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1. Introduction  

Elastin is a key structural protein found in the extracellular matrix (ECM) of all mammals. 

As the dominant part of the elastic fiber, elastin confers the mechanical properties of 

resilience and elasticity essential to the function of elastic tissues. Elastin interacts with cells 

through specific biochemical mechanisms. This chapter considers the (1) mechanical and 

biochemical roles of elastin in elastic tissues and the subsequent disease phenotypes that 

result from the degradation and loss of elastin, (2) development and success of current 

elastin based biomaterials including sources of elastin for tissue engineering and their 

application, and (3) vascular constructs that our laboratory has developed from recombinant 

human tropoelastin. These constructs mimic the physical and biochemical properties of 

native elastin.  

2. Elastin formation in vivo 

Elastin is formed in the process of elastogenesis through the assembly and cross-linking of 

the protein tropoelastin (Figure 1). The tropoelastin monomer is produced from expression 

of the elastin gene during perinatal development by elastogenic cells such as smooth muscle 

cells (SMCs), endothelial cells, fibroblasts and chondroblasts (Uitto, Christiano et al. 1991). 

The tropoelastin transcript undergoes extensive alternative splicing leading to the removal 

of entire domains from the protein. In humans, this splicing results in several tropoelastin 

isoforms, the most common of which lacks exon 26A (Indik, Yeh et al. 1987). Mature, 

intracellular tropoelastin associates with the elastin binding protein (EBP) and this complex 

is secreted to the cell surface (Hinek 1995). Competition from galactosides results in the 

dissociation of EBP from tropoelastin and the return of EBP to the cell (Mecham 1991). 

Released tropoelastin on the cell surface subsequently aggregates by coacervation. During 

this process, the hydrophobic domains of tropoelastin associate and tropoelastin molecules 

become concentrated and increasingly aligned allowing for subsequent formation of cross-

links (Vrhovski, Jensen et al. 1997). 

Coacervated tropoelastin is deposited onto microfibrils which probably serve as a scaffold to 

direct tropoelastin cross-linking and consequential elastic fiber formation. Cross-linking is 

facilitated by the enzyme lysyl oxidase, which deaminates lysine side chains in tropoelastin 

to form allysine sidechains that can subsequently react with adjacent allysine or lysine side 

chains to form cross-links (Kagan and Sullivan 1982). These cross-links can then further 

react to form desmosine and isodesmosine cross-links between tropoelastin molecules 
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(Umeda, Nakamura et al. 2001). Multiple cross-links result in the mature insoluble elastic 

fiber.  

 

 

Fig. 1. Schematic of the stages of elastogenesis. 
(i) Tropoelastin is transcribed and translated from the elastin (ELN) gene and (ii) 
transported to the plasma membrane in association with EBP. (iii) Tropoelastin is released 
and aggregates on the cell surface, while EBP disassociates to form a complex with available 
galactosides. (iv) Tropoelastin aggregates are oxidized by lysyl oxidase leading to cross-
linked elastin that accumulates on microfibrils which help to direct elastin deposition. (v) 
The process of deposition and cross-linking continues to give rise to mature elastic fibers 

3. The role of elastin in vivo 

Elastin plays a key structural role in elastic tissues including arteries, skin, ligament, 

cartilage and tendons (Sandberg, Soskel et al. 1981). As the dominant part of the elastic fiber, 

elastin confers resilience and elasticity essential to the function of these tissues. The 

arrangement of elastin in the ECM varies between different tissues to yield a wide range of 

structures with tailored elastic properties. For example, elastin in the form of thin lamina in 

the arterial wall is mostly responsible for the strength and elasticity necessary for vessel 

expansion and regulation of blood flow (Glagov, Vito et al. 1992). In the lung, elastin is 

arranged as a latticework that helps to support the opening and closing of the alveoli 

(Starcher 2001). In skin, elastin fibers are enriched in the dermis where they impart skin 

flexibility and extensibility (Roten, Bhat et al. 1996; Pasquali-Ronchetti and Baccarani-Contri 

1997). 
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3.1 Mechanical properties of elastin 
Elastin is extremely durable protein with a mean residence time of 74 years (Shapiro, 
Endicott et al. 1991). It comprises almost 90% of the elastic fiber where it dominates its 
elastic, mechanical properties. The Young’s modulus for elastic fibers typically ranges from 
300 - 600 kPa although it can measure as low as 100 kPa for arterial elastin, highlighting the 
versatile nature of these structures within the ECM (Mithieux and Weiss 2005; Zou and 
Zhang 2009). Although the mechanism for elasticity has not been fully elucidated, elastic 
recoil likely to be entropically driven whereby extension of the protein results in a more 
ordered structure and thus recoil occurs so the protein can return to a disorder state 
(reviewed by (Rosenbloom, Abrams et al. 1993; Vrhovski and Weiss 1998). This elasticity is 
due to the inherent elastic properties of the monomer (Holst, Watson et al. 2010; Baldock, 
Oberhauser et al. 2011). 

3.2 Biological properties of elastin 
Elastin plays key biological roles in the regulation of cells native to elastic tissues. Studies of 
elastin knockout mice reveal a crucial role for elastin in arterial morphogenesis through 
regulation of SMC proliferation and phenotype (Li, Brooke et al. 1998). This model is 
supported by in vitro studies showing that elastin can inhibit SMC proliferation in a dose 
dependent manner (Ito, Ishimaru et al. 1998). Elastin can also mediate the attachment and 
proliferation of endothelial cells from several vascular origins (Ito, Ishimaru et al. 1998; 
Williamson, Shuttleworth et al. 2007; Wilson, Gibson et al. 2010). Similar effects have been 
observed for dermal fibroblasts (Bax, Rodgers et al. 2009; Rnjak, Wise et al. 2011). 
Additionally elastin is a chemoattractant for SMCs, endothelial cells and monocytes (Senior, 
Griffin et al. 1980; Wilson, Gibson et al. 2010). 
 

 

Fig. 2. Schematic of human tropoelastin primary organization and binding partners. 
All domains are shown. Exons 13, 22, 23, 26A and 32 are subject to alternate splicing 
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Several cell receptors have been identified for elastin (Figure 2). The most well documented 

of these receptors is EBP, which binds to multiple sites including the VGVAPG sequence on 

exon 24 of tropoelastin (Rodgers and Weiss 2005). Upon binding elastin, this receptor 

activates intracellular signaling pathways involved in cell proliferation, chemotaxis, 

migration and cell morphology for a range of cell types including SMCs, endothelial cells, 

fibroblasts, monocytes, leukocytes and mesenchymal cells (Senior, Griffin et al. 1980; Indik, 

Abrams et al. 1990; Faury, Ristori et al. 1994; Faury, Ristori et al. 1995; Kamisato, Uemura et 

al. 1997; Jung, Rutka et al. 1998; Mochizuki, Brassart et al. 2002). Other cell receptors, 

including a less documented glycoprotein termed elastonectin and G protein-coupled 

receptor can bind elastin through the VGVAPG sequence (Hornebeck, Tixier et al. 1986). 

Interactions of vascular cells with elastin via these receptors have been shown to dictate 

focal adhesion formation, cell proliferation and migration (Hornebeck, Tixier et al. 1986; 

Karnik, Brooke et al. 2003; Karnik, Wythe et al. 2003). Glycosaminoglycans on the SMC and 

chondrocyte cell surface dominate binding to the C-terminus of bovine tropoelastin 

(Broekelmann, Kozel et al. 2005; Akhtar, Broekelmann et al. 2011). Cell interactions with 

human tropoelastin C-terminus specifically occur through the integrin ǂvǃ3 (Rodgers and 

Weiss 2004; Bax, Rodgers et al. 2009). Elastin binding for some cell types is likely to occur 

through multiple receptors (Bax, Rodgers et al. 2009; Wilson, Gibson et al. 2010; Akhtar, 

Broekelmann et al. 2011).  

4. Elastin and disease 

Disease phenotypes manifest due to the degradation and loss of elastin through injury, 

genetic mutation or age. For example, autosomal dominant and recessive forms of cutis laxa 

mutations can arise from genetic modifications to the elastin gene and impaired vesicular 

trafficking, and have been reviewed elsewhere (e.g. (Hucthagowder, Morava et al. 2009; 

Callewaert, Renard et al. 2011). In skin, the loss of elastin in the dermal layers in severe 

burns leads significant physical injuries including scarring, wound contraction and loss of 

skin extensibility (Rnjak, Wise et al. 2011). In the vasculature, genetic mutations in the 

elastin gene or genes associated with elastic fiber formation result in severe, debilitating 

diseases (reviewed by (Kielty 2006)). Supravalvular aortic stenosis can arise from point 

mutations, deletions or translocations within the elastin gene that typically lead to 

haploinsufficiency and an altered organization of elastic lamellae in the artery, SMC 

hyperproliferation, increased media thickness and obstruction of the aorta (Urban, Zhang et 

al. 2001). Elastin is also associated with several vascular pathologies. Damage and 

fragmentation of elastin in the artery have been linked with deregulation of SMC 

phenotype, SMC hyperproliferation and invasion which cause vessel occlusion and 

cardiovascular complications (Brooke, Bayes-Genis et al. 2003). The failure of inelastic 

materials as arterial replacements further indicate the essential need for intact elastin in 

functional arteries (Abbott, Megerman et al. 1987).  

5. Elastin biomaterials 

Common to all elastin diseases is the catalogued in vivo inability to adequately regenerate 

and repair dysfunctional elastic fibers leading to subsequent failure of tissue function. This 

deficiency is mostly attributed to exclusive expression of elastin during early development 
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(Mecham 1991), which results in poor renewal of elastin in adult tissues. Materials that can 

serve as elastin replacements in adult tissues are in demand. This demand is most apparent 

in vascular tissue engineering as cardiovascular disease is the major contributor to adult 

mortality worldwide (Lloyd-Jones, Adams et al. 2010). Current synthetic vascular 

biomaterials, particularly expanded polyterafluoroethylene (ePTFE) and polyethylene 

terephthalate (Dacron) are poorly mismatched to native arteries in terms of mechanical 

properties, endothelial cell and SMC interactions and thrombogenecity which lead to a high 

failure rate in patients (Chlupac, Filova et al. 2009). Elastin can restore properties that are 

deficient in current grafts, including compliance and strength to match native vessels and 

regulation of endothelial and smooth muscle cells. 

6. Decellularized tissues as elastin biomaterials  

Decellularized tissues, generated by the removal of the cellular components of tissue explant 
are useful as biomaterials as they a priori possess much of the complex architecture of the 
native ECM. Elastic tissues are particular amenable to this method as the stability and 
insolubility of the elastin protein means it is resistant to many treatments used during 
decellularization processes.  
Decellularizing elastin-rich tissues have been proposed as a path towards the potential 
replacement of artery, heart valves, bladder skin and lung (Daamen, Veerkamp et al. 2007; 
Petersen, Calle et al. 2010; Price, England et al. 2010). Enriched elastin vascular grafts 
generated by decellularization and removal of collagen with proteases from porcine carotid 
arteries can support fibroblasts in vitro (Chuang, Stabler et al. 2009). Cell infiltration has also 
been observed for other decellularized vascular constructs in vitro and in vivo (Schmidt and 
Baier 2000; Conklin, Richter et al. 2002; Dahl, Koh et al. 2003; Uchimura, Sawa et al. 2003). 
Skin replacements formed from decellularized porcine dermis containing 30% elastin show 
vascularization and support of cultured keratinocytes when examined in a rat excision 
model. Degradation of the collagen component of the material also occurs (Hafemann, 
Ensslen et al. 1999). Transplant of a repopulated decellularized human trachea demonstrates 
the feasibility of acquiring functionality and improved mechanical capabilities in a patient 
after 4 months (Macchiarini, Jungebluth et al. 2008). 
Despite these advantages, decellularized tissue sources are generally animal derived and are 
therefore restricted in shape, size and supply. Additionally, decellularization methods 
involve chemical, physical or enzymatic treatments that can individually or collectively 
compromise mechanical and biological properties (Gilbert, Sellaro et al. 2006). The common 
use of detergents can limit the degree of cell repopulation. Decellularization methods are 
highly specific to a particular tissue thus their broader application to different tissues yields 
viable results in terms of remaining ECM structure and degree of decellularization (Gilbert, 
Sellaro et al. 2006). Lack of uniformity and versatility can limit the use of decellularized 
materials as commercial tissue replacements.  

7. Tissue derived elastin constructs 

7.1 Insoluble elastin materials 
Elastin used for in vitro work is generally obtained by purifying the protein directly from 
elastin-rich tissues. Tissues are treated with chemicals such as NaOH or guanidine-HCl 
and/or high heat to remove other proteins and cellular material and leave insoluble elastic 
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fibers. However extensive cross-linking and the consequential insolubility of elastin makes it 
difficult to manipulate in vitro (Daamen, Veerkamp et al. 2007).  
Freeze-dried scaffolds of insoluble elastin fibers and purified collagen fibers present 

mechanical properties consistent with those of elastic tissues (Buttafoco, Engbers-

Buijtenhuijs et al. 2006). Furthermore, these scaffolds appear to be compatible with SMCs 

(Buijtenhuijs, Buttafoco et al. 2004; Engbers-Buijtenhuijs, Buttafoco et al. 2005; Buttafoco, 

Engbers-Buijtenhuijs et al. 2006), endothelial cells (Wissink, van Luyn et al. 2000) and 

platelets (Koens, Faraj et al. 2010) pointing to potential vascular applications. Also, insoluble 

elastin/collagen scaffolds have been explored as possible dermal replacements as these 

materials can support fibroblasts (Daamen, van Moerkerk et al. 2003) and keratinocytes 

(Lammers, Tjabringa et al. 2009). Other insoluble elastin composites such as elastin/fibrin 

biomaterials have been generated but characterization of these materials is limited to 

mechanical capacity (Barbie, Angibaud et al. 1989). 

7.2 Hydrolyzed elastin materials 
The solubility of tissue-derived elastin can be improved by partial hydrolysis. A 

fragmented elastin preparation termed ǂ-elastin is obtained by hydrolysis with oxalic acid 

and is often used in in vitro studies of elastin (Partridge, Davis et al. 1955). Hydrolysis can 

be performed with potassium hydroxide to yield κ-elastin or through mild digestion with 

proteinases (Partridge, Davis et al. 1955; Jacob and Hornebeck 1985). Hydrolyzed 

preparations of elastin display various properties that are similar to the native protein 

including temperature-induced aggregation (coacervation) and regulation of SMC and 

fibroblast phenotype (De Vries, Zeegelaar et al. 1995; Ito, Ishimaru et al. 1998). 

Fragmentation of elastin is associated with reduced protein structural integrity and 

altered cellular signaling properties (Daamen, Veerkamp et al. 2007; Bax, Rodgers et al. 

2009).  

Multiple vascular materials have been synthesized from hydrolyzed elastin preparations 
(Table 1). Hydrogels, cross-linked films and electrospun fibers containing hydrolyzed ǂ-
elastin all show preferable vascular material properties including regulation of SMC 
phenotype and increased mechanical elasticity. Electrospun materials are of particular 
interest as architecturally, these materials closely mimic the dimensions of elastic fibers in 

vivo (Li and Xia 2004).  
Hydrolyzed elastin materials have also been proposed for use in the repair of elastic 
cartilage. In porous PCL scaffolds, infusion of ǂ-elastin demonstrates enhanced scaffold 
elasticity and attachment and proliferation of articular cartilage chondrocytes in vitro 
(Annabi, Fathi et al. 2011). Replication of auricular-like cartilage has also been explored 
using alginate, collagen type I and κ-elastin containing hydrogels with auricular cartilage 
chondrocytes (de Chalain, Phillips et al. 1999). When these materials were implanted in mice 
and harvested after 12 weeks, matrix components including collagen and elastic fibers were 
present.  
Dermal replacements containing hydrolyzed elastin demonstrate improved properties over 
elastin-free materials in regards to wound contraction and tissue regeneration (Rnjak, Wise 
et al. 2011). For example, MatriDerm, a collagen based scaffold with ǂ-elastin shows 
improved skin elasticity (Ryssel, Gazyakan et al. 2008). Hydrogels formed exclusively from 
ǂ-elastin (Figure 3) favorably support attachment and proliferation of dermal fibroblasts in 

vitro (Annabi, Mithieux et al. 2009; Annabi, Mithieux et al. 2009). 
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Scaffold  Advantages Limitations Reference 

ǂ-elastin film  
-Low elastic modulus 
-attachment & 
proliferation of SMCs 

-reduced SMC 
proliferation compared 
to TCPS 

(Leach, 
Wolinsky 
et al. 2005) 

elastin/gelatin gel  

-Young’s modulus 
matched to native artery 
-proliferation & 
infiltration of SMCs 

-reduced SMC growth 
compared to TCPS 

(Lamprou, 
Zhdan et 
al. 2010) 

Collagen type I gels 
containing ǂ-elastin 

-SMC proliferation 
inhibited  

- EC proliferation 
inhibited at high ǂ-
elastin concentrations 

(Ito, 
Ishimaru et 
al. 1997) 

ǂ-elastin & collagen 
electrospun blended 
conduit 

-attachment & 
proliferation of SMCs 

-no mechanical testing 
(Buttafoco, 
Kolkman et 
al. 2006) 

ǂ-elastin 
electrospun sheet 

-SMC proliferation 
inhibited  
-ǂ-SMA expression 
observed  

-no mechanical testing 
(Miyamoto, 
Atarashi et 
al. 2009) 

ǂ-elastin 
electrospun fibers 

-attachment & 
proliferation of 
embryonic mesenchymal 
cells 

-complete 3D 
constructs not created 

(Li, 
Mondrinos 
et al. 2005) 

ǂ-elastin, PLGA & 
gelatin electrospun 
sheet  

-mechanical properties 
tuned to artery through 
polymer content  
-proliferation of ECs on 
scaffold surface & 
infiltration of SMCs. 
-expression of functional 
EC molecules  

-mechanical properties 
tested on electrospun 
sheets, not tubes 

(Han, 
Lazarovici 
et al. 2011)  

ǂ-elastin, collagen 
type I & PLGA 
electrospun conduit 

-matched compliance to 
bovine iliac artery 
-proliferation of ECs on 
inner & SMCs on outer 
surface of conduit 
-no immune reaction 
when implanted in mice 

-scaffold contraction in 

vitro 

(Stitzel, Liu 
et al. 2006; 
Lee, Yoo et 
al. 2007) 

ǂ-elastin, collagen 
type I & PLLA, PCL 
or PLCL blended 
electrospun conduit 

-growth of bovine ECs 
-infiltration and ǂ-SMA 
expression of SMCs 

-scaffold contraction of 
PLCL blends in vitro 

(Lee, Yoo 
et al. 2007) 
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Scaffold  Advantages Limitations Reference 

ǂ-elastin & PDO 
blended electrospun 
conduit 

-mechanical properties 
matched to femoral 
artery with increased 
elastin content 
-increased cell 
infiltration with 
increased elastin content 
-increased graft burst 
pressure with suture 
reinforcement 

-suture reinforcement 
lowers compliance 

(Sell, 
McClure et 
al. 2006; 
Smith, 
McClure et 
al. 2008)  

Elastin, collagen 
type I & collagen 
type III tri-layered 
electrospun conduit 

-growth of EC, SMC and 
Fb in separate layers  

-delamination of layers 
-no mechanical testing 

(Boland, 
Matthews 
et al. 2004) 

ǂ-elastin, gelatin & 
PDS blended 
electrospun conduit 

-matched tensile 
properties & elastic 
modulus to femoral 
artery  

-loss of tensile 
properties due to in 

vitro degradation  
-no cell studies 
performed 

(Thomas, 
Zhang et 
al. 2009) 

ǂ-elastin, gelatin & 
Maxon multi-
layered electrospun 
conduit 

-comparable mechanical 
properties to femoral 
artery  

-no cell studies 
performed 

(Thomas, 
Zhang et 
al. 2007) 

bovine elastin, PGC, 
PCL & gelatin bi-
layered electrospun 
conduit 

-tensile strength 
matched to native artery 
-attachment & 
proliferation of EC & 
EPCs 

-no SMC 
characterization 

(Zhang, 
Thomas et 
al. 2010; 
Zhang, 
Thomas et 
al. 2010; 
Zhang, Xu 
et al. 2011) 

ǂ-elastin, collagen, 
PCL tri-layered 
electrospun conduit 

-mechanical properties 
matched to native artery 
by modulation of elastin 
& PCL content  

-no cell studies 
performed 

(McClure, 
Sell et al. 
2010) 

Table 1. Scaffolds for vascular constructs synthesized using hydrolyzed elastin. 
Abbreviations: SMC: smooth muscle cell, EC: endothelial cell, EPC: endothelial progenitor 
cells, Fb: fibroblast, TCPS: tissue culture polystyrene, PLGA: poly(D,L-lactide-co-glycolide), 
PLLA: poly(L-lactide), PCL: polycaprolactone, PLCL: poly(L-lactide-co-ε-caprolactone), 
PDO: polydioxanone, PDS: polydioxanone, PGC: poliglecaprone 

www.intechopen.com



 
Elastin Based Constructs 

 

331 

 

Fig. 3. Examples of ǂ-elastin hydrogels that were synthesized by cross-linking with (A) 
0.05% and (B) 0.1% (w/v) glutaraldehyde 

8. Elastin-sequence based materials 

8.1 Synthetic elastin-based peptides 
Synthetic peptides based on key elastin sequences present elastin-like properties including 

self-assembly, cross-linking and cell interactions (Long, King et al. 1989; Faury, Garnier et al. 

1998; Bellingham, Woodhouse et al. 2001; Karnik, Brooke et al. 2003; Karnik, Wythe et al. 

2003). Coating of materials with elastin peptides can improve biocompatibility by providing 

protein sequences required for cell binding (reviewed by (Almine, Bax et al. 2010)). Some 

three dimensional materials formed from elastin-based peptides demonstrate elastin-like 

properties, including hydrogels that support cell growth and possess high degrees of 

elasticity (Keeley, Bellingham et al. 2002; Trabbic-Carlson, Setton et al. 2003). However as 

with hydrolyzed elastin preparations, synthetic peptides can lack the full repertoire of 

properties of the fully intact protein and are associated with inflammation (Faury, Ristori et 

al. 1995).  

8.2 Recombinant human tropoelastin 
Recombinant human tropoelastin (rhTE) is expressed and purified can be made as a 

recombinant protein in Escherichia coli. rhTE exhibits many properties of native tropoelastin 

including the ability to coacervate under physiological conditions and be cross-linked in 

vitro to form insoluble elastin fibers (Vrhovski, Jensen et al. 1997; Muiznieks, Jensen et al. 

2003). rhTE promotes endothelial cell and fibroblast attachment, spreading and proliferation 

when used as a surface coating (Bax, Rodgers et al. 2009; Rnjak, Li et al. 2009; Wise, Byrom 

et al. 2011) and improves the biocompatibility of implanted devices (Yin, Wise et al. 2009; 

Wilson, Gibson et al. 2010).  
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Fig. 4. Synthetic human elastin hydrogels (A) formed from the cross-linking of rhTE and (B) 
after hydration in phosphate buffered saline. (C) Hydrogel surface porosity shown by 
scanning electron microscopy 

 

 

Fig. 5. Synthetic elastin electrospun materials. 
Representative photographs of a synthetic human elastin scaffold (A) before cross-linking 
and (B-C) after cross-linking with hexamethylene diisocyanate and wetting with phosphate 
buffered saline. Uncross-linked scaffolds are stiff and inflexible while cross-linked scaffolds 
are highly flexible and collapse when not supported. Scanning electron micrographs of (D) 
uncross-linked electrospun fibers and (E) cross-linked electrospun fibers reveal the ribbon-
like morphology of fibers 

Three dimensional biomaterials are produced by cross-linking rhTE to form synthetic human 
elastin. Synthetic elastin has advantages over decellularized tissue and hydrolyzed elastin 
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preparations as it utilizes human protein avoiding potential problems arising from species 
differences while benefiting from homogeneity to improve reproducibility and uniformity. 
 

 

Fig. 6. Examples of synthetic elastin electrospun materials. 
Scanning electron micrographs of (A) human umbilical vein endothelial cells, (B) SMCs and 
(C) dermal fibroblasts cultured on synthetic elastin fibers 

These types of synthetic elastin hydrogels can be made by chemical cross-linking (Mithieux, 

Rasko et al. 2004), enzyme treatment (Mithieux, Wise et al. 2005) or raising the pH 

(Mithieux, Tu et al. 2009) of rhTE solutions (Figure 4). The hydrogels demonstrate 

mechanical properties that are consistent with native elastin including low elastic moduli, 

support of attachment and proliferation of dermal fibroblasts (Mithieux, Rasko et al. 2004; 

Rnjak, Li et al. 2009; Annabi, Mithieux et al. 2010). Increases in hydrogel porosity using high 

pressure CO2 or the incorporation of glycosaminoglycans improve cell infiltration into 

hydrogels (Annabi, Mithieux et al. 2010; Tu, Mithieux et al. 2010) where the maintenance of 

fibroblasts within these scaffolds present them as candidate dermal substitutes. 
Electrospun synthetic elastin allows for the formation of highly organized biomaterials with 
tunable mechanical biological properties. Electrospun synthetic elastin is formed by the 
electrospinning and chemical cross-linking of rhTE to yield ribbon-like microfibers (Figure 
5) whose dimensions match those of native elastin fibers (Nivison-Smith, Rnjak et al. 2010). 
Highly porous electrospun synthetic elastin scaffolds, generated by using high flow rates 
facilitate the infiltration of dermal fibroblasts in vitro and present an alternative to synthetic 
elastin hydrogels as a dermal replacement (Rnjak, Li et al. 2009).  
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As a potential vascular material, electrospun synthetic elastin shows attractive 
characteristics including internal mammary artery-matched elastic mechanical properties, 
low platelet adhesion (Wise, Byrom et al. 2011) and support of growing human vascular 
cells including SMCs, endothelial cells (Figure 6) and embryonic palatal mesenchymal stem 
cells (Li, Mondrinos et al. 2005; Nivison-Smith, Rnjak et al. 2010). Synthetic human elastin 
fibers can also direct cell spreading to resemble cell organization in vivo. For example, the 
radial alignment of SMC in the arterial media is mimicked by culture of these cells on 
parallel synthetic elastin fibers (Nivison-Smith & Weiss 2011, submitted). Blended conduits of 
synthetic elastin and silk or polycaprolactone display elasticity and cell adhesion properties 
courtesy of the rhTE component while the composite component confers additional 
mechanical strength (Hu, Wang et al. 2010; Wise, Byrom et al. 2011).  

9. Conclusion 

Elastin is an essential matrix protein, so it is logical that biomaterials designed for elastic 
tissues should incorporated elastin. Difficulties in sourcing pure intact elastin preparations, 
particularly those that reflect human sequences, has limited the generation of these 
materials. Synthetic human elastin that is made from rhTE presents a versatile and stable 
component of vascular and dermal materials. Elastin-based constructs demonstrate 
mechanical and biological properties consistent with native elastin and have potential for a 
wider range of applications. 
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