
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Laiq Hasan and Zaid Al-Ars
TU Delft

The Netherlands

1. Introduction

Efficient biological sequence (proteins or DNA) alignment is an important and challenging
task in bioinformatics. It is similar to string matching in the context of biological data and
is used to infer the evolutionary relationship between a set of protein or DNA sequences.
An accurate alignment can provide valuable information for experimentation on the newly
found sequences. It is indispensable in basic research as well as in practical applications such
as pharmaceutical development, drug discovery, disease prevention and criminal forensics.
Many algorithms and methods, such as, dot plot (Gibbs & McIntyre, 1970), Needleman-Wunsch
(N-W) (Needleman & Wunsch, 1970), Smith-Waterman (S-W) (Smith & Waterman, 1981),
FASTA (Pearson & Lipman, 1985), BLAST (Altschul et al., 1990), HMMER (Eddy, 1998) and
ClustalW (Thompson et al., 1994) have been proposed to perform and accelerate sequence
alignment activities. An overview of these methods is given in (Hasan et al., 2007). Out
of these, S-W algorithm is an optimal sequence alignment method, but its computational
cost makes it inappropriate for practical purposes. To develop efficient and optimal
sequence alignment solutions, the S-W algorithm has recently been implemented on emerging
accelerator platforms such as Field Programmable Gate Arrays (FPGAs), Cell Broadband Engine
(Cell/B.E.) and Graphics Processing Units (GPUs) (Buyukkur & Najjar, 2008; Hasan et al., 2010;
Liu et al., 2009; 2010; Lu et al., 2008). This chapter aims at providing a broad overview of
sequence alignment in general with particular emphasis on the classification and discussion
of available methods and their comparison. Further, it reviews in detail the acceleration
approaches based on implementations on different platforms and provides a comparison
considering different parameters. This chapter is organized as follows:
The remainder of this section gives a classification, discussion and comparison of the available
methods and their hardware acceleration. Section 2 introduces the S-W algorithm which is
the focus of discussion in the succeeding sections. Section 3 reviews CPU-based acceleration.
Section 4 provides a review of FPGA-based acceleration. Section 5 overviews GPU-based
acceleration. Section 6 presents a comparison of accelerations on different platforms, whereas
Section 7 concludes the chapter.

1.1 Classification

Sequence alignment aims at identifying regions of similarity between two DNA or protein
sequences (the query sequence and the subject or database sequence). Traditionally, the
methods of pairwise sequence alignment are classified as either global or local, where pairwise
means considering only two sequences at a time. Global methods attempt to match as many

An Overview of Hardware-Based Acceleration
of Biological Sequence Alignment

9

www.intechopen.com

2 Will-be-set-by-IN-TECH

characters as possible, from end to end, whereas local methods aim at identifying short
stretches of similarity between two sequences. However, in some cases, it might also be
needed to investigate the similarities between a group of sequences, hence multiple sequence
alignment methods are introduced. Multiple sequence alignment is an extension of pairwise
alignment to incorporate more than two sequences at a time. Such methods try to align all of
the sequences in a given query set simultaneously. Figure 1 gives a classification of various
available sequence alignment methods.

Global Local

BLAST
S-W

algorithm

N-W

algorithm FASTA

Multiple

ClustalWHMMER

Exact methods Approximate methods

Dot plot

Sequence Alignment

Methods

Fig. 1. Various methods for sequence alignment

These methods are categorized into three types, i.e. global, local and multiple, as shown in the
figure. Further, the figure also identifies the exact methods and approximate methods. The
methods shown in Figure 1 are discussed briefly in the following subsection.

1.2 Discussion of available methods

Following is a brief description of the available methods for sequence alignment.

Global methods

Global methods aim at matching as many characters as possible, from end to end between
two sequences i.e. the query sequence (Q) and the database sequence (D). Methods carrying out
global alignment include dot plot and N-W algorithm. Both are categorized as exact methods.
The difference is that dot plot is based on a basic search method, whereas N-W on dynamic
programming (DP) (Giegerich, 2000).

Local methods

In contrast to global methods, local methods attempt to identify short stretches of similarity
between two sequences i.e. Q and D. These include exact method like S-W and heuristics
based approximate methods like FASTA and BLAST.

Multiple alignment methods

It might be of interest in some cases to consider the similarities between a group of sequences.
Multiple sequence alignment methods like HMMER and ClustalW are introduced to handle
such cases.

188 Computational Biology and Applied Bioinformatics

www.intechopen.com

An Overview of Hardware-based Acceleration of Biological Sequence Alignment 3

1.3 Comparison

The alignment methods can be compared on the basis of their temporal and spatial
complexities and parameters like alignment type and search procedure. A summary of the
comparison is shown in Table 1. It is interesting to note that all the global and local sequence
alignment methods essentially have the same computational complexity of O(LQLD), where
LQ and LD are the lengths of the query and database sequences, respectively. Yet despite this,
each of the algorithms has very different running times, with BLAST being the fastest and
dynamic programming algorithms being the slowest. In case of multiple sequence alignment
methods, ClustalW has the worst time complexity of O(L2

QL2
D), whereas HMMER has a

time complexity of O(LQL2
D). The space complexities of all the alignment methods are also

essentially identical, around O(LQLD) space, except BLAST, the space complexity of which
is O(20w + LQLD). In the exact methods, dot plot uses a basic search method, whereas N-W
and S-W use DP. On the other hand, all the approximate methods are heuristic based. It
is also worthy to note that FASTA and BLAST have to make sacrifices on sensitivity to be
able to achieve higher speeds. Thus, a trade off exists between speed and sensitivity and we
must come to a compromise to be able to efficiently align sequences in a biologically relevant
manner in a reasonable amount of time.

Method Type Accuracy Search
Time Space

complexity complexity

Dot plot Global Exact Basic O(LQLD) O(LQLD)
N-W Global Exact DP O(LQLD) O(LQLD)
S-W Local Exact DP O(LQLD) O(LQLD)

FASTA Local Approximate Heuristic O(LQLD) O(LQLD)
BLAST Local Approximate Heuristic O(LQLD) O(20w + LQLD)

HMMER Multiple Approximate Heuristic O(LQL2
D) O(LQLD)

ClustalW Multiple Approximate Heuristic O(L2
QL2

D) O(LQLD)

Table 1. Comparison of various sequence alignment methods

1.4 Hardware platforms

Work has been done on accelerating sequence alignment methods, by implementing them on
various available hardware platforms. Following is a brief discussion about such platforms.

CPUs

CPUs are well known, flexible and scalable architectures. By exploiting the Streaming
SIMD Extension (SSE) instruction set on modern CPUs, the running time of the analyses is
decreased significantly, thereby making analyses of data intensive problems like sequence
alignment feasible. Also emerging CPU technologies like multi-core combines two or more
independent processors into a single package. The Single Instruction Multiple Data-stream
(SIMD) paradigm is heavily utilized in this class of processors, making it appropriate for data
parallel applications like sequence alignment. SIMD describes CPUs with multiple processing
elements that perform the same operation on multiple data simultaneously. Thus, such
machines exploit data level parallelism. The SSE instruction set extension in modern CPUs
contains 70 new SIMD instructions. This extension greatly increases the performance when
exactly the same operations are to be performed on multiple data objects, making sequence
alignment a typical application.

189An Overview of Hardware-Based Acceleration of Biological Sequence Alignment

www.intechopen.com

4 Will-be-set-by-IN-TECH

FPGAs

FPGAs are reconfigurable data processing devices on which an algorithm is directly mapped
to basic processing logic elements. To take advantage of using an FPGA, one has to implement
massively parallel algorithms on this reconfigurable device. They are thus well suited for
certain classes of bioinformatics applications, such as sequence alignment. Methods like the
ones based on systolic arrays are used to accelerate such applications.

GPUs

Initially stimulated by the need for real time graphics in video gaming, GPUs have evolved
into powerful and flexible vector processors, ideal for accelerating a variety of data parallel
applications. GPUs have in the last couple of years developed themselves from a fixed
function graphics processing unit into a flexible platform that can be used for high performance
computing (HPC). Applications like bioinformatics sequence alignment can run very efficiently
on these architectures.

2. Smith-Waterman algorithm

In 1981, Smith and Waterman described a method, commonly known as the Smith-Waterman
(S-W) algorithm (Smith & Waterman, 1981), for finding common regions of local similarity.
S-W method has been used as the basis for many subsequent algorithms, and is often quoted
as a benchmark when comparing different alignment techniques. When obtaining the local
S-W alignment, a matrix H is constructed using the following equation.

Hi,j = max















0
Hi−1,j−1 + Si,j

Hi−1,j − d

Hi,j−1 − d

(1)

Where Si,j is the similarity score and d is the penalty for a mismatch. The algorithm can be
implemented using the following pseudo code.

Initialization:

H(0,j) = 0

H(i,0) = 0

Matrix Fill:

for each i,j = 1 to M,N

{

H(i,j) = max(0,

H(i-1,j-1) + S(i,j),

H(i-1,j) - d,

H(i,j-1) - d)

}

Traceback:

H(opt) = max(H(i,j))

traceback(H(opt))

190 Computational Biology and Applied Bioinformatics

www.intechopen.com

An Overview of Hardware-based Acceleration of Biological Sequence Alignment 5

The H matrix is constructed with one sequence lined up against the rows of a matrix, and
another against the columns, with the first row and column initialized with a predefined value
(usually zero) i.e. if the sequences are of length M and N respectively, then the matrix for the
alignment algorithm will have (M + 1) × (N + 1) dimensions. The matrix fill stage scores
each cell in the matrix. This score is based on whether the two intersecting elements of each
sequence are a match, and also on the score of the cell’s neighbors to the left, above, and
diagonally upper left. Three separate scores are calculated based on all three neighbors, and
the maximum of these three scores (or a zero if a negative value would result) is assigned
to the cell. This is done for each cell in the matrix resulting in O(MN) complexity for the
matrix fill stage. Even though the computation for each cell usually only consists of additions,
subtractions, and comparisons of integers, the algorithm would nevertheless perform very
poorly if the lengths of the query sequences become large. The traceback step starts at the cell
with the highest score in the matrix and ends at a cell when the similarity score drops below a
certain predefined threshold. For doing this, the algorithm requires to find the maximum cell
which is done by traversing the entire matrix, making the time complexity for the traceback
O(MN). It is also possible to keep track of the cell with the maximum score, during the
matrix filling segment of the algorithm, although this will not change the overall complexity.
Thus, the total time complexity of the S-W algorithm is O(MN). The space complexity is also
O(MN).
In order to reduce the O(MN) complexity of the matrix fill stage, multiple entries of the
H matrix can be calculated in parallel. This is however complicated by data dependencies,
whereby each Hi,j entry depends on the values of three neighboring entries Hi,j−1, Hi−1,j and
Hi−1,j−1, with each of those entries in turn depending on the values of three neighboring
entries, which effectively means that this dependency extends to every other entry in the
region Hx,y : x ≤ i, y ≤ j. This implies that it is possible to simultaneously compute all the
elements in each anti-diagonal, since they fall outside each other’s data dependency regions.
Figure 2 shows a sample H matrix for two sequences, with the bounding boxes indicating the
elements that can be computed in parallel. The bottom-right cell is highlighted to show that
its data dependency region is the entire remaining matrix. The dark diagonal arrow indicates
the direction in which the computation progresses. At least 9 cycles are required for this
computation, as there are 9 bounding boxes representing 9 anti-diagonals and a maximum of
5 cells may be computed in parallel.
The degree of parallelism is constrained to the number of elements in the anti-diagonal and
the maximum number of elements that can be computed in parallel are equal to the number
of elements in the longest anti-diagonal (ld), where,

ld = min(M, N) (2)

Theoretically, the lower bound to the number of steps required to calculate the entries of
the H matrix in a parallel implementation of the S-W algorithm is equal to the number of
anti-diagonals required to reach the bottom-right element, i.e. M + N − 1 (Liao et al., 2004).
Figure 3 shows the logic circuit to compute an element of the H matrix. The logic contains
three adders, a sequence comparator circuit (SeqCmp) and three max operators (MAX). The
sequence comparator compares the corresponding characters of two input sequences and
outputs a match/mismatch score, depending on whether the two characters are equal or not.
Each max operator finds the maximum of its two inputs. The time to compute an element is
4 cycles, assuming that the time for each cycle is equal to the latency of one add or compare
operation.

191An Overview of Hardware-Based Acceleration of Biological Sequence Alignment

www.intechopen.com

6 Will-be-set-by-IN-TECH

G A T T A

G

A

C

T

C

0 0 0 00

0

0

0

0

0

1 0 0 0 0

0

0

0

0

2

0

0

0

0

1

1

0

0

0

2

0

1

0

0

0

1

i

j

Fig. 2. Sample H matrix, where the dotted rectangles show the elements that can be
computed in parallel

MAX

MAX

+MAX

++

Seq

Cmp

Hi,j-1 d Hi-1,j Hi-1,j-1 Q D 0

Si,j

Hi,j

 Cycle 1

Cycle 2

Cycle 3

Cycle 4

Fig. 3. Logic circuit to compute cells in the H matrix, where + is an adder, MAX is a max
operator and SeqCmp is the sequence comparator that generates match/mismatch scores

192 Computational Biology and Applied Bioinformatics

www.intechopen.com

An Overview of Hardware-based Acceleration of Biological Sequence Alignment 7

3. CPU-based acceleration

In this section CPU-based acceleration of the S-W algorithm is reviewed. Furthermore, an
estimation of the performance for top-end and future systems is made.

3.1 Recent implementations

The first CPU implementations used a sequential way of calculating all the matrix values.
These implementations were slow and therefore hardly used. In 2007, Farrar introduced
a SSE implementation for S-W (Farrar, 2007). His work used SSE2 instructions for an Intel
processor and was up to six times faster than existing S-W implementations. Two years later,
a Smith-Waterman implementation on Playstation 3 (SWPS3) was introduced (Szalkowski et al.,
2009), which was based on a minor adjustment to Farrar’s implementation. SWPS3 is a
vectorized implementation of the Smith-Waterman local alignment algorithm optimized for
both the IBM Cell/B.E. and Intel x86 architectures. A SWPS3 version optimized for multi
threading has been released recently (Aldinucci et al., 2010). The SSE implementations can
be viewed as being semi parallel, as they constantly calculate sixteen, eight or less values at
the same time, while discarding startup and finish time. Table 2 presents the performance
achieved by these implementations on various CPU platforms.

Implementation
Peak Benchmark Peak performance

performance hardware (per thread)

(Farrar, 2007) 2.9 GCUPS
2.0 GHz, Xeon

3.75 GCUPS
Core 2 Duo

single thread

(Szalkowski et al., 2009) 15.7 GCUPS
2.4 GHz

4.08 GCUPS
Core 2 Quad

Q6600, 4 threads

(Aldinucci et al., 2010) 35 GCUPS
2.5 GHz, 2x Xeon

4.38 GCUPS
Core Quad

E5420, 8 threads

Table 2. Performance achieved by various S-W CPU implementations (Vermij, 2011)

3.2 Performance estimations for top-end and future CPUs

With the data from Table 2, we make an estimate of the performance on the current top-end
CPUs and take a look into the future. Table 3 gives the estimated peak performances based
on the SIMD register width, the number of cores, clock speed and the known speed per
core. We assumed linear scaling in the number of cores as suggested in Table 2, and the
given performances may therefore not be reliable. Non-ideal inter-core communication,
memory bandwidth limitations and shared caches could lead to a lower peak performance.
Furthermore, no distinction in performance is made between Intel and AMD processors.
Hence, Table 3 must be used as an indication to where the S-W performance could go on
in current and future CPUs (Vermij, 2011).

4. FPGA-based acceleration

FPGAs are programmable logic devices. To map an application on flexible FPGA platforms,
a program is written in a hardware description language like VHDL. The flexibility, difficulty

193An Overview of Hardware-Based Acceleration of Biological Sequence Alignment

www.intechopen.com

8 Will-be-set-by-IN-TECH

System Released
SIMD Cores Clock Peak performance

register width (threads) speed (estimated)

Xeon
2010 128

8 2.26 32
Beckton (16) GHz GCUPS

Opteron
2010 128

12 2.3 48
Magny-Cours (12) GHz GCUPS

Opteron
2011 128

16 2.3 64
Interlagos (16) GHz GCUPS

Table 3. Estimated peak performance for current top-end and future CPUs (Vermij, 2011)

of design as well as the performance of FPGA implementations fall typically somewhere
between pure software running on a CPU and an Application Specific Integrated Circuit
(ASIC). FPGAs are widely used to accelerate applications like S-W based sequence alignment.
Implementations rely on the ability to create building blocks called processing elements (PEs)
that can update one matrix cell every clock cycle. Furthermore, multiple PEs can be linked
together in a two dimensional or linear systolic arrays to process huge data in parallel. This
section provides a brief description of traditional systolic arrays followed by a discussion of
existing and future FPGA-based S-W implementations.

4.1 Systolic arrays

Systolic array is an arrangement of processors in an array, where data flows synchronously
across the array between neighbors, usually with data flowing in a specific direction
(Kung & Leiserson, 1979), (Quinton & Robert, 1991). Each processor at each step takes in data
from one or more neighbors (e.g. North and West), processes it and, in the next step, outputs
results to the opposite neighbors (South and East). Systolic arrays can be implemented in
rectangular or 2-dimensional (2D) and linear or 1-dimensional (1D) fashion. Figure 4 gives a
pictorial view of both implementation types.
They best suit compute-intensive applications like biological sequence alignment. The
disadvantage is that being highly specialized processors type, they are difficult to implement
and build.
In (Pfeiffer et al., 2005), a concept to accelerate S-W algorithm on the basis of linear systolic
array is demonstrated. The reason for choosing this architecture is outlined by demonstrating
the efficiency and simplicity in combination with the algorithm. Nevertheless, there are two
key methodologies to speedup this massively parallel system. By turning the processing
from bit-parallel to bit-serial, the actual improvement is enabled. This change is performance
neutral, but in combination with the early maximum detection, a considerable speedup is
possible. Another effect of this improvement is a data dependant execution time of the
processing elements. Here, the second acceleration prevents idle times to exploit the hardware
and speeds up the computation. This can be accomplished by a globally asynchronous timing
representing a self-timed linear systolic array. The authors have provided no performance
estimation due to the initial stage of their work, that is why it cannot be compared with other
related work.
In (Vermij, 2011), the working of a linear systolic array (LSA) is explained. Such an array works
like the SSE unit in a modern CPU. But instead of having a fixed length of lets say 16, the
FPGA based array can have any length.

194 Computational Biology and Applied Bioinformatics

www.intechopen.com

An Overview of Hardware-based Acceleration of Biological Sequence Alignment 9

U11

U43

U33

U42

U32

U23

U41

U31

U22U21

U34

U24

U44

U14U13U12

N1 N2 N3 N4

M1

M2

M3

M4

U
1
1

U
1
4

U
1
3

U
1
2

N
1

N
2

N
3

N
4

M
4 M

3 M
2 M

1

(a) Rectangular (2D) systolic array

(b
) L

in
e

a
r (1

D
) s

y
s
to

lic
 a

rra
y

Fig. 4. Pictorial view of systolic array architectures

4.2 Existing FPGA implementations

In Section 3, we discussed some existing S-W implementations running on a CPU. A
comparable analysis for FPGAs is rather hard. There are very few real, complete
implementations that give usable results. Most research implementations only discuss
synthetic tests, giving very optimistic numbers for implementations that are hardly used in
practice. Furthermore, there is a great variety in the types of FPGAs used. Since every FPGA
series has a different way of implementing circuitry, it is hard to make a fair comparison.
In addition, the performance of the implementations relies heavily on the data widths used.
Smaller data widths lead to smaller PEs, which lead to faster implementations. These numbers
are not usually published. The first, third and fourth implementations shown in Table 4 make
this clear, where the performance is given in terms of Giga Cell Updates Per Second (GCUPS).
Using the same FPGA device, these three implementations differ significantly in performance.
The most reliable numbers are from Convey and SciEngines, as shown in the last two entries
of Table 4. These implementations work the same in practice for real cases and are build for
maximal performance (Vermij, 2011).

195An Overview of Hardware-Based Acceleration of Biological Sequence Alignment

www.intechopen.com

10 Will-be-set-by-IN-TECH

Reference FPGA Frequency PEs
Performance Performance
(per FPGA) (per system)

(Puttegowda et al., 2003)
Virtex2 180

7000
1260

—
XC2V6000 MHz GCUPS

(Yu et al., 2003)
Virtex2

— 4032
742

—
XCV1000-6 GCUPS

(Oliver et al., 2005)
Virtex2 55

252
13.9

—
XC2V6000 MHz GCUPS

(Gok & Yilmaz, 2006)
Virtex2 112

482
54

—
XC2V6000 MHz GCUPS

(Altera, 2007)
Stratix2 66.7

384
25.6

—
EP2S180 MHz GCUPS

(Cray, 2010) Virtex4
200

120
24.1

—
MHz GCUPS

(Convey, 2010)
Virtex5 150

1152
172.8 691.2

LX330 MHz GCUPS GCUPS

(SciEngines, 2010)
Spartan6

— —
47 6046

LX150 GCUPS GCUPS

Table 4. Performance of various FPGA implementations (Vermij, 2011)

4.3 Future FPGA implementations

The performance of S-W implementations on FPGA can foremost be increased by using
larger and faster FPGAs. Larger FPGAs can contain more PEs and therefore deliver higher
performance in terms of GCUPS. The largest Xilinx Virtex 6 FPGA device has roughly 2.5
times more area than the largest Virtex 5 FPGA, so the peak performance of the former can be
estimated at 2.5 × 172.8 = 432 GCUPS (using the numbers from the Convey implementation)
(Vermij, 2011).

5. GPU-based acceleration

The parallelization capabilities of GPUs can be best exploited for accelerating biological
sequence alignment applications. This section provides some brief background information
about GPUs. Furthermore, it presents the current GPU implementations for S-W based
sequence alignment.

5.1 GPU background

Compute Unified Device Architecture (CUDA) is the hardware and software architecture that
enables NVIDIA GPUs (Fermi™, 2009) to execute programs written in C, C++, Fortran,
OpenCL, DirectCompute and other languages. A CUDA program calls kernels that run on
the GPU. A kernel executes in parallel across a set of threads, where a thread is the basic
unit in the programming model that executes an instance of the kernel, and has access to
registers and per thread local memory. The programmer organizes these threads in grids
of thread blocks, where a thread block is a set of concurrently executing threads and has a
shared memory for communication between the threads. A grid is an array of thread blocks
that execute the same kernel, read inputs from and write outputs to global memory, and
synchronize between interdependent kernel calls. Figure 5 gives a block diagram description
of the GPU architecture.

196 Computational Biology and Applied Bioinformatics

www.intechopen.com

An Overview of Hardware-based Acceleration of Biological Sequence Alignment 11

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Instruction

Unit

Processor 1 Processor 2 Processor M

Device (GPU)

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Registers

Shared memory

Global memory

Processor 1 Processor 2 Processor M
unit

Instruction

Registers

…

Registers

Fig. 5. Block diagram description of a GPU architecture

5.2 Current implementations

The first known implementations of S-W based sequence alignment on a GPU are presented
in (Liu, Schmidt, Voss, Schroder & Muller-Wittig, 2006) and (Liu, Huang, Johnson & Vaidya,
2006). These approaches are similar and use the OpenGL graphics API to search
protein databases. First the database and query sequences are copied to GPU texture
memory. The score matrix is then processed in a systolic array fashion, where the data
flows in anti-diagonals. The results of each anti-diagonal are again stored in texture
memory, which are then used as inputs for the next pass. The implementation in
(Liu, Schmidt, Voss, Schroder & Muller-Wittig, 2006) searched 99.8% of Swiss-Prot (almost
180,000 sequences) and managed to obtain a maximum speed of 650 MCUPS compared
to around 75 for the compared CPU version. The implementation discussed in
(Liu, Huang, Johnson & Vaidya, 2006) offers the ability to run in two modes, i.e. one with
and one without traceback. The version with no traceback managed to perform at 241
MCUPS, compared to 178 with traceback and 120 for the compared CPU implementation.
Both implementations were benchmarked using a Geforce GTX 7800 graphics card.
The first known CUDA implementation, ‘SW-CUDA’, is discussed in (Manavski & Valle,
2008). In this approach, each of the GPU’s processors performs a complete alignment instead
of them being used to stream through a single alignment. The advantage of this is that no
communication between processing elements is required, thereby reducing memory reads and
writes. This implementation managed to perform at 1.9 GCUPS on a single Geforce GTX 8800
graphics card when searching Swiss-Prot, compared to around 0.12 GCUPS for the compared

197An Overview of Hardware-Based Acceleration of Biological Sequence Alignment

www.intechopen.com

12 Will-be-set-by-IN-TECH

CPU implementation. Furthermore, it is shown to scale almost linearly with the amount of
GPUs used by simply splitting up the database.
Various improvements have been suggested to the approach presented in (Manavski & Valle,
2008), as shown in (Akoglu & Striemer, 2009; Liu et al., 2009). In (Liu et al., 2009), for
sequences of more than 3,072 amino acids an ‘inter-task parallelization’ method similar to the
systolic array and OpenGL approaches is used as this, while slower, requires less memory.
The ‘CUDASW++’ solution presented in (Liu et al., 2009) manages a maximum speed of
about 9.5 GCUPS searching Swiss-Prot on a Geforce GTX 280 graphics card. An improved
version, ‘CUDASW++ 2.0’ has been published recently (Liu et al., 2010). Being the fastest
Smith-Waterman GPU implementation to date, ‘CUDASW++ 2.0’ managed 17 GCUPS on a
single GTX 280 GPU, outperforming CPU-based BLAST in its benchmarks.
In (Kentie, 2010), an enhanced GPU implementation for protein sequence alignment using
database and memory access optimizations is presented. Each processing element in
this implementation is used to independently generate a complete alignment between a
query sequence and a database sequence. This eliminates the need for inter-processor
communication and results in efficient resource utilization. The GPU used for implementation
(i.e. NVIDIA GTX 275) contains 240 processors, while the latest release of Swiss-Prot contains
more than 500,000 protein sequences. Hence, it is possible to keep all processors well occupied
while aligning query sequences with the sequences in the Swiss-Prot database. The results
demonstrate that the implementation presented in (Kentie, 2010) achieves a performance
of 21.4 GCUPS on an NVIDIA GTX 275 graphics card. Table 5 summarizes these GPU
implementations. Besides NVIDIA, ATI/AMD (AMD, 2011) also produces graphics cards
but to our knowledge no S-W implementations on such cards are available.

Implementation Device
Database

Performance
searched

(Liu, Schmidt, Voss, Schroder & Muller-Wittig, 2006) GTX 7800 Swiss-Prot 650 MCUPS

(Liu, Huang, Johnson & Vaidya, 2006) GTX 7800
983 protein

241 MCUPS
sequences

(Manavski & Valle, 2008) GTX 8800 Swiss-Prot 1.9 GCUPS
(Liu et al., 2009) GTX 280 Swiss-Prot 9.5 GCUPS
(Liu et al., 2010) GTX 280 Swiss-Prot 17 GCUPS
(Kentie, 2010) GTX 275 Swiss-Prot 21.4 GCUPS

Table 5. Summary of the existing GPU implementations

6. Comparison of acceleration on different platforms

This section compares the performance of S-W implementations on various platforms like
CPUs, FPGAs and GPUs. The comparison is based on parameters like cost, energy
consumption, flexibility, scalability and future prospects. For the CPU, we consider a four
way, 48 core Opteron machine. For GPUs, a fast PC with 4 high end graphics cards, and for
FPGAs the fastest S-W system known, the one from SciEngines (SciEngines, 2010). The results
are shown in Figure 6. Following is a discussion per metric (Vermij, 2011).

Performance/Euro

FPGAs can deliver the best amount of GCUPS per Euro, followed closely by GPUs. The gap
between GPUs and CPUs can be explained by the extra money needed for a 4 way CPU
system, while plugging 4 GPUs on a commodity motherboard is free. This result explains

198 Computational Biology and Applied Bioinformatics

www.intechopen.com

An Overview of Hardware-based Acceleration of Biological Sequence Alignment 13

Performance / €

Performance / WattFuture prospect

FlexibilityScalability

CPU implementations

Performance / €

Performance / Watt

FlexibilityScalability

GPU implementations

Future prospect

Performance / €

Performance / Watt

FlexibilityScalability

FPGA implementations

Future prospect

Fig. 6. Analysis of various S-W metrics for implementations on different platforms (Vermij,
2011)

why FPGAs are used for high performance computing. S-W might not be the algorithm of
choice to show a major performance per Euro gain from using FPGAs. Nevertheless, it shows
the trend.

Performance/Watt

It is clear that here, in contrast to the previous metric, FPGAs are the absolute winner. Full
systems can deliver thousands of GCUPS for around 1000 Watts. This is another important
reason for using FPGAs for sequence alignment. Note that, while not visible in the graphs,
CPUs score around twice as good as GPUs.

Flexibility

This metric represents the effort needed to change a fast linear gap implementation to use
affine gaps. A skilled engineer would manage to do this in a day for a CPU implementation,
in a couple of days for GPU implementations, and many weeks for their FPGA counterpart.

Scalability

Here we took CPUs as baseline. Given a suitable problem, CPUs are very scalable as they
can be connected together using standard networking solutions. By the same token, GPUs are
also scalable, as they can take advantage of the scalability of CPUs, but will introduce some
extra latency. Therefore they score a bit lower than CPUs. Depending on the used platform,
FPGAs can also be made scalable.

199An Overview of Hardware-Based Acceleration of Biological Sequence Alignment

www.intechopen.com

14 Will-be-set-by-IN-TECH

Future prospect

In the past few years, there is a trend for CPUs to replace GPUs in high speed systems. This
trend is expected to continue, thereby reducing the market share of GPUs in favour of CPUs.
CPUs therefore score highly on this metric while GPUs score rather low. In the very specific
HPC areas, however, where memory bandwidth requirements are low and the problem is
very composable, FPGAs will likely continue to be the best choice. S-W partially lies in this
category.

7. Conclusions

This chapter provided a classification, discussion and comparison of the available sequence
alignment methods and their acceleration on various available hardware platforms. A
detailed introduction about the S-W algorithm, its pseudo code, data dependencies in the H
matrix and logic circuit to compute values of the cells in the H matrix are provided. A review
of CPU-based acceleration of S-W algorithm was presented. Recent CPU implementations
were discussed and compared. Further, performance estimations for top end current and
future CPUs were provided. FPGA-based acceleration of S-W algorithm and a discussion
about systolic arrays was given. Existing FPGA implementations were discussed and
compared. Further, an insight into the future FPGA implementations was touched upon.
GPU-based acceleration of S-W algorithm and GPU background were presented. Current
GPU implementations were discussed and compared. Furthermore, this chapter presented a
comparison of S-W accelerations on different hardware platforms. The comparison was based
on the following parameters.

• Performance per euro

• Performance per unit watt

• Flexibility

• Scalability

• Future prospects

8. References

Akoglu, A. & Striemer, G. M. (2009). Scalable and highly parallel implementation of
Smith-Waterman on graphics processing unit using CUDA, Cluster Computing Vol.
12(No. 3): 341–352.

Aldinucci, M., Meneghin, M. & Torquati, M. (2010). Efficient Smith-Waterman on multi-core
with fastflow, Proceedings of the 2010 IEEE International Symposium on Parallel and
Distributed Processing, IEEE, Pisa, Italy, pp. 195–199.

Altera (2007). Implementation of the Smith-Waterman algorithm on a reconfigurable
supercomputing platform, Altera White Paper, Altera, pp. 1–18.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). A basic local alignment
search tool, Journal of Molecular Biology Vol. 215: 403–410.

AMD (2011). ATI/AMD.
URL: http://www.amd.com/us/products/Pages/graphics.aspx

Buyukkur, A. B. & Najjar, W. (2008). Compiler generated systolic arrays for wavefront
algorithm acceleration on FPGAs, Proceedings of International Conference on Field
Programmable Logic and Applications (FPL08), Heidelberg, Germany, pp. 1–4.

200 Computational Biology and Applied Bioinformatics

www.intechopen.com

An Overview of Hardware-based Acceleration of Biological Sequence Alignment 15

Convey (2010). Convey HC1.
URL: http://www.convey.com

Cray (2010). Cray XD1.
URL: http://www.cray.com

Eddy, S. R. (1998). Profile hidden morkov models, Bioinformatics Review Vol. 14: 755-763.
Farrar, M. (2007). Striped Smith-Waterman speeds database searches six times over other

SIMD implementations, Bioinformatics Vol. 23(2): 156–161.
Fermi™(2009). Nvidia’s next generation cuda™ compute architecture, White paper NVIDIA

corporation .
Gibbs, A. J. & McIntyre, G. A. (1970). The diagram, a method for comparing sequences, its

use with amino acid and nucleotide sequences, European Journal of Biochemistry Vol.
16(No. 22): 1–11.

Giegerich, R. (2000). A systematic approach to dynamic programming in bioinformatics,
Bioinformatics Vol. 16: 665–677.

Gok, M. & Yilmaz, C. (2006). Efficient cell designs for systolic Smith-Waterman
implementation, Proceedings of International Conference on Field Programmable Logic and
Applications (FPL06), Madrid, Spain, pp. 1–4.

Hasan, L., Al-Ars, Z. & Taouil, M. (2010). High performance and resource efficient biological
sequence alignment, Proceedings of 32nd Annual International Conference of the IEEE
EMBS, Buenos Aires, Argentina, pp. 1767–1770.

Hasan, L., Al-Ars, Z. & Vassiliadis, S. (2007). Hardware acceleration of sequence alignment
algorithms - an overview, Proceedings of International Conference on Design & Technology
of Integrated Systems in Nanoscale Era (DTIS’07), Rabat, Morocco, pp. 96–101.

Kentie, M. (2010). Biological sequence alignment using graphics processing units, M.Sc. Thesis
CE-MS-2010-35, Computer Engineering Laboratory, TU Delft, The Netherlands, 2010.

Kung, H. T. & Leiserson, C. E. (1979). Algorithms for VLSI processor arrays, in: C. Mead, L.
Conway (eds.): Introduction to VLSI Systems; Addison-Wesley.

Liao, H. Y., Yin, M. L. & Cheng, Y. (2004). A parallel implementation of the Smith-Waterman
algorithm for massive sequences searching, Proceedings of 26th Annual International
Conference of the IEEE EMBS, San Francisco, CA, USA, pp. 2817–2820.

Liu, W., Schmidt, B., Voss, G., Schroder, A. & Muller-Wittig, W. (2006). Bio-sequence database
scanning on a GPU, Parallel and Distributed Processing Symposium, IEEE, Rhodes
Island, pp. 1–8.

Liu, Y., Huang, W., Johnson, J. & Vaidya, S. (2006). GPU accelerated Smith-Waterman,
Proceedings of International Conference on Computational Science, ICCS 2006, Springer,
Reading, UK, pp. 1–8.

Liu, Y., Maskell, D. & Schmidt, B. (2009). CUDASW++: Optimizing Smith-Waterman sequence
database searches for CUDA-enabled graphics processing units, BMC Research Notes
Vol. 2(No. 1:73).

Liu, Y., Schmidt, B. & Maskell, D. (2010). CUDASW++2.0: Enhanced Smith-Waterman protein
database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD
abstractions, BMC Research Notes Vol. 3(No. 1:93).

Lu, J., Perrone, M., Albayraktaroglu, K. & Franklin, M. (2008). HMMER-cell: High
performance protein profile searching on the Cell/B.E. processor, Proceedings of IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS-2008),
Austin, Texas, USA, pp. 223–232.

201An Overview of Hardware-Based Acceleration of Biological Sequence Alignment

www.intechopen.com

16 Will-be-set-by-IN-TECH

Manavski, S. A. & Valle, G. (2008). CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment, BMC Bioinformatics Vol. 9(No.
2:S10).

Needleman, S. & Wunsch, C. (1970). A general method applicable to the search for similarities
in the amino acid sequence of two proteins, Journal of Molecular Biology Vol. 48(No.
3): 443–453.

Oliver, T., Schmidt, B. & Maskell, D. (2005). Hyper customized processors for bio-sequence
database scanning on FPGAs, Proceedings of FPGA’05, ACM, Monterey, California,
USA, pp. 229–237.

Pearson, W. R. & Lipman, D. J. (1985). Rapid and sensitive protein similarity searches, Science
Vol. 227: 1435–1441.

Pfeiffer, G., Kreft, H. & Schimmler, M. (2005). Hardware enhanced biosequence alignment,
Proceedings of International Conference on METMBS, pp. 1–7.

Puttegowda, K., Worek, W., Pappas, N., Dandapani, A. & Athanas, P. (2003). A run-time
reconfigurable system for gene-sequence searching, Proceedings of 16th International
Conference on VLSI Design, IEEE, USA, pp. 561–566.

Quinton, P. & Robert, Y. (1991). Systolic Algorithms and Architectures, Prentice Hall Int.
SciEngines (2010). Sciengines rivyera.

URL: http://www.sciengines.com
Smith, T. F. & Waterman, M. S. (1981). Identification of common molecular subsequences,

Journal of Molecular Biology Vol. 147: 195–197.
Szalkowski, A., Ledergerber, C., Krhenbhl1, P. & Dessimoz, C. (2009). SWPS3 - A fast

multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2, BMC
Research Notes Vol. 1(No. 1:107).

Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). ClustalW: Improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice, Nucleic Acids Research Vol.
22(No. 22): 4673–4680.

Vermij, E. (2011). Genetic sequence alignment on a supercomputing platform, M.Sc. Thesis,
Computer Engineering Laboratory, TU Delft, The Netherlands, 2011.

Yu, C. W., Kwong, K. H., Lee, K. H. & Leong, P. H. W. (2003). A Smith-Waterman systolic cell,
International Workshop on Field Programmable Logic and Applications (FPL03), Springer,
pp. 375–384.

202 Computational Biology and Applied Bioinformatics

www.intechopen.com

Computational Biology and Applied Bioinformatics

Edited by Prof. Heitor Lopes

ISBN 978-953-307-629-4

Hard cover, 442 pages

Publisher InTech

Published online 02, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nowadays it is difficult to imagine an area of knowledge that can continue developing without the use of

computers and informatics. It is not different with biology, that has seen an unpredictable growth in recent

decades, with the rise of a new discipline, bioinformatics, bringing together molecular biology, biotechnology

and information technology. More recently, the development of high throughput techniques, such as

microarray, mass spectrometry and DNA sequencing, has increased the need of computational support to

collect, store, retrieve, analyze, and correlate huge data sets of complex information. On the other hand, the

growth of the computational power for processing and storage has also increased the necessity for deeper

knowledge in the field. The development of bioinformatics has allowed now the emergence of systems biology,

the study of the interactions between the components of a biological system, and how these interactions give

rise to the function and behavior of a living being. This book presents some theoretical issues, reviews, and a

variety of bioinformatics applications. For better understanding, the chapters were grouped in two parts. In

Part I, the chapters are more oriented towards literature review and theoretical issues. Part II consists of

application-oriented chapters that report case studies in which a specific biological problem is treated with

bioinformatics tools.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Laiq Hasan and Zaid Al-Ars (2011). An Overview of Hardware-Based Acceleration of Biological Sequence

Alignment, Computational Biology and Applied Bioinformatics, Prof. Heitor Lopes (Ed.), ISBN: 978-953-307-

629-4, InTech, Available from: http://www.intechopen.com/books/computational-biology-and-applied-

bioinformatics/an-overview-of-hardware-based-acceleration-of-biological-sequence-alignment

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

