the total potential energy UT(qd, q̃) of the closed-loop system,
defined as the sum of the potential energy U (q) due to gravity plus the artificial potential
energy Ua(qd, q̃) introduced by the controller

UT(qd, q̃) = U (qd − q̃) + Ua(qd, q̃), (14)

is radially unbounded in q̃, and q̃ = 0 ∈ IRn is an unique minimum, which is global for

all qd, then the origin
[
q̃T q̇T

]T
= 0 ∈ IR2n of the closed–loop system (13) is global and

asymptotically stable (Takegaki & Arimoto, 1981).

4. A class of nonlinear PID global regulators

4.1 Classical PID regulators

Conventional proportional-integral-derivative PID regulators have been extensively used in
industry due to their design simplicity, inexpensive cost, and effectiveness. Most of the
present industrial robots are controlled through PID regulators (Arimoto, 1995a). The classical
version of the PID regulator can be described by the equation:

τ = Kpq̃ − Kvq̇ + Ki

∫ t

0
q̃(σ) dσ (15)

49Analysis via Passivity Theory 
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where Kp, Kv and Ki are positive definite diagonal n × n matrices, and q̃ = qd − q denotes
the position error vector. Even though the PID controller for robot manipulators has been
very used in industrial robots (Arimoto, 1995a), there still exist open problems, that make
interesting its study. A open problem is the lack of a proof of global asymptotic stability
(Arimoto, 1994). The stability proofs shown until now are only valid in a local sense (Arimoto,
1994; Arimoto et al., 1990; Arimoto & Miyazaki, 1983; Arimoto, 1996; Dorsey, 1991; Kelly,
1995; Kelly et al., 2005; Rocco, 1996; Wen, 1990) or, in the best of the cases, in a semiglobal
sense (Alvarez et al., 2000; Meza et al., 2007). In (Ortega et al., 1995a), a so–called PI2D
controller is introduced, which is based on a PID structure but uses a filter of the position
in order to estimate the velocity of the joints, and adds a term which is the integral of such
an estimate of the velocity (this added term motivates the name PI2D); for this controller,
semiglobal asymptotic stability was proved. To solve the global positioning problem, some
globally asymptotically stable PID–like regulators have also been proposed (Arimoto, 1995a;
Gorez, 1999; Kelly, 1998; Santibáñez & Kelly, 1998), such controllers, however, are nonlinear
versions of the classical linear PID. We propose a new global asymptotic stability analysis, by
using passivity theory for a class of nonlinear PID regulators for robot manipulators. For the
purpose of this chapter, it is convenient to recall the following definition presented in (Kelly,
1998).

Definition 1. F (m, ε, x) with 1 ≥ m > 0, ε > 0 and x ∈ IRn denotes the set of all continuous
differentiable increasing functions sat(x) = [ sat(x1) sat(x2) · · · sat(xn)]T such that

• |x| ≥ | sat(x)| ≥ m |x| ∀ x ∈ IR : |x| < ε

• ε ≥ | sat(x)| ≥ mε ∀ x ∈ IR : |x| ≥ ε

• 1 ≥ d
dx sat(x) ≥ 0 ∀ x ∈ IR

where | · | stands for the absolute value.
♦

For instance, the nonlinear vector function sat(q̃) = [ sat(q̃1) sat(q̃2) · · · sat(q̃n)]T ,
considered in Arimoto (Arimoto, 1995a) whose entries are given by

sat(x) = Sin(x) =

⎧

⎪⎪⎨

⎪⎪⎩

sin(x) if |x| < π/2

1 if x ≥ π/2

−1 if x ≤ −π/2

(16)

belongs to set F (sin(1), 1, x).
♦

4.2 A class of nonlinear PID controllers

The class of nonlinear PID global regulators under study was proposed in (Santibáñez &
Kelly, 1998). The structure is based on the gradient of a C1 artificial potential function Ua(q̃)
satisfying some typical features required by the energy shaping methodology (Takegaki &
Arimoto, 1981). The PID control law can be written by ( see Fig. 2).

τ =
∂Ua(q̃)

∂q̃
− Kvq̇ + Ki

∫ t

0
[α sat(q̃(σ)) + ˙̃q(σ)] dσ (17)

50 Advances in PID Control
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Analysis via Passivity Theory of a Class of Nonlinear PID Global Regulators for Robot Manipulators 9

Fig. 2. Block diagram of nonlinear PID control

where

• Ua(q̃) is a kind of C1 artificial potential energy induced by a part of the controller.

• Kv and Ki are diagonal positive definite n × n matrices

• ˙̃q is the velocity error vector

• sat(q̃) ∈ F (m, ε, q̃),

• α is a small constant, satisfying (Santibáñez & Kelly, 1998)

By defining z as:

z(t) =
∫ t

0
[α sat(q̃(σ)) + ˙̃q(σ)] dσ − K−1

p g(qd), (18)

we can describe the closed-loop system by

d

dt

⎡

⎣

q̃
q̇
z

⎤

⎦ = (19)

⎡

⎢
⎣

−q̇

M(q)−1
[

∇q̃UT(qd, q̃)− Kvq̇ − C(q, q̇)q̇ + Kiz
]

α sat(q̃)− q̇

⎤

⎥
⎦ (20)

which is an autonomous nonlinear differential equation whose origin
[
q̃T q̇T zT

]T
= 0 ∈ IR3n

is the unique equilibrium.

4.3 Some examples

Some examples of this kind of nonlinear PID regulators

τ =
∂Ua(q̃)

∂q̃
− Kvq̇ + Ki

∫ t

0
[α sat(q̃(σ)) + ˙̃q(σ)] dσ (21)

are:

51Analysis via Passivity Theory 
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• (Kelly, 1998) τ = K′
pq̃ − Kvq̇ + K′

i

∫ t
0 sat(q̃(σ)) dσ

where K′
p = Kp + Kpa, Kpa is a diagonal positive definite n × n matrix with λm{Kpa} > kg,

Kp = Ki, K′
i = αKi. This controller has associated an artificial potential energy Ua(q̃) given

by

Ua(q̃) =
1

2
q̃TKpaq̃.

• (Arimoto et al., 1994a) τ = KpaSin[q̃]− Kvq̇ + Ki

∫ t
0 [α sat(q̃(σ)) + ˙̃q(σ)] dσ

where Kpa is a diagonal positive definite n × n matrix whose entries are kpai and sat(q̃) =

Sin[q̃] = [Sin(q̃1) Sin(q̃2) . . . Sin(q̃n)]T with Sin(.) defined in (16).

This controller has associated a C2 artificial potential energy Ua(q̃) given by

Ua(q̃) =
n

∑
=1

kpai[1 − Cos(q̃)],

where

Cos(x) =

⎧

⎨

⎩

cos(x) if |x| < π/2
−x + π/2 if x ≥ π/2
x + π/2 if x ≤ −π/2

• τ = Kpa tanh[q̃]− Kvq̇ + Ki

∫ t
0 [α sat(q̃(σ)) + ˙̃q(σ)] dσ

where Kpa is a diagonal positive definite n × n matrix whose entries are kpai and sat(q̃) =

tanh[q̃] = [tanh(q̃1) tanh(q̃2) . . . tanh(q̃n)]T . This controller has associated a C∞ artificial
potential energy Ua(q̃) given by

Ua(q̃) =
n

∑
i=1

kpai ln[cosh(q̃i)]

• τ = KpaSat[q̃]− Kvq̇ + Ki

∫ t
0 [α sat(q̃(σ)) + ˙̃q(σ)] dσ

where Kpa is a diagonal positive definite n × n matrix whose entries are kpai and sat(q̃)

= Sat[q̃] = [Sat(q̃1) Sat(q̃2) . . . Sat(q̃n)]T . This controller has associated a C1 artificial
potential energy Ua(q̃) given by

Ua(qd, q̃) =
n

∑
i=1

[∫ q̃i

0
kpaiSat(σi; λi) dσi

]

where Sat(x; λ) stands for the well known hard saturation function

Sat(x; λ) =

⎧

⎨

⎩

x if |q̃i| < λ
λ if q̃i ≥ λ
−λ if q̃i ≤ −λ

.

Following the ideas given in (Santibáñez & Kelly, 1995) and (Loria et al., 1997) it is possible
to demonstrate, for all above mentioned regulators, that Ua(q̃) leads to a radially unbounded
virtual total potential function UT(qd, q̃).
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5. Passivity concepts

In this chapter, we consider dynamical systems represented by

ẋ = f (x, u) (22)

y = h(x, u) (23)

where u ∈ IRn, y ∈ IRn, x ∈ IRm, f (0, 0) = 0 and h(0, 0) = 0. Moreover f , h are supposed
sufficiently smooth such that the system is well–defined, i.e., ∀ u ∈ Ln

2e and x(0) ∈ IRm we
have that the solution x(·) is unique and y ∈ Ln

2e.

Definition 2. (Khalil, 2002) The system (22)–(23) is said to be passive if there exists a
continuously differentiable positive semidefinite function V(x) (called the storage function)
such that

uTy ≥ V̇(x) + ǫ‖u‖2 + δ‖y‖2 + ρψ(x) (24)

where ǫ, δ, and ρ are nonnegative constants, and ψ(x) : IRm → IR is a positive definite function
of x. The term ρψ(x) is called the state dissipation rate. Furthermore, the system is said to be

• lossless if (24) is satisfied with equality and ǫ = δ = ρ = 0; that is, uTy = V̇(x)

• input strictly passive if ǫ > 0 and δ = ρ = 0,

• output strictly passive if δ > 0 and ǫ = ρ = 0,

• state strictly passive if ρ > 0 and ǫ = δ = 0,

If more than one of the constants ǫ, δ, ρ are positive we combine names.
�

Now we recall the definition of an observability property of the system (22)–(23).

Definition 3. (Khalil, 2002) The system (22)–(23) is said to be zero state observable if

u(t) ≡ 0 and y(t) ≡ 0 ⇒ x(t) ≡ 0.

Equivalently, no solutions of ẋ = f (x, 0) can stay identically in S = {x ∈ IRm : h(x, 0) = 0},
other than the trivial solution x(t) ≡ 0.

Right a way, we present a theorem that allows to conclude global asymptotic stability for the
origin of an unforced feedback system, which is composed by the feedback interconnection
of a state strictly passive system with a passive system, which is an adaptation of a passivity
theorem useful for asymptotic stability analysis of interconnected system presented in (Khalil,
2002).
Theorem 1. Consider the feedback system of Fig. 3 where H1 and H2 are dynamical systems
of the form

ẋi = f i(xi, ei)

yi = hi(xi, ei)

for i = 1, 2, where f i : IRmi × IRn → IRmi and hi : IRmi × IRn → IRn are supposed sufficiently
smooth such that the system is well–defined. f 1(0, e1) = 0 ⇒ e1 = 0, f 2(0, 0) = 0, y
hi(0, 0) = 0.

53Analysis via Passivity Theory 
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Fig. 3. Feedback connection

The system has the same number of inputs and outputs. Suppose the feedback system has a
well–defined state–space model

ẋ = f (x, u)

y = h(x, u)

where

x =

[
x1

x2

]

, u =

[
u1

u2

]

, y =

[
y1
y2

]

f and h are sufficiently smooth, f (0, 0) = 0, and h(0, 0) = 0. Let H1 be a state strictly passive
system with a positive definite storage function V1(x1) and state dissipation rate ρ1ψ1(x1)
and H2 be a passive and zero state observable system with a positive definite storage function
V2(x2); that is,

eT
1 y1 ≥ V̇1(x1) + ρ1ψ1(x1)

eT
2 y2 ≥ V̇2(x2)

Then the origin x = 0 of
ẋ = f (x, 0) (25)

is asymptotically stable. If V1(x1) and V2(x2) are radially unbounded then the origin of (25)
will be globally asymptotically stable.

Proof. Take u1 = u2 = 0. In this case e1 = −y2 and e2 = y1. Using V(x) = V1(x1) + V2(x2)
as a Lyapunov function candidate for the closed–loop system, we have

V̇(x) = V̇1(x1) + V̇2(x2)

≤ eT
1 y1 − ρ1ψ1(x1) + eT

2 y2

= −ρ1ψ1(x1) ≤ 0,

which shows that the origin of the closed-loop system is stable. To prove asymptotic stability
we use the LaSalle’s invariance principle and the zero state observability of the system H2. It
remains to demonstrate that x = 0 is the largest invariant set in Ω = {x ∈ IRm1+m2 : V̇(x) =

54 Advances in PID Control
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Fig. 4. Passivity structure of rigid robots in closed-loop

0}. To this end, in the search of the largest invariant set, we have that V̇(x) = 0 ⇒ 0 ≤
−ρ1ψ1(x1) ≤ 0 ⇒ −ρ1ψ1(x1) = 0. Besides

ρ1 > 0 ⇒ ψ1(x1) ≡ 0 ⇒ x1 ≡ 0

Now, as x1 ≡ 0 ⇒ ẋ1 = f 1 ≡ 0 and in agreement with the assumption about f 1 in the sense
that f 1(0, e1) = 0 ⇒ e1 = 0, we have e1 ≡ 0 ⇒ y2 ≡ 0. Also x1 ≡ 0, e1 ≡ 0 ⇒ y1 ≡ 0 (owing
to assumption h1(0, 0) = 0). Finally, y1 ≡ 0 ⇒ e2 ≡ 0, and

e2 ≡ 0 and y2 ≡ 0 ⇒ x2 ≡ 0

in agreement with the zero state observability of H2. This shows that the largest invariant set
in Ω is the origin, hence, by using the Krasovskii–LaSalle’s theorem, we conclude asymptotic
stability of the origin of the unforced closed-loop system (25). If V(x) is radially unbounded
then the origin will be globally asymptotically stable.

∇∇∇

6. Analysis via passivity theory

In this section we present our main result: the application of the passivity theorem given in
Section 5, to prove global asymptotic stability of a class of nonlinear PID global regulators
for rigid robots. First, we present two passivity properties of rigid robots in closed-loop with
energy shaping based controllers.
Property 4. Passivity structure of rigid robots in closed-loop with energy shaping based
controllers ( see Fig. 4). The system (2) in closed-loop with

τ =
∂Ua(qd, q̃)

∂q̃
+ τ

′ (26)

is passive, from input torque τ
′ to output velocity q̇, with storage function

V(q̇, q̃) =
1

2
q̇T M(q)q̇ + UT(qd, q̃)

−UT(qd, 0), (27)

55Analysis via Passivity Theory 
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This is,
∫ T

0
q̇(t)T

τ
′ dt ≥ −V(q̇(0), q̃(0)), (28)

where Ua(qd, q̃) is the artificial potential energy introduced by the controller with properties
requested by the energy shaping methodology and UT(qd, q̃) is the total potential energy of
the closed-loop system, which has an unique minimum that is global.
Furthermore the closed-loop system is zero state observable.

Proof. The system (2) in closed-loop with control law (26) is given by

d

dt

[
q̃
q̇

]

= (29)

[ −q̇

M−1(q)
[

∂UT(qd
−q̃)

∂q̃ − C(q, q̇)q̇
]

+
[
M−1(q)τ′]

]

(30)

where (3) and (14) have been used. In virtue of Property 1, the time derivate of the storage
function (27) along the trajectories of the closed-loop system (30) yields

V̇(q̇(t), q̃(t)) = q̇T
τ
′

where integrating from 0 to T, in a direct form we obtain (28), thus, passivity from τ
′ to q̇ has

been proved.
♦

The zero state observability property of the system (30) can be proven, by taking the output
as y = q̇ and the input as u = τ

′, because

q̇ ≡ 0, τ
′ ≡ 0 ⇒ q̃ ≡ 0.

The robot passive structure is preserved in closed-loop with the energy shaping based
controllers, because this kind of controllers also have a passive structure. Passivity is invariant
for passive systems which are interconnected in closed-loop, and the resulting system is also
passive.

♦
Property 5. State strictly passivity of rigid robots in closed-loop with the energy shaping plus
damping injection based regulators (see Fig. 5). The system (2) in closed-loop with

τ =
∂Ua(qd, q̃)

∂q̃
− Kvq̇ + τ

′′ (31)

is state strictly passive, from input torque τ
′′ to output (q̇ − α sat(q̃)), with storage function

V(q̇, q̃) =
1

2
q̇T M(q)q̇ + UT(qd, q̃)

−UT(qd, 0)− α sat(q̃)T M(q)q̇,

(32)

where 1
2 q̇T M(q)q̇ is the kinetic energy, UT(qd, q̃) is the total potential energy of the closed-

loop system, and α sat(q̃)M(q)q̇ is a cross term which depends on position error and velocity,
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Fig. 5. State strictly passivity of rigid robots in closed-loop with energy shaping plus
damping injection based regulator

and α is a small constant (Santibáñez & Kelly, 1998). In this case Kvq̇ is the damping injection
term. The State dissipation rate is given by :

ϕ(q̇, q̃) = q̇TKvq̇ + α ṡat(q̃)M(q)q̇ (33)

−α sat(q̃)C(q̃, q̇)T q̇

−α sat(q̃)Kpq̃ + α sat(q̃)Kv q̇.

Consequently the inner product of the input τ
′′ and the output y = (q̇ − α sat(q̃)) is given by:

(q̇ − α sat(q̃))T
τ
′′ ≥ V̇(q̇, q̃) + ϕ(q̇, q̃), (34)

Proof. The closed-loop system(2) with control law (31) is

d

dt

[
q̃
q̇

]

= (35)

[ −q̇

M−1(q)
[

∂UT(qd
−q̃)

∂q̃ − Kvq̇ − C(q, q̇)q̇
]

+
[
M−1(q)τ′′]

]

(36)

where (3) and (14) have been used. In virtue of property 1, the time derivate of the storage
function (32) along the trajectories of the closed-loop system (36) yields to

V̇(q̇(t), q̃(t)) = (q̇ − α sat(q̃))T
τ
′′ − ϕ(q̇(t), q̃(t)),

from which we get (34), so state strictly passivity from input τ
′′ to output (q̇ − α sat(q̃)) is

proven.
♦

The robot dynamics enclosed loop with the energy shaping plus damping injection based
controllers defines a state strictly passive mapping, from torque input τ

′′ to output y = (q̇ −
α sat(q̃))

yT
τ
′′ ≥ V̇1(q̇(t), q̃(t)) + ϕ(q̇(t), q̃(t)), (37)

where ϕ(q̇, q̃) is called the state dissipation rate given by (33) with a storage function

57Analysis via Passivity Theory 
of a Class of Nonlinear PID Global Regulators for Robot Manipulators

www.intechopen.com



16 Will-be-set-by-IN-TECH

V1(q̃, q̇) =
1

2
q̇T M(q)q̇ + UT(qd, q̃)− UT(qd, 0)

−α sat(q̃)T M(q)q̇, (38)

which is positive definite function and radially unbounded (Santibáñez & Kelly, 1995).
The integral action defines a zero state observable passive mapping with a radially
unbounded and positive definite storage function

V2(z) =
1

2
zTKiz.

By considering the robot dynamics in closed loop with the energy shaping plus damping
injection based control action, in the forward path and the integral action in the feedback path
(see Fig. 6), then, the feedback system satisfies in a direct way the theorem 1 conditions and
we conclude global asymptotic stability of the closed loop system.

Fig. 6. Robot dynamics with Nonlinear PID controller

So we have proved the following:

Proposition 1.
Consider the class of nonlinear PID regulators (17) in closed-loop with robot dynamics (2).
The closed-loop system can be represented by an interconnected system, which satisfies the
following conditions
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• A1. The system in the forward path defines a state strictly passive mapping with a radially
unbounded positive definite storage function.

• A2. The system in the feedback path defines a zero state observable passive mapping with
a radially unbounded positive definite storage function.

Besides, the equilibrium
[
q̃T q̇T zT

]T
= 0 ∈ IR3n of the closed-loop system (20) is globally

asymptotically stable.

7. Simulation results

Computer simulations have been carried out to illustrate the performance of a class of
nonlinear PID global regulators for robot manipulators. A example of this kind of nonlinear
PID regulators is given by (Kelly, 1998)

τ = Kpq̃ − Kvq̇ + Ki

∫ t

0
[α sat(q̃(σ)) + ˙̃q(σ)] dσ (39)

where artificial potential energy is given by Ua(q̃) =
1
2 q̃TKpq̃, hence

∂Ua(q̃)
∂q̃ = Kpq̃.

The manipulator used for simulation is a two revolute joined robot (planar elbow
manipulator), as show in Fig. 1. The meaning of the symbols is listed in Table 2 whose
numerical values have been taken from (Reyes & Kelly, 2001).

Parameters Notation Value Unit

Length link 1 l1 0.45 m

Length link 2 l2 0.45 m

Link (1) center of mass lc1 0.091 m

Link (2) center of mass lc2 0.048 m

Mass link 1 m1 23.902 kg

Mass link 2 m2 3.88 kg

Inertia link 1 I1 1.266 Kg m2/rad

Inertia link 2 I2 0.093 Kg m2/rad

Gravity acceleration g 9.81 m/s2

Table 2. Physical parameters of the prototype planar robot with 2 degrees of freedom

The entries of the dynamics of this two degrees–of–freedom direct–drive robotic arm are given
by (Meza et al., 2007):

M(q)=

[
2.351 + 0.168 cos(q2) 0.102 + 0.084 cos(q2)
0.102 + 0.084 cos(q2) 0.102

]

C(q, q̇)=

[
−0.084 sin(q2)q̇2 −0.084 sin(q2)(q̇1 + q̇2)
0.084 sin(q2)q̇1 0

]

g(q)=9.81

[
3.921 sin(q1) + 0.186 sin(q1 + q2)

0.186 sin(q1 + q2)

]
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The PID tuning method is based on the stability analysis presented in (Santibáñez & Kelly,
1998). The tuning procedure for the PID controller gains can be written as:

λM{Ki} ≥ λm{Ki} > 0

λM{Kv} ≥ λm{Kv} > 0

λM{Kp} ≥ λm{Kp} > kg

where Kp denotes a diagonal positive definite n × n gain matrix resulting of the artificial

potential energy Ua(q̃) = 1
2 q̃TKpq̃ of the controller. The PID tuning requires to compute kg.

Using property 2 and the above expressions of the gravitational torque vector, we obtain that
kg = 80.578 [kg m2/sec2].
The gain was tuned as Kp = diag{130, 81} [Nm/rad], Ki = diag{30, 5} [Nm/rad sec] and
Kv = diag{31, 18} [Nm sec/rad] and α = 1. The maximum torques supplied by the actuators
are τmax

1 = 150 [Nm] and τmax
2 = 15 [Nm]. With the end of supporting the effectiveness

of the proposed controller we have used a squared signal whose amplitude is decreased in
magnitude every two seconds. More specifically, the robot task is coded in the following
desired joint positions

qd1
(t) =

⎧

⎪⎪⎨

⎪⎪⎩

45 degrees if 0 ≤ t < 2 sec
30 degrees if 2 ≤ t < 4 sec
20 degrees if 4 ≤ t < 6 sec

0 degrees if 6 ≤ t < 8 sec

qd2
(t) =

⎧

⎪⎪⎨

⎪⎪⎩

15 degrees if 0 ≤ t < 2 sec
10 degrees if 2 ≤ t < 4 sec

5 degrees if 4 ≤ t < 6 sec
0 degrees if 6 ≤ t < 8 sec

Above position references are piecewise constant and really demand large torques to reach
the amplitude of the respective requested step. In order to evaluate the effectiveness of the
proposed controller. The proposed Nonlinear PID control scheme has been tuned to get their
best performance in the presence of a step input whose amplitude is 45 deg for link 1 and 15
deg for link 2. The simulations results are depicted in Figs. (7)-(10), they show the desired and
actual joint positions and the applied torques for the nonlinear PID control. From Figs. (7)-(8),
one can observe that the transient for the nonlinear PID in each change of the step magnitude,
of the links are really good and the accuracy of positioning is satisfactory.
Applied torque τ1 and τ2 are sketched in Figs. (9)-(10) these figures show the evolution of the
applied torques to the robot joints during the execution of the simulations. Notice that initial
torque peaks fit to the nominal torque limits.

8. Conclusions

In this chapter we have given sufficient conditions for global asymptotic stability of a
class of nonlinear PID type controllers for rigid robot manipulators. By using a passivity
approach, we have presented the asymptotic stability analysis based on the energy shaping
methodology. The analysis has been done by using an adaptation of a passivity theorem
presented in the literature. This passivity theorem, deals with systems composed by the
feedback interconnection of a state strictly passive system with a passive system. Simulation
results confirm that the class of nonlinear PID type controllers for rigid robot manipulators
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Fig. 7. Desired and actual positions 1 for the Nonlinear PID control
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Fig. 8. Desired and actual positions 2 for the Nonlinear PID control
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✛ Torque max. = 102.11 Nm

Fig. 9. Applied torque τ1 Nonlinear PID

have a good precision. The performance of the nonlinear PID type controllers has been
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✛ Torque max. = 14.32 Nm

Fig. 10. Applied torque τ2 Nonlinear PID

verified on a two degree of freedom direct drive robot arm.
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