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1. Introduction

Efficient biological sequence (proteins or DNA) alignment is an important and challenging
task in bioinformatics. It is similar to string matching in the context of biological data and
is used to infer the evolutionary relationship between a set of protein or DNA sequences.
An accurate alignment can provide valuable information for experimentation on the newly
found sequences. It is indispensable in basic research as well as in practical applications such
as pharmaceutical development, drug discovery, disease prevention and criminal forensics.
Many algorithms and methods, such as, dot plot (Gibbs & McIntyre, 1970), Needleman-Wunsch
(N-W) (Needleman & Wunsch, 1970), Smith-Waterman (S-W) (Smith & Waterman, 1981),
FASTA (Pearson & Lipman, 1985), BLAST (Altschul et al., 1990), HMMER (Eddy, 1998) and
ClustalW (Thompson et al., 1994) have been proposed to perform and accelerate sequence
alignment activities. An overview of these methods is given in (Hasan et al., 2007). Out
of these, S-W algorithm is an optimal sequence alignment method, but its computational
cost makes it inappropriate for practical purposes. To develop efficient and optimal
sequence alignment solutions, the S-W algorithm has recently been implemented on emerging
accelerator platforms such as Field Programmable Gate Arrays (FPGAs), Cell Broadband Engine
(Cell/B.E.) and Graphics Processing Units (GPUs) (Buyukkur & Najjar, 2008; Hasan et al., 2010;
Liu et al., 2009; 2010; Lu et al., 2008). This chapter aims at providing a broad overview of
sequence alignment in general with particular emphasis on the classification and discussion
of available methods and their comparison. Further, it reviews in detail the acceleration
approaches based on implementations on different platforms and provides a comparison
considering different parameters. This chapter is organized as follows:
The remainder of this section gives a classification, discussion and comparison of the available
methods and their hardware acceleration. Section 2 introduces the S-W algorithm which is
the focus of discussion in the succeeding sections. Section 3 reviews CPU-based acceleration.
Section 4 provides a review of FPGA-based acceleration. Section 5 overviews GPU-based
acceleration. Section 6 presents a comparison of accelerations on different platforms, whereas
Section 7 concludes the chapter.

1.1 Classification

Sequence alignment aims at identifying regions of similarity between two DNA or protein
sequences (the query sequence and the subject or database sequence). Traditionally, the
methods of pairwise sequence alignment are classified as either global or local, where pairwise
means considering only two sequences at a time. Global methods attempt to match as many

 

An Overview of Hardware-Based Acceleration  
of Biological Sequence Alignment 

9

www.intechopen.com



2 Will-be-set-by-IN-TECH

characters as possible, from end to end, whereas local methods aim at identifying short
stretches of similarity between two sequences. However, in some cases, it might also be
needed to investigate the similarities between a group of sequences, hence multiple sequence
alignment methods are introduced. Multiple sequence alignment is an extension of pairwise
alignment to incorporate more than two sequences at a time. Such methods try to align all of
the sequences in a given query set simultaneously. Figure 1 gives a classification of various
available sequence alignment methods.

Global Local

BLAST
S-W

algorithm

N-W

algorithm FASTA

Multiple

ClustalWHMMER

Exact methods Approximate methods

Dot plot

Sequence Alignment

Methods

Fig. 1. Various methods for sequence alignment

These methods are categorized into three types, i.e. global, local and multiple, as shown in the
figure. Further, the figure also identifies the exact methods and approximate methods. The
methods shown in Figure 1 are discussed briefly in the following subsection.

1.2 Discussion of available methods

Following is a brief description of the available methods for sequence alignment.

Global methods

Global methods aim at matching as many characters as possible, from end to end between
two sequences i.e. the query sequence (Q) and the database sequence (D). Methods carrying out
global alignment include dot plot and N-W algorithm. Both are categorized as exact methods.
The difference is that dot plot is based on a basic search method, whereas N-W on dynamic
programming (DP) (Giegerich, 2000).

Local methods

In contrast to global methods, local methods attempt to identify short stretches of similarity
between two sequences i.e. Q and D. These include exact method like S-W and heuristics
based approximate methods like FASTA and BLAST.

Multiple alignment methods

It might be of interest in some cases to consider the similarities between a group of sequences.
Multiple sequence alignment methods like HMMER and ClustalW are introduced to handle
such cases.

188 Computational Biology and Applied Bioinformatics
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1.3 Comparison

The alignment methods can be compared on the basis of their temporal and spatial
complexities and parameters like alignment type and search procedure. A summary of the
comparison is shown in Table 1. It is interesting to note that all the global and local sequence
alignment methods essentially have the same computational complexity of O(LQLD), where
LQ and LD are the lengths of the query and database sequences, respectively. Yet despite this,
each of the algorithms has very different running times, with BLAST being the fastest and
dynamic programming algorithms being the slowest. In case of multiple sequence alignment
methods, ClustalW has the worst time complexity of O(L2

QL2
D), whereas HMMER has a

time complexity of O(LQL2
D). The space complexities of all the alignment methods are also

essentially identical, around O(LQLD) space, except BLAST, the space complexity of which
is O(20w + LQLD). In the exact methods, dot plot uses a basic search method, whereas N-W
and S-W use DP. On the other hand, all the approximate methods are heuristic based. It
is also worthy to note that FASTA and BLAST have to make sacrifices on sensitivity to be
able to achieve higher speeds. Thus, a trade off exists between speed and sensitivity and we
must come to a compromise to be able to efficiently align sequences in a biologically relevant
manner in a reasonable amount of time.

Method Type Accuracy Search
Time Space

complexity complexity

Dot plot Global Exact Basic O(LQLD) O(LQLD)
N-W Global Exact DP O(LQLD) O(LQLD)
S-W Local Exact DP O(LQLD) O(LQLD)

FASTA Local Approximate Heuristic O(LQLD) O(LQLD)
BLAST Local Approximate Heuristic O(LQLD) O(20w + LQLD)

HMMER Multiple Approximate Heuristic O(LQL2
D) O(LQLD)

ClustalW Multiple Approximate Heuristic O(L2
QL2

D) O(LQLD)

Table 1. Comparison of various sequence alignment methods

1.4 Hardware platforms

Work has been done on accelerating sequence alignment methods, by implementing them on
various available hardware platforms. Following is a brief discussion about such platforms.

CPUs

CPUs are well known, flexible and scalable architectures. By exploiting the Streaming
SIMD Extension (SSE) instruction set on modern CPUs, the running time of the analyses is
decreased significantly, thereby making analyses of data intensive problems like sequence
alignment feasible. Also emerging CPU technologies like multi-core combines two or more
independent processors into a single package. The Single Instruction Multiple Data-stream
(SIMD) paradigm is heavily utilized in this class of processors, making it appropriate for data
parallel applications like sequence alignment. SIMD describes CPUs with multiple processing
elements that perform the same operation on multiple data simultaneously. Thus, such
machines exploit data level parallelism. The SSE instruction set extension in modern CPUs
contains 70 new SIMD instructions. This extension greatly increases the performance when
exactly the same operations are to be performed on multiple data objects, making sequence
alignment a typical application.

189An Overview of Hardware-Based Acceleration of Biological Sequence Alignment
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FPGAs

FPGAs are reconfigurable data processing devices on which an algorithm is directly mapped
to basic processing logic elements. To take advantage of using an FPGA, one has to implement
massively parallel algorithms on this reconfigurable device. They are thus well suited for
certain classes of bioinformatics applications, such as sequence alignment. Methods like the
ones based on systolic arrays are used to accelerate such applications.

GPUs

Initially stimulated by the need for real time graphics in video gaming, GPUs have evolved
into powerful and flexible vector processors, ideal for accelerating a variety of data parallel
applications. GPUs have in the last couple of years developed themselves from a fixed
function graphics processing unit into a flexible platform that can be used for high performance
computing (HPC). Applications like bioinformatics sequence alignment can run very efficiently
on these architectures.

2. Smith-Waterman algorithm

In 1981, Smith and Waterman described a method, commonly known as the Smith-Waterman
(S-W) algorithm (Smith & Waterman, 1981), for finding common regions of local similarity.
S-W method has been used as the basis for many subsequent algorithms, and is often quoted
as a benchmark when comparing different alignment techniques. When obtaining the local
S-W alignment, a matrix H is constructed using the following equation.

Hi,j = max















0
Hi−1,j−1 + Si,j

Hi−1,j − d

Hi,j−1 − d

(1)

Where Si,j is the similarity score and d is the penalty for a mismatch. The algorithm can be
implemented using the following pseudo code.

Initialization:

H(0,j) = 0

H(i,0) = 0

Matrix Fill:

for each i,j = 1 to M,N

{

H(i,j) = max(0,

H(i-1,j-1) + S(i,j),

H(i-1,j) - d,

H(i,j-1) - d)

}

Traceback:

H(opt) = max(H(i,j))

traceback(H(opt))
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The H matrix is constructed with one sequence lined up against the rows of a matrix, and
another against the columns, with the first row and column initialized with a predefined value
(usually zero) i.e. if the sequences are of length M and N respectively, then the matrix for the
alignment algorithm will have (M + 1) × (N + 1) dimensions. The matrix fill stage scores
each cell in the matrix. This score is based on whether the two intersecting elements of each
sequence are a match, and also on the score of the cell’s neighbors to the left, above, and
diagonally upper left. Three separate scores are calculated based on all three neighbors, and
the maximum of these three scores (or a zero if a negative value would result) is assigned
to the cell. This is done for each cell in the matrix resulting in O(MN) complexity for the
matrix fill stage. Even though the computation for each cell usually only consists of additions,
subtractions, and comparisons of integers, the algorithm would nevertheless perform very
poorly if the lengths of the query sequences become large. The traceback step starts at the cell
with the highest score in the matrix and ends at a cell when the similarity score drops below a
certain predefined threshold. For doing this, the algorithm requires to find the maximum cell
which is done by traversing the entire matrix, making the time complexity for the traceback
O(MN). It is also possible to keep track of the cell with the maximum score, during the
matrix filling segment of the algorithm, although this will not change the overall complexity.
Thus, the total time complexity of the S-W algorithm is O(MN). The space complexity is also
O(MN).
In order to reduce the O(MN) complexity of the matrix fill stage, multiple entries of the
H matrix can be calculated in parallel. This is however complicated by data dependencies,
whereby each Hi,j entry depends on the values of three neighboring entries Hi,j−1, Hi−1,j and
Hi−1,j−1, with each of those entries in turn depending on the values of three neighboring
entries, which effectively means that this dependency extends to every other entry in the
region Hx,y : x ≤ i, y ≤ j. This implies that it is possible to simultaneously compute all the
elements in each anti-diagonal, since they fall outside each other’s data dependency regions.
Figure 2 shows a sample H matrix for two sequences, with the bounding boxes indicating the
elements that can be computed in parallel. The bottom-right cell is highlighted to show that
its data dependency region is the entire remaining matrix. The dark diagonal arrow indicates
the direction in which the computation progresses. At least 9 cycles are required for this
computation, as there are 9 bounding boxes representing 9 anti-diagonals and a maximum of
5 cells may be computed in parallel.
The degree of parallelism is constrained to the number of elements in the anti-diagonal and
the maximum number of elements that can be computed in parallel are equal to the number
of elements in the longest anti-diagonal (ld), where,

ld = min(M, N) (2)

Theoretically, the lower bound to the number of steps required to calculate the entries of
the H matrix in a parallel implementation of the S-W algorithm is equal to the number of
anti-diagonals required to reach the bottom-right element, i.e. M + N − 1 (Liao et al., 2004).
Figure 3 shows the logic circuit to compute an element of the H matrix. The logic contains
three adders, a sequence comparator circuit (SeqCmp) and three max operators (MAX). The
sequence comparator compares the corresponding characters of two input sequences and
outputs a match/mismatch score, depending on whether the two characters are equal or not.
Each max operator finds the maximum of its two inputs. The time to compute an element is
4 cycles, assuming that the time for each cycle is equal to the latency of one add or compare
operation.
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Fig. 3. Logic circuit to compute cells in the H matrix, where + is an adder, MAX is a max
operator and SeqCmp is the sequence comparator that generates match/mismatch scores
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3. CPU-based acceleration

In this section CPU-based acceleration of the S-W algorithm is reviewed. Furthermore, an
estimation of the performance for top-end and future systems is made.

3.1 Recent implementations

The first CPU implementations used a sequential way of calculating all the matrix values.
These implementations were slow and therefore hardly used. In 2007, Farrar introduced
a SSE implementation for S-W (Farrar, 2007). His work used SSE2 instructions for an Intel
processor and was up to six times faster than existing S-W implementations. Two years later,
a Smith-Waterman implementation on Playstation 3 (SWPS3) was introduced (Szalkowski et al.,
2009), which was based on a minor adjustment to Farrar’s implementation. SWPS3 is a
vectorized implementation of the Smith-Waterman local alignment algorithm optimized for
both the IBM Cell/B.E. and Intel x86 architectures. A SWPS3 version optimized for multi
threading has been released recently (Aldinucci et al., 2010). The SSE implementations can
be viewed as being semi parallel, as they constantly calculate sixteen, eight or less values at
the same time, while discarding startup and finish time. Table 2 presents the performance
achieved by these implementations on various CPU platforms.

Implementation
Peak Benchmark Peak performance

performance hardware (per thread)

(Farrar, 2007) 2.9 GCUPS
2.0 GHz, Xeon

3.75 GCUPS
Core 2 Duo

single thread

(Szalkowski et al., 2009) 15.7 GCUPS
2.4 GHz

4.08 GCUPS
Core 2 Quad

Q6600, 4 threads

(Aldinucci et al., 2010) 35 GCUPS
2.5 GHz, 2x Xeon

4.38 GCUPS
Core Quad

E5420, 8 threads

Table 2. Performance achieved by various S-W CPU implementations (Vermij, 2011)

3.2 Performance estimations for top-end and future CPUs

With the data from Table 2, we make an estimate of the performance on the current top-end
CPUs and take a look into the future. Table 3 gives the estimated peak performances based
on the SIMD register width, the number of cores, clock speed and the known speed per
core. We assumed linear scaling in the number of cores as suggested in Table 2, and the
given performances may therefore not be reliable. Non-ideal inter-core communication,
memory bandwidth limitations and shared caches could lead to a lower peak performance.
Furthermore, no distinction in performance is made between Intel and AMD processors.
Hence, Table 3 must be used as an indication to where the S-W performance could go on
in current and future CPUs (Vermij, 2011).

4. FPGA-based acceleration

FPGAs are programmable logic devices. To map an application on flexible FPGA platforms,
a program is written in a hardware description language like VHDL. The flexibility, difficulty

193An Overview of Hardware-Based Acceleration of Biological Sequence Alignment

www.intechopen.com



8 Will-be-set-by-IN-TECH

System Released
SIMD Cores Clock Peak performance

register width (threads) speed (estimated)

Xeon
2010 128

8 2.26 32
Beckton (16) GHz GCUPS

Opteron
2010 128

12 2.3 48
Magny-Cours (12) GHz GCUPS

Opteron
2011 128

16 2.3 64
Interlagos (16) GHz GCUPS

Table 3. Estimated peak performance for current top-end and future CPUs (Vermij, 2011)

of design as well as the performance of FPGA implementations fall typically somewhere
between pure software running on a CPU and an Application Specific Integrated Circuit
(ASIC). FPGAs are widely used to accelerate applications like S-W based sequence alignment.
Implementations rely on the ability to create building blocks called processing elements (PEs)
that can update one matrix cell every clock cycle. Furthermore, multiple PEs can be linked
together in a two dimensional or linear systolic arrays to process huge data in parallel. This
section provides a brief description of traditional systolic arrays followed by a discussion of
existing and future FPGA-based S-W implementations.

4.1 Systolic arrays

Systolic array is an arrangement of processors in an array, where data flows synchronously
across the array between neighbors, usually with data flowing in a specific direction
(Kung & Leiserson, 1979), (Quinton & Robert, 1991). Each processor at each step takes in data
from one or more neighbors (e.g. North and West), processes it and, in the next step, outputs
results to the opposite neighbors (South and East). Systolic arrays can be implemented in
rectangular or 2-dimensional (2D) and linear or 1-dimensional (1D) fashion. Figure 4 gives a
pictorial view of both implementation types.
They best suit compute-intensive applications like biological sequence alignment. The
disadvantage is that being highly specialized processors type, they are difficult to implement
and build.
In (Pfeiffer et al., 2005), a concept to accelerate S-W algorithm on the basis of linear systolic
array is demonstrated. The reason for choosing this architecture is outlined by demonstrating
the efficiency and simplicity in combination with the algorithm. Nevertheless, there are two
key methodologies to speedup this massively parallel system. By turning the processing
from bit-parallel to bit-serial, the actual improvement is enabled. This change is performance
neutral, but in combination with the early maximum detection, a considerable speedup is
possible. Another effect of this improvement is a data dependant execution time of the
processing elements. Here, the second acceleration prevents idle times to exploit the hardware
and speeds up the computation. This can be accomplished by a globally asynchronous timing
representing a self-timed linear systolic array. The authors have provided no performance
estimation due to the initial stage of their work, that is why it cannot be compared with other
related work.
In (Vermij, 2011), the working of a linear systolic array (LSA) is explained. Such an array works
like the SSE unit in a modern CPU. But instead of having a fixed length of lets say 16, the
FPGA based array can have any length.
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Fig. 4. Pictorial view of systolic array architectures

4.2 Existing FPGA implementations

In Section 3, we discussed some existing S-W implementations running on a CPU. A
comparable analysis for FPGAs is rather hard. There are very few real, complete
implementations that give usable results. Most research implementations only discuss
synthetic tests, giving very optimistic numbers for implementations that are hardly used in
practice. Furthermore, there is a great variety in the types of FPGAs used. Since every FPGA
series has a different way of implementing circuitry, it is hard to make a fair comparison.
In addition, the performance of the implementations relies heavily on the data widths used.
Smaller data widths lead to smaller PEs, which lead to faster implementations. These numbers
are not usually published. The first, third and fourth implementations shown in Table 4 make
this clear, where the performance is given in terms of Giga Cell Updates Per Second (GCUPS).
Using the same FPGA device, these three implementations differ significantly in performance.
The most reliable numbers are from Convey and SciEngines, as shown in the last two entries
of Table 4. These implementations work the same in practice for real cases and are build for
maximal performance (Vermij, 2011).
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Reference FPGA Frequency PEs
Performance Performance
(per FPGA) (per system)

(Puttegowda et al., 2003)
Virtex2 180

7000
1260

—
XC2V6000 MHz GCUPS

(Yu et al., 2003)
Virtex2

— 4032
742

—
XCV1000-6 GCUPS

(Oliver et al., 2005)
Virtex2 55

252
13.9

—
XC2V6000 MHz GCUPS

(Gok & Yilmaz, 2006)
Virtex2 112

482
54

—
XC2V6000 MHz GCUPS

(Altera, 2007)
Stratix2 66.7

384
25.6

—
EP2S180 MHz GCUPS

(Cray, 2010) Virtex4
200

120
24.1

—
MHz GCUPS

(Convey, 2010)
Virtex5 150

1152
172.8 691.2

LX330 MHz GCUPS GCUPS

(SciEngines, 2010)
Spartan6

— —
47 6046

LX150 GCUPS GCUPS

Table 4. Performance of various FPGA implementations (Vermij, 2011)

4.3 Future FPGA implementations

The performance of S-W implementations on FPGA can foremost be increased by using
larger and faster FPGAs. Larger FPGAs can contain more PEs and therefore deliver higher
performance in terms of GCUPS. The largest Xilinx Virtex 6 FPGA device has roughly 2.5
times more area than the largest Virtex 5 FPGA, so the peak performance of the former can be
estimated at 2.5 × 172.8 = 432 GCUPS (using the numbers from the Convey implementation)
(Vermij, 2011).

5. GPU-based acceleration

The parallelization capabilities of GPUs can be best exploited for accelerating biological
sequence alignment applications. This section provides some brief background information
about GPUs. Furthermore, it presents the current GPU implementations for S-W based
sequence alignment.

5.1 GPU background

Compute Unified Device Architecture (CUDA) is the hardware and software architecture that
enables NVIDIA GPUs (Fermi™, 2009) to execute programs written in C, C++, Fortran,
OpenCL, DirectCompute and other languages. A CUDA program calls kernels that run on
the GPU. A kernel executes in parallel across a set of threads, where a thread is the basic
unit in the programming model that executes an instance of the kernel, and has access to
registers and per thread local memory. The programmer organizes these threads in grids
of thread blocks, where a thread block is a set of concurrently executing threads and has a
shared memory for communication between the threads. A grid is an array of thread blocks
that execute the same kernel, read inputs from and write outputs to global memory, and
synchronize between interdependent kernel calls. Figure 5 gives a block diagram description
of the GPU architecture.
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Fig. 5. Block diagram description of a GPU architecture

5.2 Current implementations

The first known implementations of S-W based sequence alignment on a GPU are presented
in (Liu, Schmidt, Voss, Schroder & Muller-Wittig, 2006) and (Liu, Huang, Johnson & Vaidya,
2006). These approaches are similar and use the OpenGL graphics API to search
protein databases. First the database and query sequences are copied to GPU texture
memory. The score matrix is then processed in a systolic array fashion, where the data
flows in anti-diagonals. The results of each anti-diagonal are again stored in texture
memory, which are then used as inputs for the next pass. The implementation in
(Liu, Schmidt, Voss, Schroder & Muller-Wittig, 2006) searched 99.8% of Swiss-Prot (almost
180,000 sequences) and managed to obtain a maximum speed of 650 MCUPS compared
to around 75 for the compared CPU version. The implementation discussed in
(Liu, Huang, Johnson & Vaidya, 2006) offers the ability to run in two modes, i.e. one with
and one without traceback. The version with no traceback managed to perform at 241
MCUPS, compared to 178 with traceback and 120 for the compared CPU implementation.
Both implementations were benchmarked using a Geforce GTX 7800 graphics card.
The first known CUDA implementation, ‘SW-CUDA’, is discussed in (Manavski & Valle,
2008). In this approach, each of the GPU’s processors performs a complete alignment instead
of them being used to stream through a single alignment. The advantage of this is that no
communication between processing elements is required, thereby reducing memory reads and
writes. This implementation managed to perform at 1.9 GCUPS on a single Geforce GTX 8800
graphics card when searching Swiss-Prot, compared to around 0.12 GCUPS for the compared
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CPU implementation. Furthermore, it is shown to scale almost linearly with the amount of
GPUs used by simply splitting up the database.
Various improvements have been suggested to the approach presented in (Manavski & Valle,
2008), as shown in (Akoglu & Striemer, 2009; Liu et al., 2009). In (Liu et al., 2009), for
sequences of more than 3,072 amino acids an ‘inter-task parallelization’ method similar to the
systolic array and OpenGL approaches is used as this, while slower, requires less memory.
The ‘CUDASW++’ solution presented in (Liu et al., 2009) manages a maximum speed of
about 9.5 GCUPS searching Swiss-Prot on a Geforce GTX 280 graphics card. An improved
version, ‘CUDASW++ 2.0’ has been published recently (Liu et al., 2010). Being the fastest
Smith-Waterman GPU implementation to date, ‘CUDASW++ 2.0’ managed 17 GCUPS on a
single GTX 280 GPU, outperforming CPU-based BLAST in its benchmarks.
In (Kentie, 2010), an enhanced GPU implementation for protein sequence alignment using
database and memory access optimizations is presented. Each processing element in
this implementation is used to independently generate a complete alignment between a
query sequence and a database sequence. This eliminates the need for inter-processor
communication and results in efficient resource utilization. The GPU used for implementation
(i.e. NVIDIA GTX 275) contains 240 processors, while the latest release of Swiss-Prot contains
more than 500,000 protein sequences. Hence, it is possible to keep all processors well occupied
while aligning query sequences with the sequences in the Swiss-Prot database. The results
demonstrate that the implementation presented in (Kentie, 2010) achieves a performance
of 21.4 GCUPS on an NVIDIA GTX 275 graphics card. Table 5 summarizes these GPU
implementations. Besides NVIDIA, ATI/AMD (AMD, 2011) also produces graphics cards
but to our knowledge no S-W implementations on such cards are available.

Implementation Device
Database

Performance
searched

(Liu, Schmidt, Voss, Schroder & Muller-Wittig, 2006) GTX 7800 Swiss-Prot 650 MCUPS

(Liu, Huang, Johnson & Vaidya, 2006) GTX 7800
983 protein

241 MCUPS
sequences

(Manavski & Valle, 2008) GTX 8800 Swiss-Prot 1.9 GCUPS
(Liu et al., 2009) GTX 280 Swiss-Prot 9.5 GCUPS
(Liu et al., 2010) GTX 280 Swiss-Prot 17 GCUPS
(Kentie, 2010) GTX 275 Swiss-Prot 21.4 GCUPS

Table 5. Summary of the existing GPU implementations

6. Comparison of acceleration on different platforms

This section compares the performance of S-W implementations on various platforms like
CPUs, FPGAs and GPUs. The comparison is based on parameters like cost, energy
consumption, flexibility, scalability and future prospects. For the CPU, we consider a four
way, 48 core Opteron machine. For GPUs, a fast PC with 4 high end graphics cards, and for
FPGAs the fastest S-W system known, the one from SciEngines (SciEngines, 2010). The results
are shown in Figure 6. Following is a discussion per metric (Vermij, 2011).

Performance/Euro

FPGAs can deliver the best amount of GCUPS per Euro, followed closely by GPUs. The gap
between GPUs and CPUs can be explained by the extra money needed for a 4 way CPU
system, while plugging 4 GPUs on a commodity motherboard is free. This result explains
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Performance / €

Performance / WattFuture prospect

FlexibilityScalability

CPU implementations

Performance / €
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FlexibilityScalability

GPU implementations

Future prospect

Performance / €

Performance / Watt

FlexibilityScalability

FPGA implementations

Future prospect

Fig. 6. Analysis of various S-W metrics for implementations on different platforms (Vermij,
2011)

why FPGAs are used for high performance computing. S-W might not be the algorithm of
choice to show a major performance per Euro gain from using FPGAs. Nevertheless, it shows
the trend.

Performance/Watt

It is clear that here, in contrast to the previous metric, FPGAs are the absolute winner. Full
systems can deliver thousands of GCUPS for around 1000 Watts. This is another important
reason for using FPGAs for sequence alignment. Note that, while not visible in the graphs,
CPUs score around twice as good as GPUs.

Flexibility

This metric represents the effort needed to change a fast linear gap implementation to use
affine gaps. A skilled engineer would manage to do this in a day for a CPU implementation,
in a couple of days for GPU implementations, and many weeks for their FPGA counterpart.

Scalability

Here we took CPUs as baseline. Given a suitable problem, CPUs are very scalable as they
can be connected together using standard networking solutions. By the same token, GPUs are
also scalable, as they can take advantage of the scalability of CPUs, but will introduce some
extra latency. Therefore they score a bit lower than CPUs. Depending on the used platform,
FPGAs can also be made scalable.
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Future prospect

In the past few years, there is a trend for CPUs to replace GPUs in high speed systems. This
trend is expected to continue, thereby reducing the market share of GPUs in favour of CPUs.
CPUs therefore score highly on this metric while GPUs score rather low. In the very specific
HPC areas, however, where memory bandwidth requirements are low and the problem is
very composable, FPGAs will likely continue to be the best choice. S-W partially lies in this
category.

7. Conclusions

This chapter provided a classification, discussion and comparison of the available sequence
alignment methods and their acceleration on various available hardware platforms. A
detailed introduction about the S-W algorithm, its pseudo code, data dependencies in the H
matrix and logic circuit to compute values of the cells in the H matrix are provided. A review
of CPU-based acceleration of S-W algorithm was presented. Recent CPU implementations
were discussed and compared. Further, performance estimations for top end current and
future CPUs were provided. FPGA-based acceleration of S-W algorithm and a discussion
about systolic arrays was given. Existing FPGA implementations were discussed and
compared. Further, an insight into the future FPGA implementations was touched upon.
GPU-based acceleration of S-W algorithm and GPU background were presented. Current
GPU implementations were discussed and compared. Furthermore, this chapter presented a
comparison of S-W accelerations on different hardware platforms. The comparison was based
on the following parameters.

• Performance per euro

• Performance per unit watt

• Flexibility

• Scalability

• Future prospects
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