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1. Introduction

This is a review chapter that surveys past work in, and the recent status of image processing
and other related techniques involved in the detection and classification of man made objects
in side scan sonar images. Side scan sonar is a readily, available and cheap device which
has found increasing applications, specially for military purposes such as Computer Aided
Detection (CAD) and Classification (CAC) of mines. Therefore the main focus of the chapter
is on this topic. The list of references is sufficiently complete to include most past and recent
publications in the open refereed literature.
Although side scan sonar displays many features similar to an optical sensor from a purely
image processing point of view, the basics of the physics and formation of the images are
crucial for understanding the difficulties found when detecting and classifying mine like
objects (MLO’s) in side-scan sonar images. Therefore in the first part of the chapter a brief
review of the principles of the side-scan sonar, image formation process and characteristics of
the images are explained. Different types of sonar images as well as diagrams showing the
the process of generating an image from a single diagram ping will be provided.
The classification and detection of MLO’s is traditionally carried out by a skilled human
operator. This analysis is difficult due to the large variability in the appearance of the side-scan
images as well as the high levels of noise usually present in the images. With the recent
advances of Autonomous Underwater Vehicle (AUV) automatic techniques, CAD/CAC of
mines, are now required to replace a human operator.
In the literature the computer aided detection/classification (CAD/CAC) problem is not well
defined as detection involves an element of classification (mine/not mine), therefore these
terms must be defined. For the purpose of this work, we will consider detection as the process
of identifying a mine and classification will be a further step where the aim is to determine
the shape of such a mine. Therefore the second part of the chapter is divided into two main
sections: 1) detection 2) classification of MLO’s.
In the last part of this chapter a review will be done on the current state of fusion of multiple
algorithms aiming to overcome the limitations and weaknesses of every single CAC/CAD
algorithm reviewed in the previous section.
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2. Principles of the side-scan sonar: image formation process and characteristics

The section starts by introducing the basic principles of sonar. The following sections
present the fundamental side-scan sonar characteristics along with the image construction,
characteristics of the images, frequency and resolution of the images.

2.1 Basic principles

Devices which use underwater sound for communication or observation are generally
referred to as SONAR systems. This term was coined after the Second World War to provide
analogy to the equivalent electromagnetic-echo location system of radar and is an acronym
for “SOund Navigation And Ranging”.
In general the basic principles of a sonar involves the transmission of a pulse energy into the
water medium and the subsequent reception of any returned energy reflected from objects or
seabed.
Basically the sonar generates a short electrical pulse, in the form of an acoustic wave centred
at particular frequency, length and energy, by the transmitter. This electrical signal is
transformed by the transducer, which is normally a piezo-electric ceramic, into mechanical
vibration energy. This vibration is transferred into the water as an oscillating pressure, the
pulse. The pulse travels trough the water until it is reflected back or scattered by the seafloor
or any object. The energy reflected back, which is mechanical energy, is converted by the
transducer into electrical energy. This energy is then detected and amplified by the receiver of
the sonar.
There is a master unit, with a control function, in charge of synchronizing the operations and
control timing for the transmission and reception of the electrical signals. The control unit
normally has a unit to display the received data.
It should be noted that what the sonar is measuring is the time that it takes for the transmitter
sonar pulse to travel from the transducer to the target and return. It is not measuring the
depth or distance.

2.2 Side-scan sonar characteristics

The fundamental purpose of a side-scan survey is to provide images which map a visible
representation (intensity of marking) of the strength of acoustic back scattering, from the sea
floor onto a two-dimensional image medium, by the process illustrated in 1. These sensors are
usually mounted onto a separate body which is towed through the water behind the survey
vessel. Alternatively the transducers may be mounted onto Remote Operated Vehicles (ROV)
or Autonomous Underwater Vehicles (AUV) allowing more accurate positioning and motion
of the vehicle. The characteristic of the side-scan sonar comes from implementing the basic
principles mentioned. The main feature of this sensor, as can be seen in figure 2 is that is a
side-ways looking device. Each pulse of acoustic energy emitted causing echoes from an area
of the sea bottom perpendicular to the direction of travel of the tow fish. The transducers are
normally shaped and controlled to produce a beam for each emitted pulse which is narrow in
the horizontal direction and wide in the vertical direction as illustrated in figure 2. Due to the
narrow horizontal beam, returned energy is received from one strip of the seafloor. The wide
vertical across trace beam permits the ensonification of a large area of the seafloor. Another
of the characteristics of the side-scan sonar is that sometimes two channels are used to gather
information at the same time from the seabed on either side of the tow fish.
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Fig. 1. Three-phase diagram showing the process of generating images from a single
side-scan sonar ping. In the top diagram (a) the outgoing pulse from an individual ping is
reflected back from the seafloor directly under the fish, and the internal side-scan clock (T=0)
is started. (b) The hatched region represents the outgoing pulse, and the low amplitude
returns are the time when the pulse is the two-way travel time in the water-column. After the
return of the first bottom bounce, subsequent returns appear as peaks and valleys in the
transducer voltage. (c) Peaks and valleys are then integrated and translated into pixels
values.

2.3 Beamwidth

It has been pointed out that the side-scan sonar has a beam that is narrow in the horizontal
plane and broad in the vertical plane. For a typical system this must be 1 degree horizontal
and 40 degree vertical beam.
The beamwitdh can give some idea of the resolution which a sonar will achieve. It is also
very important to consider the overall beam pattern of a particular sonar. This will be a truer
representation of the the expected behaviour.
The shape of the beam is the result of the transducer design. A side-scan transducer it
normally consists of a line array of crystal elements. Each point on the faces of the crystals
acts as a sound radiator. It can be though of each infinitesimal point sending out a sound
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Near Range

Along  Track

Across Track

Fig. 2. Schematic diagram of the acoustic ’footprint’ of a side-scan sonar system. The gray
area represents the swath

pulse that spreads out in all the directions. Looking at just two of these points, as depicted
in 3, it can be seen that some distance from the transducer the pressure disturbances from
each of the points will meet and will either add or substract from each other depending on
the phase. This process is going on for all the points of the transducer face. The net effect of
all additions and substractions is to produce the beam pattern. Along the axis of the beam
the pressure contributions are reinforced, while on the sides they tend to cancel. For a line of
array the beamwidth can be expressed as 50.6λ/L, where λ is the wavelength of the acoustic
pulse(λ = [sound velocity/ f requency])) and L is the array length.

L

λ

Transducer

Fig. 3. Beam formation process

2.4 Image construction

The interpretation of the side-scan sonar image, requires an understanding of the image
formation process. As the transducers are towed along, they gather sequential lines of data
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returned from each pulse, and these lines (’A’ scan) are displayed sequentially down a vertical
trace to generate an image. This systematic sideways scanning is the basic principle of
side-scan sonar. The scanning occurs along track and across track. The data gathered along
track is a function of the beam width, the pulse repetition rate and the tow speed. Across
track the intensity is received with successively increasing two way travel times or time of
flight. The intensity received is dependent on attenuation of sound in water, the direction and
angle from which the target was ensonified and the reflectance properties of the seafloor. With
rock and gravel acting as stronger reflectors than soft sediments such as mud and sand.The
intensity of the return is displayed against the two way travel time, or time of flight.

ph

Sea−Botton Target

Next Ping 

Current Ping

q

r

(a) Geometry of side-scan sonar system

2h/c 2p/c 2q/c 2t/c

Signal

2 way travel time

(b) Corresponding ’A’ scan

Fig. 4. Geometry of side-scan sonar system and corresponding ’A’ scan

Figure 4(a) illustrates the geometry of the side-scan sonar system and figure 4(b) displays the
returned intensity against the two way travel of time in the form of a ’A’ scan. An ’A’ scan is
simply one line of a sonar images corresponding to the returned energy from a narrow strip
of the seabed due to the reflections from one emitted pulse.
At the beginning of the trace there is a blank area, as the pulse propagates through the water
column without returning any echo. The first bottom return is the first echo to return from
the sea bottom closest to the transducer. For a relatively flat seabed the first return is from the
seabed directly below the transducer and it occurs at approximately time 2h/c seconds where
h is the height of the transducer in metres and c is the velocity of sound. The first return
is then followed by successive echos at successively increasing slant range, where the slant
range is the actual distance from the sonar to the point of the seabed from which the sound
was reflected. These points are followed by successive echoes at increasing slant ranges as the
sound wave propagates, as illustrated in figure 4 (b).
Once the ”spike” of the high-amplitude bottom bounce is received, the side-scan processor
begins to divide the transducer voltage time series, which is produced by the subsequent
bottom return signals, into equally spaced ”time” slices. Because of the geometric effect
illustrated in figure 1 and 2, these time slices represent extremely narrow regions of the seabed
for the early returns and much wider regions for the later returns. Within each time slice, the
varying voltage of the transducer represents the acoustic energy from a fairly large area of
the seafloor, and are much larger than that represented by the pixel size of the final image.
The Voltage within each individual time slice is averaged (see figure 1 (b)) and then converted
to a single digital number that is assigned to a specific pixel location as illustrated in figure
1(c). In practice, the conversion from uncorrected transducer voltage to spatially correct pixel
value is more complicated than this description. The signal received from the seabed return
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is normally passed through an amplifier with a time varying gain (TVG). This compensates
for the effects of absorption of sound by water and the geometric effects of spreading and
scattering.
The process described, varies significantly from system to system, and requires a variety
of corrections to become an intelligible image. For most side-scan systems, there are
approximately 1024 pixels per side, or 2048 total pixels in the full swath. Depending on the
system, each pixel value is usually an 8-bit integer (ranging from 0 to 255, or 256 possible
shades of gray), which represent the value of the received acoustic echo after detection and
the electronic low-pass filtering associated with time slice averaging.

3. Characteristics of side-scan sonar images

As mentioned above the side-scan sonar images are typically displayed as grayscale images,
with dark and bright areas representing features of the seabed and water column.
The orientation of the target relative to the direction of the incoming pulse will influence the
intensity of the reflected signal and consequently the intensity in the image. The closer the
inclination of the surface normal of the target to the direction of the incoming pulse, the greater
the energy. Objects protruding above the seabed will create high intensity returns, highlight
(see figure 5) but will prevent the sound from reaching the seafloor for some distance behind
them. This will produce an acoustic shadow in the images (see figure 5 ) and will appear on
the trace as blank area. Shadows can also be generated by depressions on the seafloor or by
the self shadowing of the seafloor.

HIGHLIGHT 

SHADOW 

Fig. 5. Example of side-scan sonar images containing man-made objects: a mine like object is
identified by a highlight followed by a shadow region

Shadows are one of the primary features which provide three dimensional information and
their position and shape contain valuable information for the accurate interpretation of the
images.
The side-scan sonar images, as it was mentioned, are essentially a ’picture of the seafloor’ but
they are usually distorted. In order to become recognizable, image pixels need to be corrected
for a variety of effects. These include slant range correction (compensating for the equal time
slice interval, which result in unequal distance slice interval), absorption of the sound in sea
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SHADOW 

Fig. 6. Example of side-scan sonar images containing a man-made object: a pipe

water, the geometric effect of spreading (compensated by TVG), noise (potentially associated
with telemetry errors, multipath effect which occurs when signals arriving at the same time
as normal backscatter signals from beyond the target are superimposed resulting in the
elimination of the shadow in the record, and side-lobes returns for both horizontal and vertical
plane. Horizontal side lobes can direct significant energy in other directions which could then
reflect of the seabed/target not perpendicular to the direction of travel and produce reflected
energy. On the other hand in the vertical plane we want the main beam to give uniform
energy only over the are we are interested in. If we have side lobes they may be for instance
be pointing towards seasurface. This can produce backscattered data from sea surface which
can interfere with backscattered signal from seabed. Because sea surface is a good reflector this
produce noise. This is probably a much larger cause of noise than horizontal effects which may
cause more blurring of the image than noise. External interference is caused by other acoustic
devices operated at the same time which are added to the process Cervenka & de Moustier
(1993), and variable ship speed. The final image after the corrections has a 1:1 aspect ratio and
one that has the sonar targets roughly positioned at the same location on the chart as they are
in the seafloor. Further details of these corrections can be obtained from Johnson & Helferty
(1990)Somers & Stubbs (1984)Mazel (1985)Bell (1995)Cervenka & de Moustier (1993)

4. Detection of mines

The general approach for detecting targets is a two-tier process: 1) Detection of possible
MLO’s (regions of interest (ROI)). 2) Classification into mine or not-mine like objects with
a low detection rate of false alarms. Both stages are crucial in order to get a good detection
rate. For the first stage, detection, several approaches based on segmentation techniques and
matched filters are reviewed.
The various techniques used in the literature for the second stage, classification, can be
divided into three categories: unsupervised, semi-supervised and supervised algorithms.
A comprehensive review of these techniques will be done. These techniques require the
extraction of mine features, therefore a review of the most discriminant features used in the
literature will also be explained.
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4.1 Detection of possible MLO’s

As stated before this first step involves identifying regions of interest that may contain a mine.
Two main approaches are used in the literature for this purpose: 1) segmentation and 2)
matched filtering.

4.1.1 Segmentation

Segmentation is the process of classifying pixels as belonging to a certain class. In side-scan
sonar mages the classes of interest normally are: highlight and shadow. Because of the
shadow cast by a side-scan sonar appears more consistent than the highlight, some of the
most successful algorithms rely only on the shadow information. The main techniques used
for segmentation are: 1) thresholding 2) clustering and 3) Markov Random Fields.
Thresholding is the simplest method on image segmentation. During the thresholding process,
individual pixels in a side-scan image are marked as shadow pixels if their value is greater
than some gray pixel value (assuming shadow to be darker than the background) and as
no-shadow pixels otherwise Quidu et al. (2000). Some approaches use two thresholds values
to segment images into shadow, highlight and background regions.
Clustering a procedure to determine the intrinsic grouping in a set of unlabeled data, has also
been used to segment the images into three categories (shadow, highlight and background).
In this technique, a feature vector for each pixel of the image is extracted and then a similarity
metric is used to cluster vectors having similar features Guillaudeux et al. (1996)
Unlike previous methods, Markov Random Fields provides a reliable framework for
incorporating pixel dependencies into the segmentation (i.e a pixel surrounded by a shadow
is most likely to belong to shadow itself). This ability to model inter-spacial dependencies
between pixels has ensured the use of MRF models for a range of applications. In the
context of side-scan sonar images where there is a large variation in the appearance of
the images, more complicated models have been used Mignotte & Collet (1999)Reed et al.
(2003). These models include a priori knowledge: object highlight generally lies close to
shadow regions. One of these studies, Reed et al. (2003), introduced the size and appearance
information as a priori information into the model. In this study, after the MRF segmentation,
a further post-segmentation step that provided an accurate and robust method for extracting
the shadow and highlight was carried out by using a cooperative statistical snake. The
model segments the object-highlight and the shadow region by considering the image as
being composed of three different statistical regions. The main advantage that this method
presented compared to other models, was that using a priori information on the relationship
between the object-highlight and shadow, accurate segmentation was achieved on seabed
types where other models failed. Details of this implementation can be found in Reed et al.
(2003)
An example of MRF segmentation on side-scan images containing mines can be visualized in
figure 7(b).

4.1.2 Matched filtering

It is a technique for finding small parts of an image which match a template. This is done
by convolving a known template with an image to detect the presence of the template in
the image. The identification of mine-size regions in the sonar image has been carried
out, as explained inDobeck (1997), by convolving a template that contains four distinct
regions:(pre-shadow, highligth, dead zone, shadow and post-target) with the image. After
that a threshold is applied to the post-processed images and neighbour pixels over a threshold
are grouped together to identify possible MLO’s. The threshold varies between the different
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(a) Original side-scan image
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(b) Segmentation result using the MRF model
proposed by Mignotte & Collet (1999)

Fig. 7. MRF segmentation

detectors, and is fixed according to the desired sensitivity of each detector. Details of this
implementation and similar approaches can be found in several works Dobeck (1997)Dobeck
(2000)Hasanbelliu et al. (2009)

4.2 Classification into mine or not-mine

By using any of the techniques explained above the regions of interest of the image, that may
contain MLO’s, are identified. Afterwards these regions of interest have to be classified into
mine or not mines. This classification procedure normally requires the extraction of mine
features, therefore a review of the most discriminant features used in the literature will first
be explained in the following section.

4.2.1 Feature extraction

In pattern recognition feature extraction is a special form for reducing dimensionality
of an image. For side-sonar images the aim of feature extraction is to extract some
characteristics that describe a region of interest that may contain a MLO. The main feature
used in the literature Aridgides et al. (2001a)Dura et al. (2005)Dobeck (1995)Zerr & Stage
(1996)Quidu et al. (2000) for extracting features fall into two categories: 1)shape features 2)
gray-level features
Shape features characterize the appearance and geometry of an object. MLO as opposed to
non man-made object cast regular shadows and highlight of anticipated dimensions. The
following features are mainly used in the literature for extracting some features from the
shadow and highlight information:
1)Area: is the surface area of an object , O,(shadow or highlight), defined as:

Area = ∑
i,j

O(i, j)

where O(i,j ) has a value of one for a pixel in the object and zero if not.
2)Elongation represents the ratio of major axis to that of the minor axis. It is computed from
second order central moments as:

Elongation =

√

4µ2
11 + (µ20 − µ02)2

µ20 + µ02
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where µpq stands for the central moment of order p + q which is computed as:

µpq =
M

∑
i=0

N

∑
j=0

(i − ig)
p(j − jg)

q I(i, j)

where (ig, jg) is the position of the center of mass of the shadow or highlight and I(i, j) is the
digital image. This position is calculated as:

ig =
m10

m00

and
ig =

m01

m00

and the two-dimensional moment mpq of order p + q is defined as

mpq =
M

∑
i=0

N

∑
j=0

ip jq I(i, j)

3) Circularity or shape factor: is a measure of circularity or the compactness of a shape and
can be calculated as:

Compactness =
4.π

p2

4)Orientation: the orientation of an object can be defined as:

Orientation =
1

2
tan−1 2µ11

µ20 − µ02

5)Eccentricity: Is the ratio of the length of the longest chord of the shape to the longest chord
perpendicular to it.
6)Rectangularity: This shows how well a region is approximated by a rectangle. The
rectangularity measure frect is the ratio of the area of a region, A, to area of the smallest
rectangle, Arectangle, that encloses it:

frect =
A

Arectangle

7)Number of zero crossing of the curvature at different scales: for a fixed length, a small
number of curvature zero crossing suggests as simple regular contour; a high number,
suggests a tortous, irregular, frequently turning contour. Therefore scanning the curvature
scale space of a given set of contours from fine to coarse scales, regular shapes can be
identified.
The number of zero crossing of an image is obtained by applying the convolution operator
∇

2G (which is the Laplacian of a two dimensional Gaussian G(i,j)) over the image I(i, j) as:

I(i, j)′ = ∇
2G(i, j) ∗ I(i, j)

where

∇
2G(i, j) = (

r2 − σ2

2πσ2
)exp

−r2

2σ2
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where
r = (i2 + j2)

1
2

Some individual features and others that relate shadow and highlight information has also
been used such as:
Shadow high profile, ratio of the highlight to shadow area, ratio of highlight to shadow height,
minimum distance between highlight and shadow, horizontal aligment between shadow and
highlight
When the quality and resolution of the images is low, these are not well characterize by the
profile (shape features) of the shadow and highlight. Therefore gray level features extracted
from the shadow and highlight are also used for discriminating targets from clutter. Among
them the most discriminative features used are:
1) Average shadow strength, which is a measure of the object’s shadow darkness
2) Average highlight strength, which is a measure of the object’s highlight brightness
3)The variance of the shadow
4)The variance of the highlight
5)Contrast between shadow and highlight, which is the absolute difference of the average
shadow strength and average highlight strength
6)Contrast between shadow and background, which is the absolute difference of the average
shadow strength and average background strength
7)Contrast between highlight and background, which is the absolute difference of the average
highlight strength and average background strength

4.2.2 Classification

At this step classification is the detection of MLO’s in side-scan images. There various
techniques examined can be broadly divided into three groups: supervised, semi-supervised
and unsupervised.

Supervised

With these techniques, one typically requires an a priori-set of training data consisting of a
set of features and associated binary labels( mine/clutter) and a testing set to validate the
results. A supervised learning algorithm analyzes the training data and produces an inferred
function, which is called a classifier. To constitute a training set, known targets (e.g mines)
must be emplaced in a given environment and side-scan data collected with all nonemplace
scatters are assumed to be clutter. In the context of sonar images, the difficulty of this
supervised classification procedure resides 1) in the very large number of mine types, mine
deployments and orientations, and mines history; 2)the significance dependence on the nature
of the training data, specially the dependence of the imagery on the sea bottom environment.
The variability of 1) and 2) makes it impossible to constitute a training set that is robust to
all type of mines and environments to be encountered. An algorithm trained for one type
of sonar setting may perform poorly when used in another environment. Besides, the point
at which a ′training data set′ becomes sufficiently large is difficult to define. To overcome
this problem some researchers Reed et al. (2004) and Coiras et al. (2007) have generated their
data set of synthetic side scan images with inserted random mines at random locations and
orientations. The mines inserted had realistic shadows and highlights that took into account
the angle of incidence and topography of seabed.
Pioneering research on supervised detection/classification of MLO’s was carried out by
Dobeck (1997).They used a K-nearest neural network (KNN) and an optimal discriminatory
filter classifier (ODFC). The KNN technique involved a two-layer neural network, which
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classifies features according to the proximity of the features to a ’feature vector center’. These
classifiers were then combined to yield the final result. Results and details can be found in
Dobeck (1997)
An adaptive filter has also been used for the detection/classification of mines based
on a bayesian classifier (simple probabilistic classifier based on applying Baye’s
theorem, with strong independence assumptions) known as the log-likehood ratio test
(LLRT)Fernandez et al. (1993). A given feature vector was assigned as belonging to either
of two classes on the basis of the LLRT. This algorithm addressed the main shortcoming of
the bayesian classifiers (the determination of the multidimensional distributions essential for
the computation of the LLRT) by mapping the sets of learning vectors to a space of orthogonal
features in order to yield histograms. These histograms were then used to get the log-likehood
ratio and summed to obtain the final results.
Linear and quadratics classifiers has also been employed for supervised classification by
Fawcett (2001).A linear classifier separates objects or events by a linear function whereas
the quadratic classifier separate objects or events by a quadratic surface. Unlike previous
methods, in the work proposed by Fawcett (2001) instead of extracting features from the
regions of interest the whole image was used as a feature vector. Principal components
technique was used to identify the most discriminant features of the image. Details of the
classifiers, implementation and results can be found in Fawcett (2001)
Recent machine learning techniques based on kernel-based algorithms such as Support Vector
Machines (SVM)Vapnik (1995) and Relevance Vector Machines (RVM)Tipping & Smola (2001)
have been investigated. These kernel-based learning algorithms are based on mapping data
from an original input space to a kernel feature space of higher dimensions to solve a linear
problem in that space. The advantages for relevance vector machines over support vector
machines is the availability of probabilistic predictions, using arbitrary kernel functions and
not requiring to set many parameters. Details of the implementations and results can be found
in Dura et al. (2005)Couillard et al. (2008)
It is important to highlight, that is not always necessary to use all the features; sometimes
using a smaller is better than using a large set of features which are correlated. Therefore
some all the supervised techniques reviewed used some optimisation procedures before the
training process to determine the best combination of features.

Semi-supervised

Semi-supervised is a class of machine learning technique that make use of both labeled and
unlabeled data for training. The amount of labeled data required for training is tipically very
small compare to the amount of unlabeled data. The cost of adquiring data with the associate
label data is expensive and may make a set of data infeasible, whereas the adquisition of
adquiring unlabeled data is inexpensive. Therefore semi-supervised techniques introduce
and important advantage: the cost for mine hunting operations is reduced. In the context
of side-scan sonar this is very important as labeling the data is very expensive, a diver or
unmanned underwater vehicle with a camera has to label it.
An active-learning algorithm based on semi-supervised techniques was first proposed by
Dura et al. (2005). The algorithm, kernel-based, was developed with the goal of enhancing
mine detection/classification of mines without requiring a priori data set. It was assumed
that divers or unmanned underwater vehicles with a camera were used to determine the
binary labels of a small set for a given side-scan collection. This set of data and associated
label were used to train the algorithm. Information-theoric concepts were used to adaptively
construct the kernel classifier and guide which data and associate label were most informative
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in the context of of algorithm training (this information content is computed without a priori
knowledge of the labels itself). In this work authors demonstrated that the number of data
for which the associate label was required was very small relative to the number of potential
targets in a given image.

Unsupervised

Most of the current automated systems, as stated before, require training data and thus
produce poor results when the training data differ from the test set. The success of this
systems depend on the similarity of the training and testing set of data. This has led research
into unsupervised techniques that requires no training data. The main advantage of these
systems is that they are able to cope with the large variability in conditions and seabeds seen in
side-scan sonar images. Also, very important, the cost of mine-hunting operations is reduced.
One of the most complete unsupervised and sucesfull systems implemented so far is the
one implemented by Reed et al. (2003)Reed et al. (2004). The system was composed of two
consecutive and complementary phases: 1) a MRF algorithm was employed to segment
the raw side-scan image into regions of object highlight, shadow and background. A
post-processing procedure was then applied to remove false alarms. Objects that were
too large or small were removed. The height (calculated by using the shadow length and
navigational data) was also taken into account to remove false alarms. 2)In a second phase
a cooperating statistical snake model was use to consider each of the detected MLO’s. The
model assumed the highlight and shadow regions to be statistically separated, therefore it
was enforced a dependency between the two snakes. Also their movement was constrained.
If snakes expanded beyond MLO dimensions the MLO was identified as false alarm and
removed. Good detection rates was obtained with this two-step unsupervised algorithm.
Another approach with tackled this problem was the one proposed by Mignotte et al. (2000).
In this work a set of deformable template model which allow linear transformation were used
to separate natural objects from man made objects in an image. The detection was based on
a objective function measuring how well a given instance of a template fits the contents of
the segmented image (previously the image was segmented using a MRF). If the result of the
objective function was less than a certain threshold then the desired object was assumed to be
present and the final configuration revealed the shape of the object.

5. Classification of MLO’s

Once the mine has been the detected the following step is the classification. As stated before,
classification is the process of recognizing the shape of a mine (type of mine). In sonar
imagery, MLO’s produce a shadow which represents a regular geometry shape. In particular
the shadow cast by spherical mine almost always is an ellipse with different vertical and
horizontal axis lengths. For cylindrical mines the associate shadow may be a rhomboid,
rectangle or ellipse.
The classification problem has not been widely addressed in the literature. The few
approaches that deal with this problem fall into two different groups: mono-view and
multi-view classification depending on whether they make use of a single view or several
views for determining the shape.

5.1 Mono-view classification

In general classical models Castellano & Gray (1990)Quidu et al. (2000)Delvigne (1992)
consisting of feature extraction and classification have widely been used for mono-view
classification purposes. First using a presegmented shadow a mine a set of features are
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extracted from the shadow. Afterwards the set of features are normally presented as input to
the classifier. Althougth feature based are appealing the performance of the classifiers depend
to a significant extent upon the feature extraction.
A totally different approach based on available properties of the shape (as a prior model)
and an observation model (likehood model) was proposed by Mignotte et al. (2000). In
such terms they proposed two prototype templates, square and ellipse, along with a set of
transformations, to take into account the shape variability of different for every type of mines.
The classification of an object was based on an objective function measuring how well an
instance template fitted the content of the segmented image.
Along similar lines, Balasubramania & Stevenson (2001) did some interesting work on model
fitting. In this work it was assumed that the shadows from targets such as cones, cylinders
and rocks were close to an ellipse. Hence the shadow shapes were modelled as ellipses. To
this end the edges of the shadow regions were extracted and the elliptical parameter fitting
was performed using Karhonen-Loeve method. Then the parameters were used as features to
describe the ellipse. Althought this approach is relevant for spherical mine-like shapes, it is
not the best to provide good separation class.
In the work proposed by Dura et al. (2008)they also advocated for a model-fitting approach
by modelling the mine-like shadow with a superllipse. Superellipse provide a compact and
interesting approach for representing a variety of shapes. By simply varying the squarness of
the function shapes such as ellipses, rectangles, parallelograms, ovals and pinched diamonds
can be easily generated. Thus, based on these observations, a classification procedure
was proposed based on the squareness parameter. The procedure extracted the contour of
the shadow given by an Unsupervised Markovian segmentation algorithm. Afterwards a
superellipse was automatically fitted by minimising an appropiate metric with the Nelder
Mead Simplex optimization technique. Some results can visualized in figure 8
Another approach has recently been investigated by Reed et al. (2004) and Coiras et al. (2007).
A synthetic database of side-scan sonar images was generated with a sonar simulation under
different conditions: seabed types, mine orientations and sizes. Then a classifier Coiras et al.
(2007) was trained on the features extracted from the synthetic images generated. Afterwards
real side-scan sonar images were classified. In Reed et al. (2004) instead of using a supervised
classifier, the Hausdorff technique was implemented to measure the resemblance between the
features of the synthetics images generated and the real images.

5.2 Multi-view classification

Sometimes is possible to obtain an accurate classification relying on a single view of an object.
However some uncertainty of the object true class remains. In particular for sonar images if
more than view of an object is provided at different angles this uncertantity can be reduced.
The fusion of multiples images for classifying an object has been investigated by various
authors. One of the most extensive work on multi-view classification was the one undertaken
by Fawcett et al. (2010). In this work they extracted two features sets corresponding to
two different view side-scan images and they investigated two approaches for fussing this
information: 1)fuse-feature and 2)fuse- classification. In the first approach the two feature sets
were combined to form a large feature vector (CF). Then a kernel based classifier was trained
a tested with the resulting extended feature vector. The second approach consisted of fussing
the two individual-aspect classification of the two feature vectors using Dempster-Shafer (DS)
Theory. DS, frequently used as alternative to Bayesian theory and fuzzy logic for data fusion,
allows to combine evidence from different sources and arrive to a degree of belief (represented
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(a) Rectangular shape (b) Romboid shape

(c) Elliptical shape

Fig. 8. Results of the Superellipse fitted algorithm proposed by Dura for different shadows
shapes

by a belief function) that takes into account all the available evidence. The belief function is
derived from a mass function, which is analogous to well known probability density function.
In this work, three different approaches were examined to calculated DS masses for each
of the two looks of the classifier. In the first approach the histogram of the output labels
for a single-aspect kernel regression classifier were used to empirically determine a simple
analytical function which converted the values of the multiclas outputs into a set of masses.
In the second approach they used a confusion matrix obtained from the single aspect classifier
to specify the DS masses for various objects, for each of the looks, given the single aspect
classifications. For the last approach, a nonempirical mass assigment based upon the relative
values of the classifier outputs were considered.
Along similar lines Zerr et al. (2001) Stage & Zerr (1996)andReed et al. (2004) have also
investigated the classification of a target by fusing several views using DS theory. However
in the work investigated by Reed et al. (2004) the mass functions were generated from a fuzzy
functions membership algorithm based on fuzzy logic.

6. Fusion of detection algorithms

The detection algorithms described in section 4.2.2 have their own weakness and strengths.
This is due to the fact that each algorithm is based on different statistical properties and
therefore emphasizes different characteristics of the data. Thus a combination of them may
increase the probability of detection of MLO’s and consequently reduce the number of false
alarms.
Various methods of fusion of algorithms have been studied. In the work presented by
Aridgides et al. (2001b), the results of different detection algorithms developed by three
research teams (Naval Surface Warafe (NSWC), Coastal Systems Station (CSS), Raytheon
and Lockeed Martin ) were fused. Three different strategies were examined: 1)Logic-based
fusion , 2)m-out-of-n fusion. 3) Log-Likehood Radio Test (LLRT)-based fusion algorithm. The
logic-base fusion strategy was based on a set variety of rules including Boolean operators,
AND, OR and their combinations. The m-out-of-n fusion was based of a particular instance
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of this, ′2-out-of-3′. This means that a target was included in the overall result if at least 2
out of the 3 algorithms tested also detected it. The LLRT-based strategy, originally developed
by Fernandez et al. (1993)to perform perfusion, utilized the three confidence output vectors to
form a three dimensional vector which were then processed through an orthogonalization and
matrix extraction procedure to yield histograms for each orthogonal feature. These histograms
were then used to obtain the log-likehood ratio and sum to obtain the overall result (detection).
Best perfomance was obtained utilizing LLRT-based fusion which resulted in a 3:1 false alarm
reduction improvement over the ′2-out-of-3′ strategy and 4:1 improvement over logic-based
function.
Another different approach which also combined the output of the three detection algorithms
previously mentioned, was the one investigated by Ciany & Huang (2000). The fusion
algorithm received the two dimensional coordinates and confidence value for the detection
mines and a geometrical clustering algorithm was applied. The resulting clusters were then
processed via cluster confidence processing to produce the final fused results , which were the
position of the mines. This procedure was applied as it was assumed that valid mines would
be close by whereas false alarms would appear in random position of the image
Fusion detection algorithms based on score results of each individual algorithm have also
been proposed. This can be performed by a number of ways such as was suggested by
Dobeck (2005) 1) majority voting where the detections can be conditioned on thresholds
applied to scores, 2) computing the sum of the algorithms scores and comparing the sum to a
threshold, 3) computing a linear combination of the scores and comparing the weighted sum
to a threshold. In this work was demonstrated that one can afford to run individual algorithms
with higher probability of detection and higher probability of false alarm that would normally
tolerate, in the knowledge that the fusion process will bring the false alarm rate down.

7. Conclusions

In this chapter the techniques involved in the detection and classification of MLO’s on
side-scan sonar images have been reviewed. The main components of CAD/CAC systems
have been examined. These components are: 1)Image formation and characteristics of the
image 2)Detection 3) Classification and 4) Fusion of different algorithms for detection of
mines. For each component successful image processing techniques as well as related areas
were examined .
However some questions remain: are the current automatic systems reliable enough to detect
and classify mines without the assistance of a human operator?Do they perform well under
different environment conditions?
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