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1. Introduction 

Studies of vibration of plates have matured and are a well-established branch of research in 
structural dynamics. They have a vast range of applications in engineering and technology. But 
not much work can be found on vibration analysis of Functionally Graded Materials (FGMs) as 
compared to isotropic and composite plates and shells. FGMs are those in which the volume 
fraction of the two or more constituent materials is varied, as a power-law distribution, 
continuously as a function of position along certain dimension(s) of the structure [1, 2]. 
From the perspective of finite element method (FEM) studies of FGM, Praveen and Reddy 
[3], studied the static and dynamic responses of functionally graded (FG) ceramic-metal 
plate accounting for the transverse shear deformation, rotary inertia and moderately large 
rotations in the Von-Karman sense, in which the effect of an imposed temperature field on 
the response of the FG plate was discussed in detail. Ng et al. [4] dealt with the parametric 
resonance of FG rectangular plates under harmonic in-plane loading. Ferreira and Batra [5] 
provided a global collocation method for natural frequencies of FG plates by a meshless 
method with first order shear deformation theory (FSDT). Woo et al. [6] presented an 
analytical solution for the nonlinear free vibration behavior of FGM plates, where the 
fundamental equations were obtained using the Von-Karman theory for large transverse 
deflection, and the solution was based in terms of mixed Fourier series. Zhao et al. [7] 
studied the free vibration analysis of metal and ceramic FG plates using the element-free kp-
Ritz method. The FSDT was employed to account for the transverse shear strain and rotary 
inertia, mesh-free kernel particle functions were used to approximate the two-dimensional 
displacement fields and the eigen-equation was obtained by applying the Ritz procedure to 
the energy functional of the system. Batra and Jin [8] used the FSDT coupled with the FEM 
to study the free vibrations of an FG anisotropic rectangular plate with various edge 
conditions. Also, Batra and Aimmanee [9] studied a higher order shear and normal 
deformable plate theory by FEM. Many studies conducted on FGMs are related to the 
analysis of free vibration by applying FSDT (see [10-12] and the references there in). 
Other forms of shear deformation theory, such as the third order-shear deformation theory 
(TSDT) that accounts for the transverse effects, have been considered. Cheng and Batra [13] 
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applied Reddy's third order plate theory to study buckling and steady state vibrations of a 
simply supported FG isotropic polygonal plate [14]. Vel and Batra [14] dealt with the three-
dimensional exact solution for free and forced vibrations of simply supported FGM 
rectangular plates using FDST and TSDT by employing the power series method. Nonlinear 
vibration and dynamic response of FGM plates in thermal environments were studied by 
Huang et al. [15] based on the higher-order shear deformation plate theory and general Von-
Karman type equation. Static analysis of FG plates using TSDT and a meshless method were 
also presented by Ferreira et al. [16]. 
As for the first-order shear deformation plate theory (FSDT), the theory extends the kinematics 
of the classical plate theory (CPT) by relaxing the normality restriction and allowing for 
arbitrary but constant rotation of transverse normals. On the other hand, the second and third 
order shear deformation plate theory further relaxes the kinematic hypothesis by removing the 
straightness assumption; i.e., the straight normal to the middle plane before deformation may 
become cubic curves after deformation. The most significant difference between the classical 
and shear deformation theories is the effect of including transverse shear deformation on the 
predicted deflections, frequencies, and buckling loads [19]. 
A unified derivation of various shear-deformation models consists of Kirchhoff-Love type, 
Mindlin-Reissner type theory, third order theory, Layer-Wise theory and Exact-Solution. 
Librescu et al. [22] studied the correlation between two apparently different higher-order 
theories and First order transverse shear deformation theory (FSDT) of anisotropic plates. 
The Kirchhoff-Love assumptions were developed by Librescu and Schmidt [23]. The theory 
incorporates normal and shear deformation (transverse) as well as the higher-order effects, 
and accounts for small strains and moderate rotations of the normal. 
For experimental work, shear deformation validation and compared structural theories, 
Stoffle [20] measured and simulated vibrations of viscoplastic plates under impulsive 
loading  and determined how accurately the measured deformations can be calculated by 
the chosen constitutive and structural theories. He assumed a first-order shear deformation 
shell theory and applied small strains and moderate rotations and viscoplastic laws. He 
applied short time measurement techniques to shock tubes in order to record fast loading 
processes and plate deformations. 
As mentioned above, shear deformation theories have been applied to consider transverse 
shear strains and rotation. Axisymmetric bending and stretching of functionally graded 
solid circular and annular plates were studied using the second-order shear deformation 
plate theory by Saidi and Sahraee [21]. Khdeir and Reddy [17] studied the free vibration of 
laminated composite plates using SSDT. Bahtuei and Eslami [18] also investigated the 
coupled thermoelastic response of a FG circular cylindrical shell by considering SSDT. 
To the authors’ knowledge, not much work has been done in the area of the dynamic 
stability of FG plate by using SSDT. In this study, the free vibration of FG plates (rectangular 
and square) by using SSDT is presented. The material properties of the plates are graded 
along the thickness direction according to a volume fraction power law distribution. 
Classical elasticity is considered and the complete governing equations are presented. 
Navier's method is applied to solve the equations.  This work aims to investigate the effect 
of some basic factors such as material properties, side-to-side and side-to-thickness ratio for 
FG quadrangular plates on simply supported boundary conditions. 

2. Gradation relations 

The most commonly used models for most of the literature that express the variation of 
material properties in FGMs is the power law distribution of the volume fraction. According 
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to this model, the material property gradation through the thickness of the plate is assumed 
to be in the following form [10]:  

    p
c m mE E x E E x h E3 3( ) / 1 /2                (1a) 

    p
c m mx x h3 3( ) / 1 /2               (1b)   

Here E and   denote the modulus of elasticity and density of FG structure, while the 

parameters with subscript m or c  represent the material properties of a pure metal and 

pure ceramic plate, respectively. The thickness coordinate variable is presented by 3x  

while 3
2 2

h h
x   , where h  is the total thickness of the plate as shown in Figure 1. 0p   is 

the volume fraction exponent (also called grading index in this paper);  p
x h3 / 1 / 2  

denotes the volume fraction of the ceramic. 
 

 

Fig. 1. Functionally graded plate. 

A FG rectangular is considered as shown in Figure 1. The material in the top surface and in 
the bottom surface is Full-Ceramic and Full-Metal respectively, and between these two pure 
materials, the power law distribution of material is applied. The most well-known FGM is 
compositionally graded from a ceramic to a metal to incorporate such diverse properties as 
heat, wear and oxidation resistance of ceramics with the toughness, strength, machinability 
and bending capability of metals [7]. 

3. Elastic equations 

Under consideration is a thin FG plate with constant thickness h , width, a , and length , b , as 

shown in Figure 1. Cartesian coordinate system ( 1 2 3, ,x x x ) is used.  

Metal
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3.1 Displacement field and strains 

The SSDT is based on the following representation of the displacement field: 

 2
1 3 1 3 2u u x x             (2a) 

 2
2 3 1 3 2u v x x                                   (2b)   

 3u w                                   (2c) 

 

Where ( 1 2 3, ,u u u ) denote the displacement components in the ( 1 2 3, ,x x x ) directions 

respectively; ( , ,u v w ) are the displacements of a point on the mid plane ( 1 2, ,0x x ). All 

displacement components ( 1 2 1 2, , , , , ,u v w     ) are functions of position ( 1 2,x x ) and time t . 
The strain-displacement equations of the linear strain are given by [19]. 

 

0 '
11 1111 11
0 2 '

22 22 3 22 3 22

0 '
12 1212 12

x x

  
   
  

                         
       
         

        (3a) 
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23 23 23

30 1
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              
        

                   (3b) 

where  

 

0 '1 2
11 11 11

1 1 1

0 '1 2
22 22 22

2 2 2

0 '1 1 2 2
12 12 12

2 1 2 1 2 1

0 0 1 1
23 1 13 1 23 2 13 2

2 1
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   

     
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  
  
  

  
  
     

     
     

 
     

 

       (4) 

3.2 Stress-strain relations 

The stress-strain relations are given by [17, 19]. 

 

11 11 12 11

22 12 22 22

23 44 23

13 55 13

12 66 12

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

q q

q q

q

q

q

 
 
 
 
 

    
    
            
    
    
        

          (5) 

where ijq are the material constants given by  
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 11 22 12 11 44 55 662 2(1 )1

E E
q q q q q q q


     


          (6) 

Hence, it follows that 

 

0 '
11 11 1111 11 12
0 '
22 2222 12 22 22
0 1 2

23 66 23 3 23 3

0 1
13 55 13 13

'012 44 12 1212

0 0 0

0 0 0

0 0 0 0 0
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0 0 0 0

q q

q q

q x x

q

q

  
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  
  
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                                        
        
        
               

 
 
 
 
 
 
 
  
 

              (7) 

3.3 Equations of motion  

For the case of a rectangular plate, K , U and V are the kinetic, strain and potential energies 

of the body, respectively.  The summation of the potential energy of external forces and 

strain energy, U V , is the total potential energy,  , of the body. Hamilton's principle for 

an elastic body is given by,  

  
2

1

0

t

t

K dt              (8) 

The inertias are defined by  

    
2

0 3 3

2

0,1,2,...,6

h

i
i

h

I x dx i


              (9) 

Hamilton’s principle, equation (8), along with the SSDT, given by equation (2), yields the 

complete form of the equilibrium equations: 
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0
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x x
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 

 

 
 

 
 

    
 
 

    
 
 

    
 
 

    
 



 

 

  

  

 (10) 

where , , , andN M L Q R are the stress resultants. These parameters can be represented by    
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where 

  
2

2 3 4
3 3 3 3 3

2

, , , , 1, , , ,

h

ij ij ij ij ij ij
h

A B D E F q x x x x dx


      (12a) 

Here , , ,ij ij ij ij ijA B D E andF are the plate stiffnesses. 

 For
 

 
, , , 1,2,4,5,6

, , 1,2,6

ij ij ij

ij ij

A D F i j

E B i j
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


    (12b) 

By substituting equation (4) into equation (11) and then into equation (10) and also by 

applying definition (12), Navier’s equations for FG plates are obtained as follows:   
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It can be noted by considering zero values for 2 2&  in equations (10) and (13), the FSDT 

equations can be obtained [19]. 

4. Boundary conditions 

For the case of simply supported boundary conditions of FG, as shown in Figure 2, the 

following relations can be written: 
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Fig. 2. Simply supported boundary condition in FG plates. 
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5. Method of solution  

The Navier method is used for frequency analysis of a simply supported FG plate. The 

displacement field can be assumed to be given by:  

    1 2
1 1

cos sin , i t
mn mn

n m

u u t x x u t Ue  
 



 
     (15a) 
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where  

 ,
m n

a b

               (16) 

For natural vibrations, substituting equation (15) into the equations of motion (13), these 
equations reduce to the following forms:  
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where  is the natural frequency and  
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      (18) 

By considering relations (18), equation (17) can be written as:   

 2 0ij ijC M                  (19) 

By solving equation (19) and considering appropriate values for n and m in equation (16) 

the fundamental frequency of a quadrangle FG plate can be obtained.  

6. Validation and numerical results 

6.1 Validation  

The results obtained for a FG plate by applying SSDT are compared with the results 

obtained by using TSDT as in Ref [5] and the exact solution of [14]. The following non-

dimensional fundamental frequencies in Table 1 and Table 2 are obtained by considering 

material properties the same as [5].  

Results in Table 1 and Table 2 show that the values obtained by SSDT are greater than those 

from TSDT and the exact solution. This is due to the fact that the transverse shear and rotary 

inertia will have more of an effect on a thicker plate. For the thick plates considered in this  

 

/ 0.05h a   / 0.1h a   / 0.2h a   

Present 

study 

Ref. 

[5] 

Exact 

[14] 

Present 

study 

Ref. 

[5] 

Exact 

[14] 

Present 

study 

Ref. 

[5] 

Exact 

[14] 

0.0158 0.0147 0.0153 0.0621 0.0592 0.0596 0.2306 0.2188 0.2192 

Table 1. Dimensionless fundamental frequency ( m

m

h
E

  ) of a simply supported square 

(Al/Zro2) FG plate ( 1p  ). 
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case, there is insignificant difference between the result predicted by SSDT and TSDT; SSDT 

slightly over predicts frequencies. It can be seen that there are good agreements between our 

results and other results.  

 

2p   3p   5p   

Present 
study 

Ref. 
[5] 

Exact 
[14] 

Present 
Study 

Ref. 
[5] 

Exact 
[14] 

Present 
Study 

Ref. 
[5] 

Exact 
[14] 

0.2292 0.2188 0.2197 0.2306 0.2202 0.2211 0.2324 0.2215 0.2225 

Table 2. Dimensionless fundamental frequency ( m

m

h
E

  ) of a simply supported square 

(Al/Zro2) FG Plate, thickness-to-side is: / 0.2h a  . 

 

Material property ( )E Gpa  3( / )Kg m    

SUS 304, Metal 201.04 8166 0.33 

Aluminum, Metal 68.9 2700 0.33 

Zirconia, Ceramic 211.0 4500 0.33 

Si3N4, Ceramic 348.43 2370 0.24 

Table 3. Properties of materials used in the numerical example.  

6.2 Numerical example  

For numerical illustration of the free vibration of a quadrangle FG plate with Zirconia and 
silicon nitride as the upper-surface ceramic and aluminum and SUS 304 as the lower-surface 
metal are considered the same as [10]:  

6.2.1 Results and discussion for the first ten modes in quadrangular FG plates  

In the following Tables, free vibrations are presented in dimensionless form for square and 
rectangular FG plates. 

Tables 4 and 5 show the dimensionless frequency in square (a=b) SUS 304/Si3N4, FG plates. 

It can be noted that for the same values of grading index P , the natural frequency increases 

with increasing mode. The effect of grading index can be shown by comparing the 

frequency value for the fixed value of mode and changing the values of grading index p . It 

can be seen that, the frequency decreases with the increase of the grading index due to the 

stiffness decreases from pure ceramic to pure metal. 

Tables 6 and 7 show the dimensionless frequency in rectangular (b=2a) SUS 304/Si3N4, FG 

plates. The effect of grading index can be shown by comparing the frequency for the same 

value of mode and considering different values of grading index p  as shown in Table 5. It is 

clearly visible that the frequency decreases with the increasing grading index, caused by the 

stiffness decreasing with increasing grading index. For the same value of p , it can be said 

that the natural frequency increases with increasing mode. By comparing Tables 6, 7 and 4, 5 

it can be observed that for the same values of grading index and mode, the fundamental 

frequency in square FG plates are greater than those in rectangular FG plates and by 
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m n  mode 0p   0.5p   1p   2p   4p   6p   8p   10p   

1x1 1 5.76 3.904 3.393 3.027 2.795 2.697 2.638 2.597 
1x2 2 13.846 9.366 8.139 7.259 6.700 6.464 6.323 6.227 
2x1 3 13.846 9.366 8.139 7.259 6.700 6.464 6.323 6.227 
2x2 4 21.353 14.441 12.547 11.187 10.321 9.957 9.741 9.593 
2x3 5 32.859 22.220 19.305 17.203 15.863 15.300 14.967 14.741 
3x2 6 32.859 22.220 19.305 17.203 15.863 15.300 14.967 14.741 
3x3 7 43.369 29.323 25.472 22.689 20.911 20.167 19.729 19.431 
3x4 8 56.798 38.405 33.362 29.703 27.356 26.377 25.801 25.412 
4x3 9 56.798 38.405 33.362 29.703 27.356 26.377 25.801 25.412 
4x4 10 69.054 46.690 40.555 36.091 33.221 32.026  

Table 4. Variation of the frequency parameter ( 2 / /c ca h E   ) with the grading index 

( p ) for square. 3 4304 /SUS Si N FG square plates ( / 10 ,a h a b  ). 

 

m n  mode 0p   0.5p   1p   2p   4p   6p   8p   . 10p  . 

1x1 1 5.338 3.610 3.137 2.796 2.580 2.489 2.435 2.398 

1x2 2 11.836 8.003 6.953 6.193 5.706 5.502 5.382 5.301 

2x1 3 11.836 8.003 6.953 6.193 5.706 5.502 5.382 5.301 

2x2 4 17.263 11.672 10.138 9.022 8.305 8.006 7.831 7.714 

2x3 5 24.881 16.828 14.621 13.002 11.950 11.513 11.258 11.089 

3x2 6 24.881 16.828 14.621 13.002 11.950 11.513 11.258 11.089 

3x3 7 31.354 21.209 18.426 16.375 15.0343 14.477 14.156 13.943 

3x4 8 39.180 26.508 23.041 20.471 18.770 18.062 17.656 17.388 

4x3 9 39.180 26.508 23.041 20.471 18.770 18.062 17.656 17.388 

4x4 10 46.020 31.141 27.067 24.036 22.020 21.181  

Table 5. Variation of the frequency parameter ( c ca h E2 / /   ) with the grading index 

( p ) for SUS Si N3 4 304 / FG square plates ( a h a b/ 5,  ). 

 

m n  mode 0p   0.5p   1p   . 2p  . 4p   6p   8p   10p   

1x1 1 3.461 2.341 2.034 1.814 1.674 1.616 1.580 1.556 

1x2 2 5.338 3.610 3.137 2.796 2.580 2.489 2.435 2.39 

2x1 3 10.334 6.984 6.065 5.402 4.980 4.804 4.700  

2x2 4 11.836 8.00 6.948 6.188 5.702 5.499 5.380 5.300 

2x3 5 14.199 9.599 8.337 7.422 6.836 6.592 6.449 6.552 

3x2 6 20.484 13.845 12.020 10.689 9.835 9.482 9.276 9.139 

3x3 7 22.373 15.125 13.133 11.678 10.740 10.352 10.126 9.976 

3x4 8 24.881 16.824 14.611 12.989 11.940 11.505 11.254 11.085 

4x3 9 31.656 21.409 18.585 16.506 15.157 14.602 14.282 14.071 

4x4 10 33.715 22.805 19.802 17.587 16.142 15.547  

Table 6. Variation of the frequency parameter ( 2 / /c ca h E   ) with the grading index 

( p ) for 3 4304 /SUS Si N FG rectangular plate ( a h a b/ 5, 0.5   ). 

www.intechopen.com



Second Order Shear Deformation Theory (SSDT)  
for Free Vibration Analysis on a Functionally Graded Quadrangle Plate 

 

71 

m n  mode 0p   0.5p   1p   2p   4p   6p   8p   10p   

1x1 1 3.645 2.467 2.144 1.913 1.766 1.704 1.667 1.642 

1x2 2 5.769 3.904 3.393 3.027 2.795 2.697 2.638 2.597 

2x1 3 11.885 8.039 6.986 6.231 5.752 5.549 5.429 5.346 

2x2 4 13.846 9.365 8.138 7.258 6.699 6.463 6.323 6.227 

2x3 5 17.037 11.523 10.012 8.928 8.239 7.949 7.776 7.658 

3x2 6 26.092 17.640 15.325 13.659 12.600 12.156 11.893 11.713 

3x3 7 28.958 19.578 17.008 15.158 13.981 13.487 13.195 12.995 

3x4 8 32.859 22.215 19.299 17.197 15.858 15.297 14.965 14.739 

4x3 9 43.873 29.653 25.754 22.937 21.142 20.393 19.951 19.652 

4x4 10 47.344 32.002 27.794 24.715 22.809 21.999  

Table 7. Variation of the frequency parameter ( 2 / /c ca h E   ) with the grading index 

( p ) for 3 4304 /SUS Si N  FG rectangular plate ( / 10 , 0.5a h a b   ). 

increasing the side-to-thickness ratio, the frequency also increases. It is evident that the 
grading index and side-to-thickness ratio effects in frequency are more significant than the 
other conditions. 

6.2.2 Results and discussion for the natural frequency in quadrangular FG (SUS 
304/Si3N4) plates  

Figures (3) and (4) illustrate the dimensionless frequency versus grading index ( p ), for 

different values of side-to-thickness ratio ( /a h ) and side-to-side ratio ( /b a ), respectively. 

In Figure 3, the effect of grading index ( p ) and side-to-thickness ratio ( /a h  ) on 

dimensionless fundamental frequency of FG (SUS 304/Si3N4) plate is shown. It can be seen 

that the frequency decreases with increasing grading index, due to degradation of stiffness 

by the metallic inclusion. It can be observed that the natural frequency is maximum for full-

ceramic ( 0.0p  ) and this value increases with the increase of the side-to-thickness ratio, 

since the stiffness of thin plates is more effectively than the thick plates. It is seen that for the 

values ( p ), for 0 2p  the slope is greater than other parts ( 2p  ). It can be said that for 

side-to-thickness ratios greater than twenty ( / 20a h  ), the frequencies will be similar for 

different values of grading index. It can be noted that the difference between frequencies in 

/ 5a h  and / 10a h   are greater than differences of frequency between / 10a h   and 

other curves for the same values of grading index p . And also it can be concluded that 

for / 20a h  , the difference between the frequencies is small for the same value of grading 

index. 

The effect of grading index ( p ) and side-to-side ratio ( /b a ) on dimensionless fundamental 

frequency of FG (SUS 304/Si3N4) plate can be seen in figure 4. It can be noted that the 

frequency increases with the increase of the /b a since rectangular plates can be treated as a 

one-dimensional problem for example, beams or plate strips. It can be observed that the 

frequency is almost constant for different values of grading index.  
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Fig. 3. Dimensionless frequency ( 2 / /c ca h E   ) versus grading index ( p ) for 

different values of side-to-thickness ratio ( /a h ) in square ( b a ) FG ( SUS Si N3 4304 / ) 

plates. 
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Fig. 4. Dimensionless frequency ( 2 / /c ca h E   ) versus grading index ( p ) for 

different values of side-to-side ratio ( /b a ) FG ( 3 4304 /SUS Si N ) plates when / 10.0a h    
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Figures (5) and (6) show variation of dimensionless fundamental frequency of FG (SUS 

304/Si3N4) plate with side-to-thickness ratio ( /a h ), for different values of grading index 

( p ) and side-to side ratio ( /b a ), respectively. 

It is seen from figure 5, the fundamental frequency increases with the increase of the value 

of side-to-thickness ratio ( /a h ). It is shown that the frequency decreases with the increase 

of the values of side-to-side ( /b a ). It can be noted that the slope of frequency versus side-

to-thickness ratio ( /a h ) for part 5 / 10a h  is greater than those in another part 

( / 10a h  ). 
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Fig. 5. Dimensionless frequency ( 2 / /c ca h E   ) versus side-to-thickness ratio 

( /a h )for different values of side-to-side ratio ( /b a ) FG ( 3 4304 /SUS Si N ) plates 

when 5p  . 

www.intechopen.com



 
Recent Advances in Vibrations Analysis 

 

74

 
 
 
 
 
 
 
 
 
 

10 20 30 40 50 60 70 80
2

2.5

3

3.5

4

4.5

5

5.5

6

Side-to-Thicness ratio (a/h)

D
im

e
n
s
io

n
le

s
s
 F

u
n
d

a
m

e
n
ta

l 
F

re
q

u
e
n
c
y

 

 

Full Ceramic

p=0.2

p=0.5

p=0.8

p=1

p=2

p=8

p=30

p=150

Full Metal

a=b

 
 
 
 
 
 

Fig. 6. Dimensionless frequency ( 2 / /c ca h E   ) versus side-to-thickness ratio ( /a h ) 

for different values of grading index ( p ) in square ( b a ) FG ( 3 4304 /SUS Si N ) plates. 

The variation of frequency with side-to-thickness ratio ( /a h ) for different values of grading 

index ( p ) is presented in Figure 6. As expected, by increasing the value of grading index 

( p ) the values of frequency decrease due to the decrease in stiffness. Similarly, in figure (5) 

while the 5 / 10a h  , the slope is greater than another ratios. It can be noted that for the 

values of grading index 30p  , the results for frequency are similar.  

Figures 7 and 8 present the variation of dimensionless frequency of FG (SUS 304/Si3N4) 

plate versus side-to-side ratio ( / )b a  for different values of grading index ( )p  and side-to-

thickness ratio ( / )a h , respectively. 
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Fig. 7. Dimensionless frequency ( 2 / /c ca h E   ) versus side-to-side ratio ( b a ) for 

different values of grading index ( p ) FG ( 3 4304 /SUS Si N ) plates when / 100a h  . 
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Fig. 8. Dimensionless frequency ( 2 / /c ca h E   ) versus side-to-side ratio ( /b a ) for 

different values of side-to-thickness ratio ( /a h ) FG ( 3 4304 /SUS Si N ) plates when 5p  . 
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In figure 7, it is shown that the frequency decreases with the increase of the value of side-to-

side ratio ( / )b a  for all values of grading index ( )p . It is seen that the frequencies for FG 

quadrangular plates are between that of a full-ceramic plate and full-metal plate. As 

expected the frequencies in a full-ceramic plate are greater than those in a full-metal plate. 

The results for dimensionless frequency versus side-to-side ratio ( / )b a for different values 

of side-to-thickness ratio ( / )a h in FG plate while grading index 5p   are shown in figure 8. 

It is seen that by increasing the value of /b a , the frequency decreases for all values of /a h . 

It can be noted for / 10a h  the results are similar.  

7. Conclusions 

In this chapter, free vibration of FG quadrangular plates were investigated thoroughly by 

adopting Second order Shear Deformation Theory (SSDT). It was assumed that the elastic 

properties of a FG quadrangular plate varied along its thickness according to a power law 

distribution. Zirconia and Si3N4 were considered as a ceramic in the upper surface while 

aluminum and SUS304 were considered as metals for the lower surface. The complete 

equations of motion were presented using Hamilton’s principle. The equations were solved 

by using Navier’s Method for simply supported FG plates. 

Some general observations of this study can be deduced here:  

 The decreasing slope of the fundamental frequency for 0 2p  , is greater than another 

part ( 2p  ) for all values of side-to-thickness ratio ( / )a h  in square FG plate. 

 It was found that the fundamental frequency of the FG plate increases with the increase 

of the value of side-to-side ratio ( /b a ). 

 For FG plates, the slope of increasing frequency versus side-to-thickness ( / )a h  when 

5 / 10a h   is greater than another part ( / 10)a h   for any value of grading index 

and side-to-side ratio.   

 The fundamental frequency versus side-to-side ratio ( /b a ) for FG quadrangular plates 

are between those of a full-ceramic plate and full-metal plate when / 10a h  . 
From the numerical results presented here, it can be proposed that the gradations of the 

constitutive components are the significant parameter in the frequency of quadrangular FG 

plates. 
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