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1. Introduction 

The composite materials with high specific stiffness and strength have been widely applied 

in various fields such as aerospace or industry. Simultaneously, curing methods for joining 

composite materials have also gone through development intensively, for examples Hot-

press, Pultrusion, Resin Transfer Molding (RTM) and Vacuum Molding. During the curing 

process, internal damages and residual strain are the most considerable relevance to quality 

of product, and hence demanded careful treatment. Commonly, the internal damage of 

composite materials could be detected by using ultrasound scan and X-ray, but these 

methods, however, are significantly high cost and not on-line monitoring. It is not suitable 

for smart structure application.  

Since several recent decades, optical fiber sensors have been utilized in composite material 

field popularly for their predominating advantages such as small size, low cost, and 

capability of avoiding electromagnetic influence. In 1988, Afromowitz proposed the polymer 

fiber embedded into composite materials to monitor the refractive index changes in the 

composite materials during curing process [Afromowitz, 1988]. And one year later the 

authors presented Fiber Optic Fresnel Reflection Technique for supervising the curing 

process [Afromowitz & Lam, 1990]. In late 1980s, Fiber Bragg Grating (FBG) sensor, one 

kind of optical fiber sensors, has attracted considerable attentions to the applications in 

aerospace, structural, medical and chemical spheres. FBG sensors are small and compatible 

with common polymeric materials, and thereby being easily embedded close to the internal 

sensing site in a composite structure without introducing significant defects.  

In 1990, Dunphy et al. employed the Fiber Bragg Grating embedded into composite 

materials to monitor the vitrification during curing process [Dunphy et al., 1990]. Similarly, 

FBG sensors were also applied to measure strain and residual stress after curing [Dewynter-

Marty et al., 1998 & Okabe et al., 2002a]. On the other hand, Kuang and collegues improved 

detecting effect of the sensors by embedding FBG into composite materials in different 

layers [Kuang et al., 2001b]. Alternatively, in 2002, Okabe et al. utilized small-diameter FBG 

to study residual stress with micro damage of inner structure of the composite [Okabe et al., 

2002b]. Furthermore, FBG has been also used to monitor the epoxy curing, and found the 

glass transition temperature with intensity changes [Giordano et al., 2004 & Wang et al., 

2007].  
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Recent studies [Okabe et al., 2002a & Kuang et al., 2001a] discovered that when FBG sensors 
are embedded in CFRP laminates, the reflection spectrum from the sensors splits into two 
peaks because of the non-axisymmetric thermal residual stresses. This deformation of the 
spectrum was considered defective as it would lead to misinterpretation in strain 
measurements or crack detection in the laminates [Menendez & Guemes, 2000; Murukeshan 
et al., 2000; Leng & Asundi, 2002]. 
According to our knowledge, most of the previous researches focus on measuring the 
mechanical properties of composite materials and damage evaluation, but lack of curing 
residual strain monitoring in different layers. The aim of current study is to apply Fiber 
Bragg Grating sensors to monitor the characteristics of the curing process in a 
Graphite/Epoxy composite. Four FBGs are embedded into different lamina of composite 
materials, and the curing development as well as internal residual strain during curing 
process would be measured. 

2. Theory 

2.1 Fiber Bragg Grating Sensor 
Fiber Bragg Grating Sensor consists of thousands of short period refractive index 
modulation. When the broad band light source lunches at the FBG, the certain wavelength 
of the light will be reflected. The reflected wavelength of FBG can be expressed as following 
[Hill & Meltz, 1997]: 

 2 effnλ = Λ  (2-1) 

where neff is the effective refractive index of optical fiber, Λ is the grating period which is 
about 1um. Fig. 1 illutrates the principle of FBG schematically. 
 

 

Fig. 1. Reflective and transmission spectra of single-mode fiber Bragg gratings 
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2.2 FBG wavelength shifts owing to temperature and strain 
Because of thermo-optic effect and Photo-Elastic effect, the wavelength of FBG will be 

shifted with changes of temperature and strain. The FBG wavelength is a function of the 

temperature and strain and in form as following [Hill & Meltz, 1997]:   
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 (2-2) 

where ξ  is the thermo-optical coefficient, α  is the CTE of optical fiber, TΔ  is the 

temperature change, Kε  is the strain sensitivity, and TK  is the temperature sensitivity.  

2.3 FBG spectrum splitting with residual strain  
Theoretically, the wavelength of FBGs shifted under two strain conditions including 

uniaxial and multiaxial strain. Following, discussion about the two kinds of wavelength 

shift is presented particularly.  

 

 

                                             (a)                                                                 (b) 

Fig. 2. The optical fiber Bragg grating sensor is under an uniaxial strain (a) and a general 

multiaxial strain (b). [Lin, 2004] 

(I) Wavelength shift due to uniaxial strain 

When the fiber is suffered a uniaxial uniform strain iε  along its axis (as shown in Fig. 2a), 

then x y zε ε νε= = −  (ν is the Poisson ratio of optical fiber). As a result, the wavelength shift 

is related to the applied strain and temperature change as given by equations below: 
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Referring to work [Lin, 2004], 11p =0.113, 12p =0.252, and ,0effn ~1.458, ν ~0.17, α ~0.55×10-6, 

one can obtain the constants Kε ~0.8 and TK ~5.88×10-6. The strain is measured by the 

reflective wavelength shift of the fiber Bragg gratings.  

(II) Wavelength shift due to multiaxial strain 

When the FBGs are embedded in the composite laminate, the FBG will be suffered three 

dimensional loading. As the fiber is under a general multiaxial strain (Fig. 2 b), the Bragg 

wavelength shifts caused by refractive index changes in the x- and y- directions are 

dissimilar. As shown in the Fig. 2 b, the original Bragg reflection peak is shifted in two 

opposite directions, and thereby causing spectra to split [Lin, 2004]. This phenomenon is 

due to the birefringence effect.  

The 3-D strain and wavelength effect is shown as following [Lin, 2004; Menendez & 
Guemes, 2000]: 
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where D1, D2 and D3 are constant. 
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Therefore, the curing residual strain can be monitoring according to the spectra of the 
embedded FBGs. The Residual strain along the x-axial and y-axial are expressed in 
following [Menendez & Guemes, 2000]: 
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By monitoring the 3-dimemsional strain in the composite laminate, we can measure and 

evaluate the curing residual strain during the process.  
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3. Experimental results 

3.1 Preparation of the composite laminate 
The 16-layer thermosetting prepregs, Carbon/Epoxy composition T300/3501, are used for 
laying up the composite laminate in the sequence with four embedded FBGs  
[0(FBG-1)90/0(FBG-2)90/0(FBG-3)90/0(FBG-4)0/90/0/90/0/90/0/90/0]. The curing process 
is implemented by utilizing the Modified Diaphragm Forming (MDF) with the air 
compressor, vacuum pump, and heat chamber. The mod of MDF consists of two Teflon 
films to prevent adhesion, polyimide-diaphragm and o-ring for sealing, which is depicted in 
Fig. 3.  
 

 

Fig. 3. Schematic of the diaphragm type forming mold for laminate curing process 
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Fig. 4. Curing conditions of composite specimen 
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The prepregs in MDF will be closed by air pressure beyond the diaphragm, and removed 
excess gas in the laminate by vacuum pump simultaneously. The curing process is 
composed of three stages including heating, isothermal and cooling stage. The process starts 
at heating stage with 7 kg/cm2 air pressure upon the diaphragm, and 6.5 kg/cm2 vacuum in 
the mod. The heating rate is 2 °C/min from room temperature to 140 °C. Second state is 
isothermal stage at 140 °C in 40mins. During this stage, the resin viscosity is low and easy to 
flow. The vacuum condition assists avoiding the delamination due to the exhaust gas in the 
laminate. The third state is cooling to room temperature when the resin viscosity becomes 
large and stable. Moreover, the residual strain will occur at the end of this stage. The whole 
curing conditions are described in Fig. 4. 

3.2 Experimental set-up and fabrication of FBG 
The involved FBG was fabricated in the Ge-B co-doped single cladding photosensitive fiber 
by using the phase mask method. Meanwhile, the photosensitive fiber was manufactured by 
Fibercore Co. Ltd. (PS1250/1550). 
A schematic diagram of photoimprinting FBGs in photosensitive optical fiber is illustrated 
in Fig. 5 particularly. The 248-nm UV radiation from a KrF Excimer laser is employed while 
the impulse frequency of laser is 10 Hz. To avoid burning the phase mask, the laser power 
should be <500 mJ/cm2. Along the fiber core, the FBG has a periodic refractive index 
modulation with a period of 1.05~1.08 μm, obtained by using phase masks with different 
periods. This resulted in a peak Bragg reflecting wavelength of 1540~1564 nm. The 
reflectivity of the resulting FBG was about 99% and the FWHM (Full width Half Maximum) 
of the FBG is about 0.175 nm. 
 

 

Fig. 5. A schematic diagram of the FBGs fabrication set-up 

The experimental set-up for curing monitoring is shown in Fig. 6. The light source in the 
experiment is the broadband Super Luminescent Diode (SLED) with wavelength span is 
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1400nm~1600nm. The main objective of the system is to observe the reflective spectra from 
the embedded FBGs in the laminate.  
 

 

Fig. 6. Experimental set-up of curing monitoring 

3.3 Results and discussion 
We embedded four FBGs (FBG-A1:1541.13nm, FBG-A2:1552.85nm, FBG-A3:1554.61nm, and 

FBG-A4:1560.65nm) into the composite laminate. Fig. 7 depicts the temperature calibration 

(from room temperature to 180 °C) of FBGs before embedded in the laminate. The 

temperature sensitivity of FBG-A1, FBG-A2, FBG-A3 and FBG-A4 are 9.8, 9.5, 11.4 and 9.4, 

respectively. It could be observed that the variation of wavelength with temperature is quite 

linear with the average of R-squared is 0.997. 
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Fig. 7. FBG wavelength shift with the temperature raising 

From the reflective spectrum of embedded FBG sensors, we can observe the peak 
wavelength of FBGs (FBG-A1:1540.81nm, FBG-A2:1552.6nm and FBG-A3:1554.79nm). The 
signal of FBG-A4 is very weak after raising the air pressure in the up-mod. The high 
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pressure could be the reason causing the breakage of FBG-A4. As shown in Fig. 8, which 
describes the change of spectra and the intensity in the heating stage of the curing process, 
the wavelength shifts to the right while intensity is increasing with temperature rising. The 
phenomenon is as a result of the diminished compression loading. As the temperature 
increases, the viscosity of the matrix materials (Epoxy) is decreasing gradually. Therefore, 
the embedded FBG will be adapted well in the carbon fiber lamina. The pressure loading 
will be then taken by the carbon fiber, and thereby reducing the loading on the embedded 
FBGs. In the Fig. 9, there are three transition points of the intensity-temperature curve at 
about 105 °C, which is near to the glass transition temperature of the epoxy matrix (95 °C).  
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Fig. 8. FBG wavelength shift during heating stage during curing process 
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Fig. 9. The intensity changes of the embedded FBGs during the heating stage 
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Fig. 10. Spectrum of change during the heating stage 

The intensity and the spectrum shape of the FBGs do not change at the isothermal stage 
(holding at 140 °C). However, the resin viscosity is reducing gradually during cooling 
process. In cooling stage, the intensity of the embedded FBGs’ spectra is linearly decreasing, 
and the spectrum width of FBGs is broadening with temperature cooling in Fig 10.  
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Fig. 11. illustrates the split of FBG spectra during cooling stage when the wavelength is 
shifted to left. The peak of FBG spectra (A1 and A2) gradually broadens at about 95 °C, and 
splitting into two peaks at 90 °C while the peak of FBG spectra (A3) broadens and splitting 
into two peaks at 50 °C.  
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Fig. 11. The split of FBG spectra during the cooling stage 
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Fig. 12. depicts the variations of the intensity of FBG spectra during cooling stage. Below 
90 °C, the spectra will split into two peaks, and, therefore, the intensity is decreasing with 
the occurrences of peak splitting. 
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Fig. 12. Intensity of FBG Spectra during cooling stage 
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During the cooling process, we can observe the changes of intensity and wavelength in the 
FBGs’ spectra. As shown in Fig. 13, the width of FBG spectra broadens below 100 °C. The 
spectra of FBG (A1 and A2) split into two peaks at about 90 °C whereas FBG (A3) splits at 
about 50 °C. In addition, splitting peaks of FBG (A3) are unobvious, and owing to smaller 
residual strain. This phenomenon may be caused by various residual strains from different 
layers of the laminated composites.  
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Fig. 13. FBG spectra monitoring during cooling stage 
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The comparison of the FBG spectra at before and after the curing process is illustrated in Fig. 
14. After curing process, the spectra are shifted to left and splitting into two peaks owing to 
the transverse residual strain while the wavelengths of FBG (A1) and FBG (A2) shift to the 
left apparently. The wavelength shift is caused by the axial residual strain.  
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Fig. 14. Comparison of FBG spectra before and after curing 
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As shown in Fig.15, the residual strain of the FBG (A1) and FBG (A2) are -423με and -407με, 
respectively. Meanwhile, the residual strain of the FBG (A3) is -32με, much smaller than 
those of FBG (A1) and FBG (A2), could be considered as having no significant change after 
curing. Briefly, the residual strain of FBG (A1), FBG (A2) and FBG (A3) are compression 
strain although less residual strain could be detected at the outer layer of composite. 
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Fig. 15. Axis residual strain of FBG sensors in different layer of the composite laminate 

5. Conclusions 

 We propose a method for monitoring the curing process of composite materials using four 

embedded FBGs in different layers in the composite laminate. The embedded FBGs are 

successful to supervise curing process including residual strain and glass transition 

temperature. The curing development and residual strain measurement are assessed 

through changes in the shape of the optical spectra, intensity attenuation and shifts in 

wavelengths of FBGs. The maximum curing residual strain was -423 με in the central 

laminate of the composite. The curing residual strain of FBG-1, FBG-2 and FBG-3 are -423,  

-407 and -32με, respectively. During the cooling stage, the spectra are shifted to left, 

broadening, and then splitting into two peaks owing to the transverse residual strain. 
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