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1. Introduction 

The foreign body response describes the non-specific immune response to implanted foreign 
materials (Coleman et al., 1974; Anderson, 2001; Luttikhuizen et al., 2006). It is characterised 
by the infiltration of inflammatory cells to the area to destroy or remove this material, 
followed by the repair or regeneration of the injured tissue. However, if the foreign material 
cannot be phagocytosed and removed, the inflammatory response persists until the material 
becomes encapsulated in a dense layer of fibrotic connective tissue (Anderson, 2001) which 
shields it from the immune system and isolates it from the surrounding tissues.  
The foreign body response has developed as a protective mechanism to limit exposure to 
toxic or allergenic materials, but also presents a problem for modern medicine. 
Biomedical devices now serve in a vast number of medical applications, including 
orthopedic, dental and breast implants, pacemakers, sutures, vascular grafts, heart 
valves, intraocular and contact lenses, controlled drug delivery devices and biosensors. 
This response is common to all medical devices or prostheses implanted into living tissue, 
and ultimately results in fibrosis or fibrous encapsulation which compromises the efficiency 
of the device and frequently leads to device failure (reviewed in Anderson et al., 2008). For 
example, the contraction of the myofibroblast-rich capsules around breast implants leads to 
‘implant shrinkage’ (Abbondanzo et al., 1999) while encapsulating tissue prevents the 
diffusion of molecules to biosensors or from implanted drug delivery pumps (Anderson et 
al., 2008).  
The response to implanted materials varies depending on their physicochemical properties 

(eg shape, size, surface chemistry, morphology and porosity; see Morais et al (2010) for 

review). Jones et al (2007; 2008) have shown that macrophage adhesion and fusion is higher 

on hydrophobic surfaces than hydrophilic/neutral surfaces while McBane and co-workers 

(McBane et al., 2011) found that compared with 2-dimensional films, 3-dimensional porous 

polyurethane scaffolds induced a low inflammatory, wound healing phenotype and may 
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reduce the negative effects of the foreign body reaction. However despite attempts to 

identify non-immunogenic implant materials, or to mask surface properties of the implant 

material with biocompatible coatings (Quinn et al., 1995; Shive & Anderson, 1997; Draye et 

al., 1998; Paradossi et al., 2003), the inflammatory response cannot be completely avoided 

(Cao et al., 2008). This is thought to be due to the adsorption of proteins such as fibrinogen, 

complement and antibodies to the material immediately after implantation (Kao et al., 1999; 

Hu et al., 2001; Gretzer et al., 2006). Thus as outlined by Wisniewski et al (2001), the key to 

long-term functionality of implanted devices such as glucose sensors is modulation of the 

tissue response. In order to do this, it is important to first understand the mechanisms 

underlying the foreign body response to implanted biomaterials, the cells involved and their 

molecular mediators. 

2. Application of the foreign body response to tissue engineering 

While the foreign body response is an unwanted consequence of implantation of biomedical 

devices, the fibrotic response to implanted scaffold material has been investigated as a 

strategy for tissue engineering purposes. Sparks (1969, 1973) used the host inflammatory 

response to a foreign material to create living autologous tissue suitable for arterial bypass 

grafting. In this procedure a mandrel, composed of a smooth silicone rubber rod of desired 

diameter and length, covered with a large-mesh knitted dacron tube, was implanted 

subcutaneously near the location of the artery to be grafted. However despite intensive 

testing, the lack of compliance/strength of the resulting tissue, as well as the absence of an 

endothelial lining, resulted in unacceptably high rates of thrombosis, dilatation and 

aneurysm (Conte, 1998). More recently, our laboratory and others have used the peritoneal 

cavity as a ‘bioreactor’ to produce autologous tissue for replacement/repair of arteries 

(Campbell et al., 1999, 2000, 2008; Chue et al., 2004) and other hollow smooth muscle organs, 

specifically bladder, uterus, vas deferens (Campbell et al., 2008) and urethra (Gu et al., 2009). 

De Visscher and co-workers used a similar technique to pre-seed acellular matrix scaffolds 

from bovine pericardium for use as tissue engineered heart valves (De Visscher et al., 2007, 

2008; Vranken et al., 2008) while Hayashida et al (2007) reported satisfactory function and 

mechanical properties for ‘biovalves’ prepared by embedding synthetic scaffolds 

subcutaneously for 4 weeks. This tissue has also been used as a source of growth factors to 

stimulate bone formation to repair a femoral bone defect in a sheep model (Lutton et al., 

2009).  

In the procedure described by our laboratory, sterile foreign objects of the appropriate shape 

are implanted into the peritoneal cavities of animals for 2-3 weeks, then the encapsulating 

tissue removed for grafting into the same animal. Our original studies showed that in the 

first 3 days after implantation of a foreign object, undifferentiated cells of bone marrow 

origin, either resident within the peritoneal fluid or recruited to it, encapsulated the object 

(Campbell et al., 2000). Most of these cells expressed the common leukocyte antigen (CD45) 

and had the morphological appearance of monocyte/macrophages (Campbell et al., 2000). 

By day 7 a distinct capsule of round cells and extracellular matrix (ECM) had formed, and 

by day 14 cells had elongated and organised into multilayered strata within a fibrillar 

matrix. Ultrastructurally, these elongated cells had the characteristics of myofibroblasts and 

contained large amounts of rough endoplasmic reticulum and bundles of peripherally 

distributed myofilaments (Campbell & Ryan, 1983; Campbell et al., 1999). A layer of 
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mesothelial cells was also observed to cover the developing capsule. The tissue 

encapsulating free-floating foreign objects in the peritoneal cavity is avascular, in contrast to 

tissue surrounding foreign material at other anatomical sites which is highly vascularised 

(Campbell & Ryan, 1983).  

The capacity of cells within this myofibroblast-rich tissue capsule to differentiate further, if 

subject to the appropriate environmental cues, has also been demonstrated. For example, 

when grafted into an autologous artery to replace excised segments, they gradually (over 1-

2 months) developed the characteristics of mature vascular smooth muscle cells (SMC) and 

expressed the smooth muscle differentiation markers smoothelin and smooth muscle 

myosin heavy chain isoform SM-2 (Efendy et al., 2000; Chue et al., 2004). Tissue remodelling 

occurred such that the grafted tissue developed morphological characteristics of the native 

artery, with the luminal surface of the smooth muscle tube becoming lined by endothelial-

like cells, an outer ‘adventitial’ layer comprising fibroblasts, collagen matrix and vasa vasora 

also developed. SMC differentiation could be similarly induced by subjecting graft tissue to 

active intermittent stretch in vitro (Efendy et al., 2000). Similarly, when myofibroblast-rich 

capsules were grafted into bladder, vasa deferens or uterine horn, the graft tissue gradually 

remodelled to resemble the host organ, both structurally and functionally (Campbell et al., 

2008).  

3. What are myofibroblasts?   

Myofibroblasts are heterogeneous cells of diverse origin with a morphology intermediate 

between fibroblasts and smooth muscle (Gabbiani et al., 1971; Powell et al., 1999; Hinz et al., 

2007; Hinz, 2010). They are characterised by expression of the smooth muscle actin isoform 

(α-SM actin), the fibronectin splice variant ectodomain (ED-A FN) and synthesis of ECM 

proteins such as collagen I (Serini et al., 1998). During normal wound repair, myofibroblasts 

are transiently present at the wound site where they play essential roles in wound 

contraction and restoration of tissue integrity. Once the wound has regained normal 

structure and function, myofibroblasts disappear as a result of apoptosis (Gabbiani, 1996). 

However the prolonged presence of these cells leads to excessive collagen production and 

tissue contraction, and ultimately reduced tissue function and fibrosis (Mutsaers et al., 

1997). Thus the timely appearance, differentiation and removal of myofibroblasts are critical 

for appropriate wound healing. However, despite the important roles played by 

myofibroblasts, further research is required to clarify the regulatory mechanisms controlling 

their proliferation, differentiation and apoptosis, and the factors that turn a normal repair 

process into pathology.  

4. What is the origin of foreign body-induced myofibroblasts?` 

Myofibroblasts were originally believed to be derived from tissue fibroblasts (Serini and 

Gabbiani, 1999), but there is now mounting evidence for alternative origins, depending on 

the tissue location and surrounding microenvironment. These include epithelial cells (via 

epithelial-mesenchymal transition; EMT; Iwano et al., 2002; Zeisberg et al., 2007; Kim et al., 

2009), smooth muscle cells (Humphreys et al., 2010) and fibrocytes (Bucala et al., 1994; Abe 

et al., 2001; Quan et al., 2006). As major cellular constituents of the healthy peritoneal 

membrane, mesothelial cells are also thought to be a source of myofibroblasts within the 
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peritoneal cavity, via EMT (Pollock, 2005). Indeed intermediate cell types (co-expressing 

mesothelial and myofibroblast markers) have been reported in dialysis effluent and 

parietal peritoneum of peritoneal dialysis patients (Yanez-Mo et al., 2003; Jimenez-

Heffernan et al., 2004). There is also evidence that myofibroblasts can derive from a bone 

marrow progenitor. Our early investigations used a chimaeric mouse model to 

demonstrate that cells of haematopoietic origin form the myofibroblast capsule in the 

peritoneal cavity (Campbell et al., 2000). These findings have been corroborated by 

numerous studies showing bone marrow-derived myofibroblasts in many organs 

including lung (Hashimoto et al., 2004; Brocker et al., 2006), stomach, oesophagus, skin 

and kidney (Direkze et al., 2003).  
Given the prevalence of macrophage-like cells in the early tissue capsule, and the fact that 
myofibroblasts within this tissue can be derived from haemopoietic origin, we proposed 
that macrophages are a likely source of myofibroblasts in the peritoneal foreign body 
response. The capacity for peritoneal macrophages to transdifferentiate was first proposed 
by Kouri and Ancheta (1972) who demonstrated the presence of cells with intermediate 
morphologies between macrophages and fibroblasts within tissue capsules that formed 
around Epon lamina implants. Our laboratory also identified similar cells in the tissue 
capsule around foreign material (boiled blood clots) implanted in the peritoneal cavity 
(Campbell & Ryan, 1983; Mosse et al., 1985).  
To further investigate this hypothesis, we used transgenic ‘MacGreen’ mice (in which the 
enhanced green fluorescent protein (EGFP) transgene is driven by the colony stimulating 
factor-1 receptor (csf1r) proximal promotor to direct myeloid-restricted expression; 
Sasmono et al., 2003, 2007) to show that the majority of cells recruited to encapsulate the 
foreign body were of myeloid (monocyte/macrophage) origin (Mooney et al., 2010). 
Although a small subset of EGFP- cells, comprising mainly lymphocytes and mast cells 
was also observed, these cells are unlikely to contribute directly to fibrotic tissue 
formation. Indeed Rodriguez et al (2009) showed that the foreign body response is similar 
in T-cell deficient mice, indicating that T lymphocytes do not play a significant role in this 
process. 
Characterisation of the myeloid cell response by FACS analysis showed that in the early 

phase (day 2) there was a rapid recruitment of EGFP+ Gr1+ (Ly6C+) subsets to the peritoneal 

cavity to encapsulate the foreign object; these cells are granulocytes and monocytes, similar 

to those described by Geissmann et al. (2003) and Sunderkotter et al. (2004) As the 

inflammatory response progressed, expression of Gr1 (Ly6C) was down-regulated, with 

concomitant up-regulation of F4/80 (indicative of mature macrophages) and the csf1r-EGFP 

transgene. Macrophages persisted throughout the period of study, such that by day 28, 

mature ‘resident-like’ macrophages (Gr1- EGFPhi F4/80hi) were the predominant cell type 

within the tissue capsule. The EGFP+ cells within the day 28 tissue capsule included many 

cells with spindle-shaped myofibroblastic morphology, although macrophages, 

multinucleated giant cells and a small number of neutrophils were also present. Foreign 

body giant cells are formed by fusion of macrophages (Anderson, 2000) and are considered 

a hallmark of the foreign body response (Jay et al., 2010). The presence of macrophages up 

to 28 days after foreign body implantation is in accord with a previous report by Gretzer et 

al. (2006) who showed increasing proportions of ED2+ mature macrophages over time in 

exudates surrounding subcutaneous implants in rats. However in our experience, the 

peritoneal foreign body response is more rapid in rats than mice. In contrast to the mouse 
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where only a small proportion of cells express α-SM actin at day 14 (Mooney et al., 2010), at 

this time-point in rats, the majority of cells within the tissue capsule no longer express 

haemopoietic markers (CD45 or CD68) and most express myofibroblast markers α-SM actin 

and SM22 (Le et al., 2010).  
The essential role of macrophages in the peritoneal foreign body response was confirmed by 
experiments using MacGreen mice in which macrophage depletion with clodronate 
liposomes almost completely abrogated tissue capsule development (Mooney et al., 2010). 
We further showed that as the tissue capsule developed around foreign body implants in 
the peritoneal cavity, a sub-population of EGFP+ cells appeared that co-expressed the 

myofibroblast marker α-SM actin. The proportion of EGFP+ α-SM actin+ cells increased with 

time, reaching 51±1% of total cells (approx 80% of total α-SM actin+ cells) at later stages of 
tissue development. The morphology of EGFP+ ┙-SM actin+ cells also changed from a 
rounded macrophage-like appearance to a more spindle-shaped myofibroblastic phenotype, 
thus providing evidence that cells of myeloid origin can transdifferentiate to myofibroblasts 
(Mooney et al., 2010). These results are in agreement with those of Jabs et al (2005) who 
demonstrated that labelled peripheral blood mononuclear cells contributed to tissue capsule 
formation and that from day 14 onwards, a proportion of ┙-SM actin-expressing spindle-
shaped cells co-expressed macrophage markers (ED1/ED2).  
Macrophage transdifferentiation has been documented in a number of other settings. 
Cultured peritoneal macrophages from mice chronically infected with Schistosoma manosi 
exhibited fibroblast-like characteristics and co-expressed fibroblast (pro-collagen) and 
macrophage (mac-1/mac-2) markers (Godoy et al., 1989; Bertrand et al., 1992) while 
monocyte-derived macrophages in infarcted myocardium have been reported to 
differentiate to myofibroblasts (Fujita et al., 2007). In response to transforming growth factor 
(TGF)-┚, cultured peritoneal-derived macrophages have also been shown to 
transdifferentiate into smooth muscle-like cells/myofibroblasts, expressing  smooth 
muscle/myofibroblast markers such as calponin and ┙-SM actin and down-regulating 
expression of the macrophage marker CD11b (Ninomiya et al., 2006).  
Although there is now convincing evidence for the direct involvement of macrophages as 
cellular progenitors of fibrotic tissue, other cellular sources of peritoneal myofibroblasts are 
also possible. Vranken et al (2008) identified stem/progenitor cells expressing Sca-1, c-kit, 
CD34 and CD271 as major contributors to the early foreign body response to bovine 
pericardium patches implanted in the peritoneal cavity. Importantly these latter cells were 
shown to have the potential to differentiate to a number of lineages, including 
myofibroblastic. More recently this same group has suggested that fibrocytes (CD68+CD34+), 
rather than macrophages (CD68+ CD34-) are able to differentiate to myofibroblasts (Mesure 
et al., 2010).  
Macrophages also have indirect (paracrine) roles in the fibrotic response to foreign material, 
releasing cytokines, growth factors, other inflammatory mediators and matrix degrading 
enzymes to modulate the inflammatory response and regulate tissue repair (Xia & Triffitt, 
2006). In serosal wound healing and fibrosis, macrophages have been implicated to play a 
supporting role via the release of cytokines/growth factors which stimulate mesothelial cell 
proliferation (Mutsaers et al., 2002) and fibrogenic processes such as ECM synthesis (Sakai et 
al., 2006). Macrophages also play a key role in angiogenesis and tissue repair, releasing 
matrix metalloproteinases and angiogenic growth factors (Murdoch et al., 2008) and co-
operating with progenitor cells (Anghelina et al., 2006).  
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5. What regulates tissue capsule development and myofibroblast 
differentiation?   

In order to identify key transcriptional events associated with development of the non-

adhered, avascular myofibroblast-rich tissue encapsulating foreign objects implanted in the 

peritoneal cavity, our laboratory performed microarray expression profiling of tissue from 

different stages of capsule development in a rat model (Le et al., 2010). Consistent with 

changes in cellular composition, the data showed a change in gene expression over time 

from inflammatory, particularly myeloid cell-associated (including genes for CD14, CSF-1 

and its receptor, CSF-1R) at the early stages of capsule formation, to myofibroblast-related 

(including SM-22 and fibulin) at later stages. The temporal changes in gene expression 

included the early up-regulation of genes for inflammatory mediators and chemokines (such 

as monocyte chemoattractant protein (MCP)-1, monocyte inflammatory protein (MIP-1α) 

and its receptor CCR1, and stromal-derived factor (SDF)-1) to attract inflammatory cells 

(mainly macrophages) to the foreign object, as well as altered expression of adhesion 

molecules associated with inflammatory responses and (later) tissue morphogenesis.  
Also identified were growth factors and cytokines (including platelet-derived growth factor 

(PDGF) and TGF-β) known to be released by macrophages at the onset of the foreign body 
response (Luttikhuizen et al., 2006), as well as ECM proteins (collagens I and 3, biglycan, 
decorin, syndecans-1 and –2) and enzymes associated with fibrosis and tissue remodelling 
(matrix metalloproteinases MMP-2 and -9) and their inhibitors (plasminogen activator 
inhibitor (PAI)-1 and tissue inhibitor of metalloproteinase (TIMP)-1). In addition to its role 
as a potent mitogenic and chemotactic agent for myofibroblast progenitors (Lindahl & 
Betsholtz, 1998), PDGF-BB is associated with the early stages of myofibroblast 

differentiation from progenitor cells (Oh et al., 1998). TGF-β is the principal mediator of 
myofibroblast differentiation in wound healing, inducing fibroblasts (and possibly other cell 

types) to differentiate into α-SM actin-expressing myofibroblasts with the capacity for 

contraction and ECM synthesis (Leask & Abraham, 2004). TGF-β signalling was significant 
throughout tissue development, as evidenced by the continued expression of its receptor 

(TGFβRII) and downstream signalling molecules (SMAD-1,-2,-4 and latent TGF-┚ binding 

protein (LTBP)-2), as well as up-regulated expression of TGF-β inducible genes including 
connective tissue growth factor (CTGF), insulin-like growth factor binding protein (IGFBP)-
3, TIMP-1, PAI-1, decorin and collagen I subunits (Verrecchia et al., 2001, 2006). The 
biological relevance of the data was confirmed by cell culture studies which showed that 

PDGF-BB stimulated the proliferation of tissue capsule cells, while TGF-β1 inhibited the 

response to serum mitogens but induced expression of α-SM actin (Zhang et al., 
unpublished data). Myofibroblast differentiation was further enhanced by a cocktail of 

PDGF, interleukin (IL)-13 and TGF-β. Moreover inhibition of TGF-β signaling, by either 

chemical inhibition of TGFβRI (ALK5) (with LY-364947; Sawyer et al., 2003) or siRNA 

inhibition of TGFβRII, reduced α-SM actin expression by these cells in vitro and inhibited 
tissue development in vivo, demonstrating the critical role of this growth factor in the 
peritoneal foreign body response (Chau et al., unpublished data).  
Functional analysis of the gene array data identified Immune Response and Immune System 
Development and Function as significant during the early stages and Connective Tissue and 
Development and Function at later stages of tissue development. The importance of fibrotic 
signalling was corroborated by pathway analysis identifying ‘Hepatic Fibrosis/Hepatic Stellate 
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Cell Activation’ as significantly up-regulated at days 14 and 21. Although peritoneal tissue 
capsules show no evidence of vascularisation, the gene expression data provides additional 
evidence of the potential of capsular cells for angiogenesis, with genes for angiopoietins-1 
and -2, vascular endothelial growth factor (VEGF) and its receptors Flt-1 and Flk-1 up-
regulated. Moreover, the identification of Cardiovascular System Development and Function 
and Skeletal and Muscular System Development and Function as significant at day 14 indicates 
that, although the tissue capsule does not develop these functions, cells within it may have 
the potential to differentiate further along multiple pathways. This finding provides a 
molecular basis for our demonstration that when transplanted into smooth muscle organs 
within the same animal, cells within the tissue differentiate further towards a smooth 
muscle phenotype (Campbell et al., 1999, 2008; Efendy et al., 2000). The identification of 
genes associated with other mesenchymal lineages such as endothelial, cardiac and skeletal 
muscle suggests the capacity to differentiate to these cell types, given the appropriate 
environmental conditions.  
While this study provided information regarding global changes in gene expression 
associated with the tissue response to foreign body implantation, information regarding 
gene expression by individual cell types is also required. To this end, a recent study by 
Mesure and co-workers (2010) showed up-regulated expression of cytokines and 
inflammatory response genes in CD68+ cells isolated from tissue 3 days after foreign body 

implantation; pathways related to the innate immune response (IL-1α, IL-1β, IL-6, IL-10 and 

tumour necrosis factor (TNF)-α), cell adhesion (ICAM-1, VCAM-1) and matrix remodelling 
(MMP-13) were identified. In vitro culture of these cells with fibrinogen showed a switch 
over time from inflammatory to wound healing macrophages, evidenced by over-expression 

of genes such as IL-13Rα IL4Rα and arginase 1, and up-regulation of TGF-β signalling. 
These results are in line with an earlier study by Garrigues et al (2005) who identified a 
small number of genes which are highly regulated in macrophages exposed to wear debris 
from components of joint replacement prostheses. These included early changes (30 mins to 
8 hours) in genes associated with ECM remodelling and angiogenesis, and also chemokines 

(IL-6), cytokines (RANTES, MIP-1α) and their receptors (TNFR1, 2 and IL2αR); other 

inflammatory cytokines (IL-1β, TNF-α, TGFβ3, oncostatin M) and IL6R-α subunit were up-
regulated slightly later (at 24 hours). 
Examination of cytokine production by biomaterial-adherent macrophages similarly 

showed expression of pro-inflammatory cytokines (IL-1┚, IL-6, IL-8 and MIP-1┚) highest at 

early stages (day 3) while IL-10 expression increased later, suggesting a phenotypic switch 

over time from classically activated to alternatively activated macrophages (Anderson & 

Jones, 2007). This has been corroborated by a recent study in our laboratory which identified 

two major phases: an inflammatory phase characterised by high levels of expression of 

Th1/M1 cytokines (IL-1┚ and TNF-α) at day 2, and a fibrotic phase regulated by TGF-┚ 

signalling pathways (Jahnke et al., unpublished data). Early expression of chemokines MCP-

1, MIP-1α, RANTES and GRO/KC highlighted the importance of recruitment of 

inflammatory cells to the foreign object.  

6. Modification of the foreign body response  

The identification of strategies to regulate the foreign body response has important 

implications both for tissue engineering and for the proper functioning of implanted 
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medical devices. In vitro studies have shown that although the foreign body response cannot 

be completely avoided, monocyte adhesion is influenced by surface chemistry of the 

biomaterial, the type and amount of adsorbed protein, and adhesion time (Shen & Horbett, 

2001). Possibilities to modulate the response and the cellular content of resulting tissue also 

exist. 
Attempts to reduce the fibrotic response to implanted medical devices have included the use 
of biocompatible coatings to mask the underlying material and reduce protein adsorption 
and cellular interaction. Coating materials tested include synthetic polymers such as 
poly(vinyl alcohol) (Galeska et al., 2005), poly(lactic acid) and poly(lactic co-glycolic) acid 
(Athanasiou et al., 1996). Naturally occurring materials such as chitosan (Borchard & 
Junginger, 2001), collagen (Geiger et al., 2003) and alginate (de Vos et al., 2002) have also 
been used, although these are frequently immunogenic and subject to natural variability in 
their macromolecular structure (Morais et al., 2010). They also allow better cell adhesion and 
therefore may be more suitable for tissue engineering applications requiring enhanced 
tissue production (Cheung et al., 2007). The physical attributes of the material may also be 
important, with both porous PLA (Koschwanez et al., 2008) and collagen (Ju et al., 2008) 
coatings shown to reduce fibrosis and/or promote blood vessel formation to enhance 
function and life-time of implantable glucose sensors.   
Hydrogels composed of polar, uncharged, flexible materials such as poly (hydroxyethyl 

methacrylate) (PHEMA) or polyethylene glycol (PEG) form a hydrophilic interface between 

the underlying surface and the surrounding tissue, and allow analyte diffusion (Wisniewski 

& Reichert, 2000). PEG-based hydrogels have been shown to substantially reduce the 

immune response around biosensors implanted in rats (Quinn et al., 1997) while PHEMA 

coatings reduced clotting and protein adsorption to calcium monitors in dogs (McKinley et 

al., 1981). Phospholipid-containing materials designed to mimic the cell membrane have 

been shown to reduce adhesion of inflammatory cells and fibrous capsule formation around 

vascular devices (Goreish et al., 2004) while Abraham et al. (2005) showed that formulations 

incorporating PEG and phosphorylcholine into PHEMA-based hydrogels greatly reduced 

protein adsorption.  

Alternatively, strategies may be directed towards augmentation of the foreign body 
response for tissue engineering. In our attempts to enhance the production of tissue for 
transplantation as autologous grafts for hollow smooth muscle organs, we tested the tissue 
response to peritoneal implantation of poly(lactic acid) tubular scaffolds with different 
layer-by-layer biomolecule coatings (as described by Croll et al., 2006). 
Immunohistochemical analysis of the resulting tissue showed that Matrigel-coated surfaces 
supported the strongest cellular response whereas multilayer coatings with elastin, collagen 
I, collagen III or chitosan outermost showed the lowest levels of cellular interaction. While 
differences in capsule thickness and growth characteristics were observed, all of the 
biomolecule coatings tested induced the peritoneal foreign body response, even in the 
presence of a non-adsorptive hyaluronic acid undercoat (Cao et al., 2008).  
The variable ability of polymeric coatings to reduce acute and chronic inflammatory 
responses in vivo (Shen et al., 2002; Park & Bae, 2003) has led to investigation of anti-
inflammatory drugs to inhibit the tissue response to biomaterials. The most commonly used 
drug has been dexamethasone which modulates macrophage behaviour and reduces the 
levels of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-┙ (Joyce et al., 
1997; Umland et al., 2002). Burgess and co-workers embedded dexamethasone-containing 
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PLGA microspheres in PVA hydrogels to create a ‘smart’ coating for glucose sensors which 
allowed rapid diffusion of analytes and slow release of dexamethasone (Hickey et al., 2002; 
Patil et al., 2004). Other anti-inflammatory strategies investigated include heparin-based 
coatings to reduce protein adsorption and leukocyte recruitment (Rele et al., 2005) and 
covalent conjugation of a superoxide dismutase mimetic to the surface of biomaterials, 
resulting in reduced neutrophil recruitment and inhibition of foreign body giant cell and 
fibrous tissue capsule formation (Udipi et al., 2000). However Jones (2007) has suggested 
that minimisation of the inflammatory response to implanted biomaterials may be counter-
productive, and that a preferable strategy would be to design materials to direct the 
response towards reparative/wound healing. For example, it may be possible to tip the 

balance away from production of TGF-β1 (which promotes fibro-proliferation) towards 

TGFβ3 (which promotes tissue repair) (Ask et al., 2008). Indeed glucocorticocoid drugs have 
been shown to modulate the phenotype of infiltrating macrophages and lymphocytes (Peek 
et al., 2005; Mosser & Zhang, 2008) and could thus be used locally to regulate the cellular 
response.  
By altering the cell populations recruited to the foreign body it may be possible to modify 
the inflammatory response to implanted foreign material, as well as the cellular nature of 
the subsequent tissue response. Given that chemokines regulate cell trafficking (Gerard & 
Rollins, 2001) and play a key role in the recruitment of inflammatory cells in the peritoneal 
foreign body response (Luttikhuizen et al., 2007), chemokines may be an important target 
for intervention. De Visscher et al. (2010) have shown that impregnation of bioprosthetic 
heart valves with SDF-1 and fibronectin modulated the cellular response to produce more 
biologically relevant tissue with properties very similar to native valves, whilst Thevenot et 
al. (2010) showed that delivery of SDF-1┙ to the site of biomaterial implantation increased 
the recruitment of host stem cells, and at the same time reduced the inflammatory response, 
such that the fibrotic response to scaffold implants was ameliorated. They suggested that 
enhanced recruitment of autologous stem cells can improve the tissue responses to 
biomaterial implants through modifying/bypassing inflammatory cell responses and 
stimulating stem cell participation in healing at the implant interface. Our preliminary 
experiments show that continuous infusion of AMD3100 (a specific antagonist of the SDF-1 
receptor, CXCR4; Matthys et al., 2001) does not inhibit encapsulation of foreign material 
implanted in the peritoneal cavity, but alters the cellular composition of the encapsulating 
tissue (Le et al, unpublished data). Another important chemokine, MCP-1, is highly 
expressed at the early stages of the cellular response to foreign body implantation (Le et al., 
2010), and has been implicated in the pathogenesis of progressive fibrosis in lungs (Moore et 
al., 2001) and kidney (Kitagawa et al., 2004). Via its receptor CCR2, MCP-1 plays an 
important role in the recruitment of inflammatory monocyte subsets from the bone marrow 
into injured tissues (Geissmann et al., 2003; Karlmark et al., 2009). However Kyriakides et al. 
(2004) demonstrated that the lack of MCP-1 resulted in reduced foreign body giant cell 
formation, but did not affect either the recruitment/migration of macrophages to the site of 
biomaterial implantation or capsule formation.  
Biomaterials may also be used to deliver anti-fibrotic drugs/inhibitors. As mentioned above, 

we have shown that inhibition of TGF-┚ signalling either by siRNA knockdown of TGFβRII 
or chemical inhibition of TGF┚RII (ALK5) inhibits myofibroblast differentiation in vitro and 
peritoneal tissue capsule formation in vivo (Chau et al, unpublished data). However in light 
of the pleiotropic roles of TGF-┚, a more suitable target for selective intervention may be the 
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downstream effector, connective tissue growth factor (CTGF) which is responsible for many 
of the pro-fibrogenic effects of TGF-┚ (Ward et al., 2008; Brigstock, 2009).  
Conversely, chemokines/growth factors may be incorporated into biomaterials to promote 
tissue production for replacement/repair. For example, polylactic/glycolic acid scaffolds (as 
described by Cao et al., 2006) stabilise and prolong the half-life of growth factors, and 
provide a means for localised release of the growth factor at a controlled dose and rate of 
delivery over a prolonged period (Richardson et al., 2001). Chemokines and growth factors 
could be incorporated into different layers, then released sequentially to first recruit cells to 
the scaffold, then promote the proliferation of adherent cells, and finally induce their 
differentiation to produce mature tissue. 

7. Conclusion 

The ability to regulate the fibrotic response to implanted materials has important 
implications for bioengineering, both to control the deleterious response to implanted 
medical devices and to enhance the production of tissue for organ repair. Myofibroblasts are 
critical for appropriate wound healing and tissue repair, but are also responsible for fibrosis. 
Hence understanding the origins of cells involved in the development of myofibroblast-rich 
tissue, and identification of the mechanisms regulating their (trans)differentiation and 
biology,  is the key to successful bioengineering strategies.  
Our research into the peritoneal foreign body response questions the traditional notion of 
distinct terminally differentiated cell types with specific functions. The results 
demonstrate a developmental continuum from monocyte (or granulocyte) through 
macrophage to myofibroblast, and potentially smooth muscle and/or other cell types. 
Given that cellular plasticity is a hallmark of the myeloid lineage (Hume, 2008), these 
findings extend the prevailing concepts of adult cell fate. We propose that, at least for 
some cell lineages, cellular identity is more fluid than previously recognised. Thus within 
its life-time, a single cell has the capacity to adopt a range of phenotypes and functions 
according to physiological needs and local regulatory milieu. While research to date has 
focussed on strategies to minimise/inhibit the inflammatory response to biomaterials, a 
preferable strategy may be to direct the response towards immune tolerance and tissue 
regeneration.  
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