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1. Introduction 

Experimental results show that as length scales of a material are reduced, the influences of 
long-range interatomic and intermolecular cohesive forces on the mechanical properties 
become prominent and cannot be neglected. It is well known that surfaces and interfaces in 
nano structures behave differently from their bulk counterparts. For nanostructures with 
size less than 100nm, the surface to volume ratio is significant and the effective properties 
are altered by surface and nonlocal effects. Therefore, at nanolength scales, size effects often 
become prominent, the causes of which need to be explicitly addressed especially with an 
increasing interest in the general area of nanotechnology (Sharma et al., 2003).  
Due to the vast computational expenses of nano-structures analyses when using atomic 
lattice dynamics and molecular dynamic simulations, there is a great interest in applying 
continuum mechanics for analysis of nano-structures. Classical continuum elasticity, which 
is a scale free theory, cannot predict the size effects. Nonlocal continuum mechanics allows 
one to account for the small length scale effect that becomes significant when dealing with 
microstructures or nanostructures. It has been showed that it is possible to represent the 
integral constitutive relations of nano-structures in an equivalent differential form (Eringen, 
1983). Eringen presented a nonlocal elasticity theory to account for the small scale effect by 
specifying the stress at a reference point is a functional of the strain field at every point in 
the body. Since then, many studies have been carried out nonlocal theory of elasticity for 
bending, buckling and vibration analyses of nano-structures. 
Small scale effect on static deformation of micro- and nano-rods or tubes is revealed through 
nonlocal Euler–Bernoulli and Timoshenko beam theories by Wang and Liew (2007). Li and 
Wang (2009) investigated a theoretical treatment of Timoshenko beams, in which the 
influences of shear deformation, rotary inertia, and scale coefficient are taken into account. 
Murmu and Pradhan (2009a) studied vibration response of nano cantilever considering non-
uniformity in the cross sections using nonlocal elasticity theory. 
Although graphite sheet has many superior properties, such as low electrical and thermal 

conductivities normal to the sheet but high electrical and thermal conductivities in the plane 

of the sheet, relatively little research have been reported in the literature for mechanical 

analyses of graphene sheets.  
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Kitipornchai et al. (2005) used the continuum plate model for mechanical analysis of 

graphene sheets. He et al. (2005) investigated vibration analysis of multi-layered graphene 

sheets in which the van der Waals interaction between layers is described by an explicit 

formula. Behfar and Naghdabadi (2005) studied nano scale vibrational analysis of a multi-

layered graphene sheet embedded in an elastic medium based on the classical plate theory. 

Lu et al. (2007) derived the basic equations of nonlocal Kirchhoff and Mindlin plate theories 

for simply supported nano-plates. Axisymmetric bending of micro/nanoscale circular plates 

was studied using a nonlocal plate theory by Duan and Wang (2007). Pradhan and Phadikar 

(2009a) presented classical and first order shear deformation plate theories for vibration of 

nano-plate. Their approach is based on the Navier solution and for a nano-plate with all 

edges simply supported. Pradhan and Phadikar (2009b) carried out vibration analysis of 

multilayered graphene sheets embedded in polymer matrix employing nonlocal continuum 

mechanics. 

In-plane vibration of nano-plates was investigated by Murmu and Pradhan (2009b) 
employing nonlocal continuum mechanics and considering small scale effect. 
Aghababaei and Reddy (2009) developed a higher order plate theory for buckling and 
vibration analyses of a simply supported plate accounting the small scale effect. A nonlocal 
plate model was developed to study the vibrational characteristics of multi-layered 
graphene sheets with different boundary conditions embedded in an elastic medium using 
finite element method (Ansari et al., 2010). Pradhan and Kumar (2010) investigated the small 
scale effect on the vibration analysis of orthotropic single layered graphene sheets 
embedded in an elastic medium. Jomehzadeh and Saidi (2011a) investigated the nonlocal 
three dimensional elastodynamics theory to study the vibration of nano-plates. Recently, 
they (2011b & 2011c) studied the nonlinear vibration of graphene sheets using classical plate 
theory. 
In this chapter, the vibration analysis of a nano-plate is presented by considering the small 
scale effect. The three coupled governing equations of motion are obtained based on the 
nonlocal continuum theory and are decoupled into two new equations. Solving these two 
decoupled partial differential equations, the natural frequencies of the nano-plate with 
arbitrary boundary conditions are determined. Finally, a detailed study is carried out to 
understand the effects of boundary condition, nonlocal parameter, thickness to length and 
aspect ratios on the vibration characteristics of nano-plates. 
Results for natural frequencies of nano-plates with arbitrary boundary conditions are given 

for the first time and these can serve as reference values for other numerical analysis.   

2. Constitutive relations 

According to nonlocal elasticity theory, the stress at a reference point X  is considered to be 

a function of the strain field at every point 'X  in the body. The nonlocal stress tensor nl  at 

point X  can be expressed as (Eringen, 1983) 

 (| ' |, ) ( ') 'nl lK X X X dX     (1) 

where l  is the classical stress tensor and (| ' |)K X X  is the Kernel function represents the 

nonlocal modulus. While the constitutive equations of classical elasticity is an algebraic 

relation between stress and strain tensors, that of nonlocal elasticity involves spatial 
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integrals which represent weighted averages of contributions of the strain of all points in the 

body to the stress at the given point. Eringen showed that it is possible to represent the 

integral constitutive relation in an equivalent differential form as 

 2(1 ) nl l      (2) 

where 2
0( )e a   is nonlocal parameter, a  an internal characteristic length and 0e  a 

constant. Also, 2  is the Laplacian operator. 

3. Governing equations of motion 

The first order shear deformation plate theory assumes that the plane sections originally 
perpendicular to the longitudinal plane of the plate remain plane, but not necessarily 
perpendicular to the longitudinal plane. This theory accounts for shear strains in the 
thickness direction of the plate and is based on the displacement field 

 
0

0

( , ) ( , , )

( , ) ( , , )

( , )

x

y

u u x y z x y t

v v x y z x y t

w w x y




 
 



 (3) 

where 0u  and 0v  are displacement components of the midplane, w  is transverse 

displacement, t  is time, x  and y  are the rotation functions of the midplane normal to x  

and y  directions, respectively. Using the Hamilton’s principle, the nonlocal bending 

governing equations of motion for a single layered nano-plate are obtained as follows 

(Pradhan and Phadikar, 2009a) 

 2 2
, , , , , 2

(1 )
( ) ( ) ( ) ( )

2
x xx y xy x yy y xy x x x x

D
D Gh w I
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 2 2
, , , , 1( ) ( , , ) ( )x x y y xx yyGh w w q x y t I w w            (4c) 

In above equations, dot above each parameter denotes derivative with respect to time, G  is 

the shear modulus, D Eh3 2/12(1 )   denotes the bending rigidity of the plate, E  and   

Young modulus and Poisson’s ratio, respectively and 2  the shear correction factor. Also, q  

is the transverse loading in z  direction.  Mass moments of inertia, 1I  and 2I , are defined as 

 
/2

1 2

/2

( , ) (1, )
h

h

I I z dz


   (5) 

in which   is the density of the plate. It can be seen that the governing equations (4) are 

generally a system of six-order coupled partial differential equations in terms of the 

transverse displacement and rotation functions. 
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4. Solution  

In order to solve the governing equations of motion (4) for various boundary conditions, it is 
reasonable to find a method to decouple these equations. Let us introduce two new 
functions   and   as 

 , ,x x y y     (6a) 

 x y y x, ,     (6b) 

Using relations (6), the governing equations (4) can be rewritten as 

 x y x x x x

D
D Gh w I2 2

, , , 2

(1 )
( ) ( )

2

      
        (7a) 

 y x y y y y

D
D Gh w I2 2

, , , 2

(1 )
( ) ( )

2

      
        (7b) 

 2 2 2
1( ) ( )Gh w q I w w         (7c) 

Doing some algebraic operations on Eqs. (7), the three coupled partial differential equations 
(4) can be replaced by the following two uncoupled equations 

 C Gh I2 2 2
2(1 )           (8a) 
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where C  denotes (1 ) / 2D  . It can be seen that the above equations are converted to the 

classical equations of the Mindlin plate theory when 0  . Like the classical elasticity 

(Reissner, 1985), Eqs. (8a) and (8b) are called edge-zone (boundary layer) and interior 

equations, respectively. Also, the rotation functions x  and y  can be defined in terms of 

w  and   as 
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By obtaining transverse displacement and rotation functions ( w , x  and y ), the stress 

components of the nano-plate can be computed by using the nonlocal constitutive relations 

in the following forms 

2
, ,2

( )
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xx xx x x y y

E
z    
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2
,( )nl nl

yz yz y yG w        

Here, a rectangular plate ( )a b  with two opposite simply supported edges at 0x   and 

x a   and arbitrary boundary conditions at two other edges is considered. For free 

harmonic vibration of the plate, the transverse loading q  is put equal to zero and the 

transverse deflection w  and boundary layer function   are assumed as 
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which exactly satisfy the simply supported boundary conditions at 0x   and x a . In these 

relations, n  is the natural frequency of the nano-plate and n  denotes /n a . Substituting 

the proposed series solutions (11) into decoupled Eqs. (8), yields 

 
4 2

1 2 34 2
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where the constant coefficients ( 1,..,5)i i   are material constants. The above equations are 

two ordinary differential equations with total order of six. The solutions of Eqs. (12) can be 

expressed as 

 1 1 2 1 3 2 4 2( ) sin( ) cos( ) sinh( ) cosh( )nw y C y C y C y C y        (13a) 

 n y C y C y5 3 6 3( ) sinh( ) cosh( )     (13b) 

where ( 1,..,6)iC i   are constants of integration and parameters 1 , 2  and 3  are defined 

as 

 
2

2 2 1 3
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4

2

   



 
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2
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   



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 4 5
3

4

 



  (14c) 

Six independent linear equations must be written among the integration constants to solve 

the free vibration problem. Applying arbitrary boundary conditions along the edges of the 

plate at 0y   and y b , leads to six algebraic equations. Here, three types of boundary 

conditions along the edges of the nano-plate in y  direction are considered as 

 Simply supported (S)  0yy xw M     (14a) 

 Clamped (C) 0x yw      (14b) 

 

 Free (F) 0yy xy yM M Q    (14c) 

where the resultant moments yyM  and xyM  and resultant force yQ  are expressed as 

 

/2

/2

h
nl

yy yy

h

M zdz


   
/2

/2

h
nl

xy xy

h

M zdz

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/2
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h
nl

y yz

h

Q dz


   (15) 

In order to find the natural frequencies of the nano-plate, the various boundary conditions 

at 0y   and y b  should be imposed. Applying these conditions and setting the 

determinant of the six order coefficient matrix equal to zero, the natural frequencies of the 

nano-plate are evaluated. 

5. Numerical results and discussion 

For numerical results, the following material properties are used throughout the 

investigation 

 1.2E TPa , 0.3  , 
2 5 /6   (16) 

In order to verify the accuracy of the present formulations, a comparison has been carried 

out with the results given by Pradhan and Phadikar (2009a) for an all edges simply 

supported nano-plate. To this end, a four edges simply supported nano-plate is considered. 

The non-dimensional natural frequency parameter 2 4
1 /a I D    is listed in Table 1 for 

some nonlocal parameters. From this table, it can be found that the present results are in 

good agreement with the results in literature when the rotary inertia terms have been 

neglected. It can be also seen that the rotary inertia terms have considerable effects 

especially in second mode of vibration and cause the natural frequency decreases. Hereafter, 

the rotary inertia terms are considered in numerical results. 

www.intechopen.com



A Levy Type Solution for Free Vibration Analysis  
of a Nano-Plate Considering the Small Scale Effect 

 

53 

To study the effects of boundary condition, the nonlocal parameter ( )  and thickness to 

length ratio ( / )h a  on the vibrational behavior of the nano-plate, the first two non-

dimensional frequencies are obtained for a single layered nano-plate. The results are tabulated 

in Tables 2-6 for five possible boundary conditions at 0y   and y b  as clamped- clamped 

(C-C), clamped-simply (C-S), clamped-free (C-F), simply-free (S-F) and free-free (F-F). 
 

  /h b   Mode 1 Mode 2 

1nm 

0.1 
Present 

0.1322 
0.1332a 

0.1994 
0.2026 a 

Pradhan (2009a) 0.1332 0.2026 

0.2 
Present 

0.1210 
0.1236 a 

0.1673 
0.1730 a 

Pradhan (2009a) 0.1236 0.1730 

2nm 

0.1 
Present 

0.0935 
0.0942 a 

0.1410 
0.1432 a 

Pradhan (2009a) 0.0942 0.1432 

0.2 
Present 

0.0855 
0.0874 a 

0.1183 
0.1224 a 

Pradhan (2009a) 0.0874 0.1224 

3nm 

0.1 
Present 

0.0763 

0.0769 a 

0.1151 

0.1170 a 

Pradhan (2009a) 0.0769 0.1170 

0.2 
Present 

0.0698 

0.0714 a 

0.0966 

0.0999 a 

Pradhan (2009a) 0.0714 0.0999 

4nm 

0.1 
Present 

0.0661 

0.0666 a 

0.0997 

0.1013 a 

Pradhan (2009a) 0.0666 0.1013 

0.2 
Present 

0.0605 

0.0618 a 

0.0836 

0.0865 a 

Pradhan (2009a) 0.0618 0.0865 

Table 1. Comparison of non-dimensional frequency parameter 2 4
1 /a I D    of a nano-

plate with all edges simply supported (a Neglecting the rotary inertia terms) 

Based on the results in these tables, it can be concluded that for constant /h a , the 

frequency parameter decreases for all modes as the nonlocal parameter   increases. The 

reason is that with increasing the nonlocal parameter, the stiffness of the nano-plate 

decreases. i.e. small scale effect makes the nano-plate more flexible as the nonlocal model 

may be viewed as atoms linked by elastic springs while the local continuum model assumes 

the spring constant to take on an infinite value. In sum, the nonlocal plate theory should be 

used if one needs accurate predictions of natural frequencies of nano-plates. 
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  /h b  Mode 1 Mode 2 

1nm 
0.1 0.1757 0.2124 

0.2 0.1494 0.1735 

2nm 
0.1 0.1242 0.1502 

0.2 0.1057 0.1227 

3nm 
0.1 0.1014 0.1226 

0.2 0.0863 0.1002 

4nm 
0.1 0.0878 0.1062 

0.2 0.0747 0.0868 

Table 2. First two non-dimensional frequency parameters 2 4
1 /a I D    of a C-C nano-

plate 

 

  /h b  Mode 1 Mode 2 

1nm 
0.1 0.1501 0.2049 

0.2 0.1333 0.1700 

2nm 
0.1 0.1062 0.1449 

0.2 0.0942 0.1202 

3nm 
0.1 0.0867 0.1183 

0.2 0.0769 0.0982 

4nm 
0.1 0.0751 0.1024 

0.2 0.0666 0.0850 

Table 3. First two non-dimensional frequency parameters 2 4
1 /a I D    of a C-S nano-

plate 

 

  /h b  Mode 1 Mode 2 

1nm 
0.1 0.1273 0.1921 

0.2 0.1172 0.1615 

2nm 
0.1 0.0900 0.1358 

0.2 0.0829 0.1142 

3nm 
0.1 0.0735 0.1109 

0.2 0.0677 0.0933 

4nm 
0.1 0.0636 0.0960 

0.2 0.0586 0.0808 

Table 4. First two non-dimensional frequency parameters 2 4
1 /a I D    of a C-F nano-

plate 

The influence of thickness-length ratio on the frequency parameter can also be examined by 

keeping the nonlocal parameter constant while varying the thickness to length ratio. It can 

be easily observed that as /h a  increases, the frequency parameter decreases. The decrease 

in the frequency parameter is due to effects of the shear deformation, rotary inertia and use 

of term 2a h  in the definition of the non-dimensional frequency  . These effects are more 

considerable in the second mode than in the first modes.   
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  /h b  Mode 1 Mode 2 

1nm 
0.1 0.1136 0.1753 

0.2 0.1070 0.1531 

2nm 
0.1 0.0804 0.1239 

0.2 0.0756 0.1083 

3nm 
0.1 0.0656 0.1012 

0.2 0.0618 0.0884 

4nm 
0.1 0.0568 0.0876 

0.2 0.0535 0.0766 

Table 5. First two non-dimensional frequency parameters 2 4
1 /a I D    of a S-F nano-

plate 

 

  /h b  Mode 1 Mode 2 

1nm 
0.1 0.1012 0.1542 

0.2 0.0964 0.1401 

2nm 
0.1 0.0715 0.1090 

0.2 0.0682 0.0991 

3nm 
0.1 0.0582 0.0890 

0.2 0.0557 0.0809 

4nm 
0.1 0.0506 0.0771 

0.2 0.0481 0.0701 

Table 6. First two non-dimensional frequency parameters 2 4
1 /a I D    of a F-F nano-

plate 
 

To study the effect of the boundary conditions on the vibration characteristic of the nano-

plate, the frequency parameters listed in a specific row of tables 1-6 may be selected from 

each table. It can be seen that the lowest and highest values of frequency parameters 

correspond to F-F and C-C edges, respectively. Thus like the classical plate, more constrains 

at the edges increases the stiffness of the nano-plate which results in increasing the 

frequency.  

The effect of variation of aspect ratio ( / )b a  on the natural frequency of a C-S nano-plate 

is shown in Fig. 1 for various nonlocal parameters. It can be seen with increasing the 

aspect ratio, the natural frequency of the nano-plate decreases because of decreasing of 

stiffness. 
In Fig. 2, the relation between natural frequency and nonlocal parameter of a square C-C 

nano-plate is depicted for different thickness to length ratios. It can be seen that nonlocal 

theories predict smaller values of natural frequencies than local theories especially for 

higher thickness to length ratios. Thus the local theories, in which the small length scale 

effect between the individual carbon atoms is neglected, overestimate the natural 

frequencies. The effect of boundary conditions on the natural frequency of a nano-plate is 

shown in Fig. 3. It can be concluded that the boundary condition has significant effect on the 

vibrational characteristic of the nano-plates. 
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Fig. 1. Variation of natural frequency with respect to aspect ratio for a C-S nano-plate 
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Fig. 2. Variation of natural frequency with nonlocal parameter for a C-C nano-plate 
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Fig. 3. Variation of natural frequency with nonlocal parameter for nano-plates with different 
boundary conditions at two edges 

6. Conclusion 

Presented herein is a variational derivation of the governing equations and boundary 
conditions for the free vibration of nano-plates based on Eringen’s nonlocal elasticity and 
first order shear deformation plate theory. This nonlocal plate theory accounts for small 
scale effect, transverse shear deformation and rotary inertia which become significant when 
dealing with nano-plates. Coupled partial differential equations have been reformulated 
and the generalized Levy type solution has been presented for free vibration analysis of a 
nano-plate considering the small scale effect. The accurate natural frequencies of nano-plates 
have been tabulated for various nonlocal parameters, some thickness to length ratios and 
different boundary conditions. The effects of boundary conditions, variation of nonlocal 
parameter, thickness to length and aspect ratios on the frequency values of a nano-plate 
have been examined and discussed.  
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