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Civil Engineering Department, Islamic Azad University, Kerman Branch, Islamic  
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1. Introduction  

The comprehensive studies conducted by a number of researchers in the past few decades 
and investigations of the effects of past earthquakes have shown that in buildings with non-
coincident the center of mass (CM) and the center of rigidity (CR), significant coupling may 
occur between the translational and the torsional displacements of the floor diaphragms 
even when the earthquake induces uniform rigid base translations (Kuo, 1974; Chandler & 
Hutchinson, 1986; Cruz & Chopra, 1986; Hejal & Chopra, 1989).  
In investigating the seismic torsional response of structures to earthquakes, it is customary 
to assume that each point of the foundation of the structure is excited simultaneously. 
Under this assumption, if centers of mass and rigidity of the floor diaphragms lie along the 
same vertical axis, a horizontal component of ground shaking will induce only lateral or 
translational components of motion. On the other hand, if the centers of mass and rigidity 
do not coincide, a horizontal component of excitation will generally induce both lateral 
components of motion and a rotational component about a vertical axis. Structures for 
which the centers of mass and rigidity do not coincide will be referred to herein as eccentric 
structures. Torsional actions may also be induced in symmetric structures due to the fact 
that, even under a purely translational component of ground excitation, all points of the 
base of the structure are not excited simultaneously because of the finite speed of 
propagation of the ground excitation, (Kuo, 1974). 
This seismic torsional response leads to increased displacement at the extremes of the 
torsionally asymmetric building systems and may cause suffering in the lateral load-
resisting elements located at the edges, particularly in the systems that are torsionally 
flexible. More importantly, the seismic response of the systems, especially in the torsionally 
flexible structure is qualitatively different from that obtained in the case of static loading at 
the center of mass. To account for the possible amplification in torsion produced by seismic 
response and accidental torsion in the elastic range, the equivalent static eccentricities of 
seismic forces are usually defined by building codes with simple expressions of the static 
eccentricity. The equivalent static eccentricities of seismic forces are proposed by 
researchers, (Dempsey & Irvine, 1979, Tso & Dempsey, 1980 and De la Llera & Chopra, 
1994). A clear and comprehensive study of the equivalent static eccentricities that are 
presented by Anastassiadis et al., (1998), included a set of formulas for a one-storey scheme, 
allow the evaluation of the exact additional eccentricities necessary to be obtained by means 
of static analysis the maximum displacements at both sides of the deck, or the maximum 
deck rotation, given by modal analysis. A procedure to extend the static torsional provisions 
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of code to asymmetrical multi-storey buildings is presented by Moghadam and Tso, (2000). 
They have developed a refined method for determination of CM eccentricity and torsional 
radius for multi-storey buildings. However, the inelastic torsional response is less easily 
predictable, because the location of the center of rigidity on each floor cannot be determined 
readily and the equivalent static eccentricity varies storey by storey at each nonlinear static 
analysis step. The simultaneous presence of two orthogonal seismic components or the 
contemporary eccentricity in two orthogonal directions may have some importance, mainly 
in the inelastic range, (Fajfar et al., 2005). Consequently, the static analysis with the 
equivalent static eccentricities can be effective only if used in the elastic range. This can only 
be achieved, the location of the static eccentricity is necessary to change in each step of the 
nonlinear static procedure. It may be needed for the development of simplified nonlinear 
assessment methods based on pushover analysis. 
 

 

Fig. 1. Damage to buildings subjected to strong earthquakes, (9-11 Research Book, 2006) 

However, the seismic torsional response of asymmetric buildings in the inelastic range is 
very complex. The inelastic response of eccentric systems only has been investigated in an 
exploratory manner, and, on the whole, it has not been possible to derive any general 
conclusions from the data that were obtained. No work appears to have been reported 
concerning the torsiona1 effects induced in symmetric structures deforming into the 
inelastic range (Tanabashi, 1960; Koh et al., 1969; Fajfar et al., 2005). 
Torsional motion is produced by the eccentricity existing between the center of mass and the 
center of rigidity. Some of the situations that can give rise to this situation in the building 
plan are:  

 Positioning the stiff elements asymmetrically with respect to the center of gravity of the 
floor. 

 The placement of large masses asymmetrically with respect to stiffness. 
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 A combination of the two situations described above. 
Consequently, torsional-translational motion has been the cause of major damage to 

buildings vibrated by strong earthquakes, ranging from visible distortion of the structure to 

structural collapse (see Fig. 1). The purpose of this chapter is to investigate the torsional 

vibration of both symmetric and eccentric one-storey building systems subjected to the 

ground excitation. 

 

 

Fig. 2. Mexico City building failure associated with the torsional-translation motion, 
(Earthquake Engineering ANNEXES, 2007) 

2. Classification of vibration 

Vibration can be classified in several ways. Some of the important classifications are as 

follows: Free and forced vibration: If a system, after an internal disturbance, is left to vibrate 

on its own, the ensuing vibration is known as free vibration. No external force acts on the 

system. The oscillation of the simple pendulum is an example of free vibration. 

If a system is subjected to an external force (often, a dynamic force), the resulting vibration is 
known as forced vibration. The oscillation that arises in buildings such as earthquake is an 
example of forced vibration. 
A building, for which the centers of mass and rigidity do not coincide, (eccentric building) 

will experience a coupled torsional-translational motion even when it is excited by a 

purely translational motion of the ground. The torsional component of response may 

contribute significantly to the overall response of the building, particularly when the 

uncoupled torsional and translational frequencies of the system are close to each other 

(see Fig. 2). 
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Failures of such structures as buildings and bridges have been associated with the torsional-
translational motion. 
 

 

Fig. 3. Torsional vibration mode shape 

2.1 Free vibration analysis 

One of the most important parameters associated with engineering vibration is the natural 

frequency. Each structure has its own natural frequency for a series of different mode 

shapes such as translational and torsional modes which control its dynamic behaviour (see 

Fig. 3). This will cause the structures to be subjected to series structural vibrations, when 

they are located in environments where earthquakes or high winds exist. These vibrations 

may lead to serious structural damage and potential structural failure. 

In buildings, both translational and torsional vibration modes arise, even if, little eccentricity 

in the transverse direction during earthquakes. The in-plane floor vibration mode such as 

arch-shaped floor vibration mode also arises during earthquakes. However these 

observational data are not enough at present. The causes of the torsional-translational 

vibration are thought as follows:  

1. Input motion to the foundation has a possibility to contain the torsional component, 
which is the cause of the torsional vibration. 

2. The torsional coupling, due to the eccentricity in both directions, is also a cause of the 
torsional vibration. It arises surely when the eccentricity in the transverse direction is 
large. However, even if the eccentricity is small, it is well-known that the strong 
torsional coupling also arises when the natural frequencies of the translational mode 
and the torsional mode approach closely to each other.  

3. The eccentricity in the transverse direction is small in general, since sufficient attention 
is usually paid on the eccentricity to prevent the torsional vibration in the structural 
planning. On the other hand, the eccentricity in the longitudinal direction results often 
from necessity of architectural planning and/or from insufficiency of attention on the 
eccentricity in the structural planning, but it is also small as a necessity from the 
configuration of the floor plan. 
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Fig. 4. Model of a one-storey system with double eccentricities 

2.1.1 One-storey system with double eccentricities 

The estimation of torsional-translational response of simplified procedure subjected to a 

strong ground motion, is a key issue for the rational seismic design of new buildings and the 

seismic evaluation of exacting buildings. This section is a vibration-based analysis of the 

simple one-storey model with double eccentricities, and it would be a promising candidate 

as long as buildings oscillate predominantly in the two lateral directions (Tabatabaei and 

Saffari, 2010). 

2.1.2 Basic parameters of the model 

The one-storey system, considered in this section, may be modeled as shown in Fig. 4. The 

center of rigidity (CR) is the point in the plan of the rigid floor diaphragm through which a 

lateral force must be applied in order that it may cause translational displacement without 

torsional rotation. When a system is subjected to forces, which will cause pure rotation, the 

rotation takes place around the center of rigidity, which remains fixed. The location of the 

center of rigidity can be determined from elementary principles of mechanic.  

The horizontal rigid floor diaphragm is constrained in the two lateral directions by resisting 

elements (columns). Let ixk  and jyk  be the lateral stiffness of the -i th  and -j th  resisting 

element in x-direction and y-direction, respectively. The origin of the coordinates is taken at 

the center of rigidity (CR). A system for which the eccentricities, xe  and ye  are both 

different from zero, has three degrees of freedom. Its configuration is specified by 

translations x  and y and rotation,  . The positive directions of these displacements are 

indicated on the figure. 
Applying the geometric relationships between the centers of mass and rigidity, the 

equations of motion of undamped free vibration of the system may be written as follows 
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 y xm x e K x( ) 0    (1a) 

 x ym y e K y( ) 0    (1b) 

 m x x y yI K me y e me x e( ) ( ) 0             (1c) 

where 
n

x ix
i

K k
1

 : total translational stiffness in the x-direction ( n  number of columns in x-dir), 

m

y jy
j

K k
1

 : total translational stiffness in the y-direction ( m  number of columns in y-dir), 

n m

ix iy jy jx
i j

K k l k l2 2

1 1


 
   : total rotational stiffness, m : total mass, Im : the mass moment of  

inertia of the system around the center of mass (CM), and iyl and jxl , be the distances of the 

i th- and j th- resisting element from the center of rigidity along the x and y axes, as shown 

in Fig. 4. 
For free vibration analysis, the solution of Eqs. (1) may be taken in the form 

 x X tsin( )  (2a) 

 y Y tsin( )  (2b) 

 tsin( )    (2c) 

where X Y, and Θ are the displacements amplitudes in x, y and   directions, respectively. 

The value of   is referred to the circular natural frequency. Substitution of Eqs. (2) into Eqs. 

(1) given in 

 
x ym K X m e2 2( ) 0       (3a) 

 
y xm K Y m e2 2( ) 0       (3b) 

 m x y y xI me me K m e X m e Y2 2 2 2 2( ( ) ) 0           (3c) 

Eqs. (3) have a nontrivial solution only if the determinate of the coefficients of X Y, and 

Θ are equal to zero. This condition yields the characteristic equation of describing such a 

system may be taken in the form 

 

x y x y y x x y x y x y y x y x

m m m m m m

x y

m

K K K e K e K K K K K K K e K K eK

m I I I mI mI mIm

K K K

m I

2 2 2 2
6 4 2

2

2

( )

0





  
   
         
    

 

 (4) 
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where, xe  is the static eccentricity (eccentricity between mass and rigidity centers) in the x-

direction and ye  is  the static eccentricity in the y-direction.  Now letting the following 

expressions, 

 x
x

K

m
2  y

y

K

m
2 

m

K

I
2 
   (5a) 

 x
x

m

e

r
  y

y
m

e

r
  x yc 2 21      (5b) 

 
m

e

r
  x ye e e2 2   (5c) 

and making use of the relation m mI m r2  ; , where mr is the radius gyration of mass, Eq. (4) 

may be written in the following dimensionless form: 

 

 y y y
x y

x x x x x x x x

y

x x

c

2 2 26 2 4 2 2

2 2

2 2

1 1 1

0

 



      
       

 
 

                                                                     

   
       

(6) 

where the values of x  and y  are referred to the uncoupled circular natural frequencies of 

the system in x and y-directions, respectively. The value of   will be referred as the 

uncoupled circular natural frequency of torsional vibration. The -n th  squares of the 

coupled natural frequency n  are defined by three roots of the characteristic equation 

defined in Eq. (6). Associated with each natural frequency, there is a natural mode shape 

vector T
n xn yn n{ } { , , }    of the one-storey asymmetric building models that can be 

obtained with assuming,  xn 1  , and two components as follows, 

  
n

y x
yn

x yn

x x

2

22

1 -

-


 


 

 

 
       

           

 (7a) 

  n cr
x n

x

c
r

2

1
- 1 /  



 
 
 
      

 (7b) 

where n  varies from 1 to 3 and cr m x yr r e e2 2 2   , (Kuo, 1974). 

As a matter of fact, the numerical results have been evaluated over a wide range of the 

frequency ratio x  for several different values of eccentricity parameter yε . A value of 
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x ye e 1  which corresponds to systems with double eccentricities along the x-axis and y-

axis is considered. In the latter case, two values of y x  are considered. The coupled 

natural frequencies are summarized in Figs. 5 and 6 are also applicable to the system 

considered in this section for any given longitudinal distribution of motions. 
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Fig. 5. The coupled natural frequency ratio for varying eccentricity parameter, y  of Double 

eccentricities system and y x 1.0    
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Fig. 6. The coupled natural frequency ratio for varying eccentricity parameter, y  of Double 

eccentricities system and y x 1.5    
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In these Figures, the uncoupled natural frequencies of the systems are represented by the 

straight lines corresponding to 0yε . For the systems with double eccentricity considered 

in Fig. 5, these are defined by the diagonal line and the two horizontal lines. The diagonal 

line represents the uncoupled torsional frequency, and the horizontal lines the two 

uncoupled translational frequencies. As would be expected, the lower natural frequency 

of the coupled system is lower than either of the frequencies of the uncoupled system. 

Similarly, the upper natural frequency of the coupled system is higher than the upper 

natural frequency of the uncoupled system. The general trends of the curves for the 

coupled systems are typical of those obtained for other combinations of the parameters as 

well. 

The curve for the lowest frequency always starts from the origin whereas the curve for the 

highest frequency starts from a value higher than the uncoupled translational frequencies of 

the system, depending on the value of the eccentricity. Both curves increase with the higher 

value of  x . For 1arge value of  x  the lowest frequency approaches the value of 

x and the highest frequency approaches the value of  . The maximum coupling effect on 

frequencies occurs when the value of  x  is equal to unity, (Kuo, 1974). 
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Fig. 7. Relationship between Coupled and Uncoupled Natural Frequencies 

It is interesting to note that the coupled dynamic properties depend only on the four 

dimension 1ess parameters x , y , x  and y x  . Fig. 7 shows the relationship between 

the coupled and uncoupled natural frequencies, in one way torsionally coupled systems 

(with 0 x ), for different values of  . 

If n  represents the distance positive to the left from the center of mass to the instantaneous 

center of rotation of the system for the modes under consideration, it can be shown that (see 

Fig. 8).  
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Fig. 8. CR*  and CM * denote the new locations of the centers of rigidity and mass at any time 

instant, respectively (Tabatabaei and Saffari, 2010). 

 ynn xn

xnne e

2

1 1


 


 
    

 
 (8) 

The ratio of n e 1   indicates that the center of rotation is at the center of rigidity, whereas 

the value of n e 0   indicates that the center of rotation is at the center of mass. By making 

use of Eq. (7), Eq. (8) may also be related to the frequency values. 
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Fig. 9. Location of the center of the rotation normalized with the respect to eccentricity 

www.intechopen.com



 
Torsional Vibration of Eccentric Building Systems 

 

179 

For the one-storey system with eccentricity considered in Fig. 4, the locus of the associated 

center of rotation is plotted in Fig. 9. It should be recalled that a value of n e 1   in the 

latter figure indicates that the center of rotation is at the center of rigidity of the system. 

Note that as the value of θ xω ω increases, the center of rotation shifts away from the center 

of rigidity for the first mode and approaches the center of mass for the higher mode for all 
values of eccentricity. 

2.1.3 One-storey system with single eccentricity 

In the particularly case of xe 0 , system with single eccentricity and second equation in Eq. 

(1) becomes independent of the others. The motion of the system in this case is coupled only 

in the x and   directions. The following frequency equation is obtained from Eq. (6) by 

taking x 0   and factoring out the term 2 2 2
x y(ω -ω ) ω  , which obviously defines the 

uncoupled natural frequency of the system in the y direction: 

 y
x x x x

4 2 2 2

2- 1 0   
   

                   
         

 (9) 

Numerical data have been evaluated over a wide range of the frequency ratio x  for 

several different values of eccentricity parameter y . Two values of x y   are considered: a 

value of x y 0    which corresponds to systems with an eccentricity along the y-axis and a 

value of x y 1   . In the latter case, two values of y x  are considered. The coupled 

natural frequencies are summarized in Fig 10. 
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Fig. 10. The coupled natural frequency ratio for several different values of eccentricity 

parameter, y  of single eccentricity system 
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As a result, Figs. 5 and 10, which refer to systems with double and single eccentricities, 

respectively, are very similar in form. This is due to the fact that, since y x 1   , the 

frequencies of the two uncoupled translational modes are represented by the same 

horizontal line, x y     and this frequency value is also equal to the second natural 

frequency of the coupled system. As a matter of fact, it can be shown that the curves in Fig. 

10 may be obtained from those in Fig. 5 by interpreting y  to be equal to  2y x yε 1+ ε ε , 

(Kuo, 1974). 

2.1.4 Classification of torsionl behaviour 

To obtain the knowledge on the torsional response of buildings, a key elastic parameter is 
the ratio of the two uncoupled frequencies, Ω given by 

 θ
x

ωΩ = ω  (10) 

where xω  and θω , are an uncoupled translational and torsional frequencies, respectively.  

If  Ω  is greater than 1 the response is mainly translational and structure behaviour is 

defined "torsionally stiff"; conversely if  Ω  is lower than 1 the response is affected to a large 

degree by torsional behaviour and, then, the structure is defined as "torsionally flexible". A 

clear and comprehensive study of this subject is presented in Ref., (Anastassiadis et al., 

1998). In the case of a torsionally stiff structure, a single translation mode controls the 

displacement in on direction. Thus the typical dynamic behaviour of such structure is 

qualitatively similar to the response obtained using static analysis, i.e. the displacements 

increase at the flexible edge (side is outlying to the center of rigidity), and decrease at the 

stiff edge (side is closed to the center of rigidity). The seismic response of torsionally flexible 

structure is qualitatively different from that obtained in the case of static loading at the 

center of mass. The main reason is that the displacement envelope of the deck depends on 

both the translation and the torsional modes.   

2.2 Forced vibration analysis 

Civil engineering structures are always designed to carry their own dead weight, 
superimposed loads and environmental loads such as wind or earthquake. These loads are 
usually treated as maximum loads not varying with time and hence as static loads. In some 
cases, the applied load involves not only static components, but also contains a component 
varying with time which is a dynamic load. In the past, the effects of dynamic loading have 
often been evaluated by use of an equivalent static load, or by an impact factor, or by a 
modification of the factor of safety. 
Many developments have been carried out in order to try to quantify the effects produced 
by dynamic loading. Examples of structures, where it is particularly important to consider 
dynamic loading effects, are the construction of tall buildings, long bridges under wind-
loading conditions, and buildings in earthquake zones, etc.  
Typical situations, where it is necessary to consider more precisely, the response produced 
by dynamic loading are vibrations due to earthquakes. So it is very important to study the 
dynamic nature of structures. 
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Dynamic characteristics of damaged and undamaged buildings are, as a rule, different. This 

difference is caused by a change in stiffness and can be used for the detection of damage and 

for the determination of some damage parameters such as crack magnitude and location. In 

this connection, the use of vibration methods of damage diagnostics is promising. These 

methods are based on the relationships between the vibration characteristics (natural 

frequencies and mode shapes) or peculiarities of vibration system behaviour (for example, 

drift of building edges, the amplitudes of base shear, the resonance frequencies, etc.) and 

damage parameters. 

Depending on the assumptions adopted, the type of analysis used the kind of the loading or 

excitation and the overall building characteristics, a variety of different approaches have 

been reported in the references to one-storey building systems. 
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Fig. 11. Model of a one-storey system with double eccentricities subjected to ground motion 

2.2.1 One-storey system with double eccentricities 

In this section, the dynamic response of one-storey system to the horizontal components of 

ground motion is considered. At any instant of time, the ground motion is assumed to be 

the same at all points on the foundation. Also, the ground motion is considered to be plane 

shear waves propagating horizontally with a constant velocity and without change in shape.  

Now, equations of motion are developed for system as shown in Fig. 11 subjected to a 

horizontally propagating ground excitation. Let the earthquake ground motion be defined 

by accelerations along the two axes. Therefore, a force applied along either of the two 

principal axes of rigidity will cause displacement in the same direction. The principal axes of 

rigidity are orthogonal and pass through the center of rigidity. For building plans of the 

type shown in Fig. 11, where principal axes of rigidity of individual column sections are all 

parallel to one another, the principal axes of rigidity of the complete building are parallel to 

those of the individual elements. Within the range of linear behaviour, the equations of 

motion of the system, written about the center of rigidity of the system, are as follows 
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 (11c) 

where, x  and y  are horizontal displacements of the center of rigidity of the deck, relative 

to the ground, along the principal axes of rigidity of the model, x and y,  and   are the 

rotation  of the deck about the vertical axis;  g
i

x and  g
j

y are the ground displacements at 

the i th-  and j th-  column supports in the x and y directions, respectively; x yC C, and θC  

are the total damping coefficients associated with the motions in the x, y and   directions, 

respectively;  ixc and jyc are the individual damping coefficients of the i th-  and j th-  

columns in the x and y directions, respectively; ixk and jyk are the individual lateral stiffness 

of the i th-  and j th-  columns in the x and y directions, respectively; and ixl and jyl are the 

normal distances measured from the center of rigidity to the i th-  and j th-  columns in the 

y and x directions, respectively. 
It is important to note that time is measured from the instant the ground motion reaches the 
first support on the left of the diagram shown in Fig. 11 and that the amplitude of the 
ground motion at any support is a function of both time and distance from the first, i.e., 

   iy iy
g g

i

d d
x x t for t

v v
-

 
   

 
  (12a) 

0              
iyd

for t
v

    

   jx jx
g g

j

d d
y y t for t

v v
-

 
   

 
  (12b) 

0               
jxd

for t
v

  

where v  is the shear wave velocity of the ground motion; and iyd and jxd are the distances 

from the first support to the i th-  and j th-  column support in the x and y directions, 

respectively. 
Since it is customary to specify the ground motion in terms of its acceleration, Eqs. (11) 
will be rewritten by making a proper coordinate transformation. Assuming that the 
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damping coefficients are proportional to the corresponding stiffness coefficients, and 
letting 
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n

ix g
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x
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U x
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 (13a) 
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

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 
  

  
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where n  and m  are the total numbers of the column support in the x and y directions, 

respectively. Also, physically, x yU U,  and U  are the displacements of the system relative 

to the instantaneous value of the average amplitude of the ground motion experienced by 
the base. 
Substituting Eqs. (13) in Eqs. (11) and writing those equations, after introducing damping, in 
a convenient form yields 
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   
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 (14c) 

where x y,   and   are the damping coefficients in fraction of the critical damping for 

vibrations in the x, y and   directions, respectively. 
Eqs. (14) has been expressed in the most general form. It is applicable to both symmetric and 

eccentric systems subjected to a ground disturbance having a finite speed of propagation. It 

may be reduced to the equations derived from a conventional analysis in which the speed of 

propagation of the ground motion is assumed to be infinite. 
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2.2.2 Time history response 

The modal equations (14) can be solved numerically using the modal superposition method 
or by direct numerical integration. The modal superposition method, which involves the use 
of the characteristic values and functions of the system, uncouples the equations of motion 
so that each of the uncoupled equations may be integrated independently. Since it is based 
on the assumption that the structure behaves linearly, this method is applicable only to the 
elastic range of response. These issues have been further discussed in Ref., (Kuo, 1974). 
The method of direct numerical integration, which integrates the equations of motion in 
their original form, may be applied to both the elastic and inelastic ranges of response. For 
the inelastic analysis, the material properties of the system are assumed to be linear within a 
small time interval, and they are modified at the end of each integration step when needed. 
The modal superposition method is used to evaluate the elastic response of both symmetric 
and eccentric systems. Before solving Eqs. (14), it is desirable to rewrite it in matrix form. For 

consistency in units, the third equation is multiplied by crr to give the following set: 
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where the uncoupled circular natural frequencies x y,   and  are defined by Eq. (5a), 

and c is defined by Eq. (5b). Other symbols are defined as follows: 
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Symbolically, Eq. (15) may also be written as 

           m U C U K U f t( )     (17) 

Now, let    be the modal matrix, formed of the three natural modes of the system, and let 

     U Z  (18)  

Substituting Eq. (18) into Eq. (17), multiplying the resulting equation by  T , and making 

use of the orthogonality of the natural modes, Eq. (17) leads to the independent modal 
equations as follows 

 
   
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T
n

n n n n n n T
n n

f t
Z Z Z

m

2 ( )
2


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 
     (19) 

where n = 1,2,3; n  is the n th-  coupled natural frequency of the system; n  is the damping 

coefficient associated with the nth natural mode; and  n  is the n th-  natural mode. 

It should be recalled that the damping coefficients are assumed to be proportional to the 

stiffness coefficients. For specified n  and f t( ) , each of the three equations may then be 

solved independently by a step-by-step numerical integration procedure.  
There are several different methods available for integrating numerically equations of the form 
of Eq. (19). One of the procedures is the linear acceleration method, which is simple but 
sufficiently accurate for all practical purposes if the integration increment is chosen suitably.  

In this method, the acceleration is assumed to vary linearly with time, t . Let n nZ t Z t( ), ( )  

and nZ t( ) denote, respectively, the value of nZ  and of its first two derivatives at any time t , 

and let t  be the same increment between t  and t t  . The acceleration nZ  at time t t   

may then be expressed in terms of all previous values at time t  as follows: 
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with the acceleration nZ t t( )   determined, the corresponding velocity and displacement 

are determined from 

 n n n

t
Z t t q Z t t( ) ( )

2


        (22) 

 n n n

t
Z t t q Z t t

2

( ) ( )
6


       (23) 

For specified initial values of nZ (0)  and nZ (0)  the initial acceleration, nZ (0)  may be 

evaluated directly from Eq. (19), i.e. 

 n n n n n n nZ F Z Z2(0) (0) - 2 (0) - (0)     (24) 

with nZ (0) , nZ (0) and nZ (0)  known, the values of the acceleration, velocity, and 

displacement at any time may be determined by repeated application of Eqs. (20), (22) and 
(23). 

Once the values of nZ  have been determined, the deformations  U  are determined from 

Eq. (18), and the deformations of the individual columns are determined from the following 
equations: 

 ix x i cxU U bU U    (25a) 

 jy y j cyU U aU U-    (25b)   

where 
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T  is the corresponding displacement term of T
 . 

Note that the terms cxU  and cyU  in Eqs. (25) are related only to the input functions, the 

individual stiffnesses of the system, and the geometric arrangement of the columns. They 

account for the difference in the displacement values of the ground motion at the locations 

of the columns due to the finite speed of propagation of the excitation. This fact is normally 

ignored in the conventional analysis. Hereafter, both quantities cxU  and cyU  are designated 

as cU the displacement correction term. 

2.2.3 Equations for symmetric systems 
The equations are applicable to both symmetric and eccentric systems. A symmetric system 
may experience torsional response even under the influence of a translational motion of the 
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ground. This fact, which appears to have been first investigated by Newmark, can be seen 
clearly from Eqs. (14). In Newmark's approach, the rotational component of the response is first 
evaluated, and then it is combined with the translational component determined in the usual 
way. The method of combining the two components was not specified, (Newmark, 1969). 

The method used herein consists of using Eqs. (14) with the xe and ye  set equal to zero. In 

this approach, the torsional and translational effects are obtained simultaneously by solving 

the following set of equations: 
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Note that these equations are independent of one another. Accordingly, each unknown 
coordinate may be evaluated independently by the method described in the preceding 
section and the column deformations computed by use of Eqs. (25). 

If the speed of propagation of the ground motion were infinite, as is normally assumed, the 

right-hand members of the three equations would be, respectively, ox-  , oy and 0, and no 

torsional response could develop. It is also interesting to note that, if only a single 

component of ground shaking is considered, say ox  and if Eq. (27c) is multiplied by b 2 , a 

direct comparison with the Newmark approach becomes possible. 

Now, assume that the system has the same number of columns in the x and y directions and 

that the total stiffness of the system in either direction is equally distributed among the 

columns. The Newmark approach may be determined by neglecting the damping term in 

the Eq. (27c). For a very small transit time, rt , which is the time required for the ground 

motion to traverse the longer plan dimension of the foundation, b , the Eq. (27c) may be 

written corresponding to the Newmark equation as follows, 

 yo r

x

Kx t a

K b

2

- 1 1
2

    
   


 (28)  

2.2.4 Spectral response 

In the time history method, there have been two major disadvantages in the use of this 
approach. First, the method produces a large amount of output information that can require 
a significant amount of computational efforts to conduct all possible design checks, as a 
function of time. Second, the analysis must be repeated for several different earthquake 
motions in order to assure that all frequencies are excited, since a response spectrum for one 
earthquake in a specified direction is not a smooth function. 
There are computational advantages in using the spectral response method of seismic analysis 
for prediction of displacements and member forces in structural systems. The method involves 
the calculation of only the maximum values of the displacements and member forces in each 
mode using smooth design spectrum that are the average of several ground motions. 
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If the ground motions in both x and y directions are characterized by the same response 
spectrum, then the maximum value of the modal response function (19) may be rewritten in 
the following form 

  n nx x ny y a n n
n

Z a a S
2max

1
( , ) 


     (29) 

In which xa  and ya  are the amp1itudes of the components of the ground motion along the 

x- and y- axes, respectively, and a n nS ( , )   is the spectral acceleration. Two Mode 

Participation Factors nx  and ny  may be obtained in the following form 

 nx xn   (30a) 

 ny yn   (30b) 
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Fig. 12. Two idealized response spectrum 

Finally, the most conservative method that is used to estimate a peak value of displacement 
or force within a structure is to use the sum of the absolute of the modal response values. 
This approach assumes that the maximum modal values, for all modes, occur at the same 
point in time. The relatively new method of modal combination is the Complete Quadratic 
Combination, CQC, method that was first published in 1981, (Wilson et al. 1981). 
Now, the dynamic response of one-storey building model to the horizontal components of 
ground motion along x and y axes are investigated. For the objectives of this study it is 
considered the most appropriate to characterize ground motion by its response spectrum. 
The numerical results presented are for two idealized response spectrum (see Fig. 12), flat 
(or period independent) acceleration spectrum and hyperbolic acceleration spectrum (or flat 
velocity spectrum). The chosen spectrums have the advantage that the normalized response 
of the system does not depend on the periods of vibration, but only on their ratios. 

For these two idealized spectrums, the normalized response does not depend on n  and x  

separately but on the ratios n x .  The frequency ratios  n x  and the mode shapes ( xnφ , 

xnφ  and nφ ) depend on four dimensionless parameters ( y x ,  x , x  and y ). The 

variation of the normalized modal responses, for a one-way coupled system ( 0xe ) subjected 

to ground motion in the x direction, for the case of flat spectrum, are shown in Fig. 13.  
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Fig. 13. Normalized displacements of the flexible and stiff edges; flat spectrum 

Those for the case of hyperbolic spectrum are presented in Fig. 14. The maximum 

displacements of both flexible and stiff edges are calculated by modal superposition 

method, using complete CQC method. These values are then normalized by oU the 

maximum displacement in the x direction produced by the same earthquake in an 

associated torsionally balanced building with stiffness and mass values similar to those of 

the asymmetric building but coincident centers of mass and rigidity.  
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Fig. 14. Normalized displacements of the stiff and flexible edges; hyperbolic spectrum 

The normalized flexible edge displacement f oU U is plotted as a function of x  for 

different values of eccentricity ye e  and a plan aspect ratio of a b 1 in Fig. 11. In all cases 

flexible edge displacement in the structure is greater than the displacement of the associated 

symmetric structure. Of particular interest is the fact that there is a sharp increase in flexible 

edge displacement when x  falls below about 1.0. 

It is also of interest to note that resonance between uncoupled translational and torsional 

frequencies, i.e., when x 1.0   , does not cause any significant increase in response.  
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Frequency resonance is not, therefore, a critical issue. Plots of normalized stiff edge 

displacement are shown in Fig. 13, again for different values of eccentricity ye e and a plan 

aspect ratio of b 1a . Stiff edge displacement is less than 1 for x 1.0   . For 

x 1.0   , that is for torsionally flexible behaviour, stiff edge displacement starts to 

increase and can be, substantially, higher than 1. The results presented in Figs. 13 and 14 

clearly suggest that buildings with low torsional stiffness may experience large 

displacements, causing distress in both structural and nonstructural components.  

3. Torsional provisions in seismic codes as applied one-storey buildings 

Most seismic building codes Formulate the design torsional moment at each storey as a 
product of the storey shear and a quantity termed design eccentricity. These provisions 
usually specify values of design eccentricities that are related to the static eccentricity 
between the center of rigidity and the center of mass. The earthquake-induced shears are 
applied through points located at the design eccentricities. A static analysis of the structure 
for such shears provides the design forces in the various elements of the structure. In some 
codes the design eccentricities include a multiplier on the static eccentricity to account for 
possible dynamic amplification of the torsion. The design eccentricities also include an 
allowance for accidental torsion. Such torsion is supposed to be induced by the rotational 
component of the ground motion and by possible deviation of the centers of rigidity and 
mass from their calculated positions. The design eccentricity formulae, given in building 
codes, can be written in two following parts: 
 

max

avg

Horizontal Force

Floor Diaphragm

Li

 

Fig. 15. Maximum and average diaphragm displacements of the structure 

 The first part is expressed as some magnification factor times the structural eccentricity. 
This part deals with the complex nature of torsion and the effect of the simultaneous 
action of the two horizontal ground disturbances. 

 The second term is called accidental eccentricity to account for the possible additional 
torsion arising from variations in the estimates of the relative rigidities, uncertain 
estimates of dead and live loads at the floor levels, addition of wall panels and 
partitions; after completion of the building, variation of the stiffness with time and, 
Inelastic or plastic action. The effects of possible torsional motion of the ground are also 
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considered to be included in this term. This terms in general a function of the plan 
dimension of the building in the direction of the computed eccentricity. 

In Iranian code, in case of structures with rigid floors in their own plan, an additional 
accidental eccentricity is introduced through the effects generated by the uncertainties 
associate with the distribution of the mass level and/or the spatial variation of the ground 
seismic movement, (Iranian code 2800, 2005). This is considered for each design direction and 
for each level and also is related to the center of mass. The accidental eccentricity is computed 
with the relationship 

 
i ie L0.05   (31) 

where ie  is the accidental eccentricity of mass for storey i from its nominal location, applied in 

the same direction at all levels; iL  – the floor dimension perpendicular to the direction of the 

seismic action. If the lateral stiffness and mass are not distributed in plan and elevation, the 

accidental torsional effects may be accounted by multiplying an amplification factor jA as follow  

 
j

avg

A

2

max1.0 3.0
1.2

 
   

  
 (32) 

where max and avg are maximum and average diaphragm displacements of the structure, 

respectively, (see Fig. 15). 

4. Conclusion  

A study of free vibration characteristics of an eccentric one-storey structural model is 

presented. It is shown in the previous sections that the significance of the coupling effect of 

an eccentric system depends on the magnitude of the eccentricity between the centers of 

mass and of rigidity and the relative values of the uncoupled torsional and translational 

frequencies of the same system without taking the eccentricity into account. The coupling 

effect for a given eccentricity is the greatest when the uncoupled torsional frequency,  , 

and translational frequency, x  of the system are equal. As the value of x  increases, the 

coupling effect decreases. For small eccentricities, the motions may reasonably be 

considered uncoupled if the ratio of x  exceeds 2.5. 
In addition, it is shown that the locus of the associated center of rotation can be formulated 
corresponding for a given eccentricity. Note that, for all values of eccentricity, as the value 
of the uncoupled natural frequencies ratio increases the center of rotation shifts away from 
the center of rigidity for the first mode and approaches the center of mass for the higher 
mode. It is also shown that, the torsional behaviour of the model assembled, using our 
approach, can be classified based on the nature of the instantaneous center of rotation. 
It is well known that asymmetric or torsionally unbalanced buildings are vulnerable to 
damage during an earthquake. Resisting elements in such buildings could experience large 
displacements and distress. With eccentricity defined for one-storey buildings, the torsional 
provisions or building codes can then be applied for a seismic design or such structures. 
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