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1. Introduction

Ultrashort laser pulses with duration in the range between 10 and 100 ps play important

role in many applications, such as microsurgery, micromachining, laser ranging, nonlinear

optics etc. Methods enabling precise measurement of such pulses duration are therefore

essential. Common silicon photodiodes used in combination with ordinary oscilloscopes

cannot be used for such a precise measurement because of low temporal resolution of the

whole system. Therefore, several sophisticated methods based on optical or electro-optical

effects were developed in the past decades and are still widely used (Diels, 1995; Keller,

2007; Rulliere, 2003). The first method based on nonlinear optical effect is measurement of

second order autocorrelation function of the measured light pulse. This function is always

symmetric and does allow to obtain detailed information on the exact pulse shape and pulse

duration is calculated assuming the certain pulse temporal profile. This method, which can

be used either for single or repetitive pulses, is in principle very precise but has also several

disadvantages. The whole measuring system has to be aligned precisely and the measured

beam has to enter the system in accurately aligned angle. Precision depends also on control

of the delay line used for scanning autocorrelation measurement. Because the resulting pulse

length is in this case calculated from many points, it is clear that it represents average value of

the real pulses lengths and is difficult to evaluate pulse duration stability or study some other

effects, i.e. pulse shortening under specific conditions. The single shot autocorrelators on

the other hand can measure the autocorrelation function from only single laser shot but exact

interpretation is not also unique. The only direct picosecond pulses measurement method

based on electro optical effect uses a streak camera. This method allows to measure single

pulse duration and shape but several consecutive pulses in the pulse train cannot be measured

with sufficient temporal resolution. It is also necessary to carefully align whole measuring

system and perform its rigorous calibration including readout.

Repetitive signals as mode locked pulse trains from continuously pumped lasers can be

measured using sampling oscilloscopes in combination with fast detectors enabling resolution

in units of picoseconds. For signals with repetition rates below several kHz sampling

oscilloscopes cannot be used and only real time oscilloscopes with lower resolution are

available. In the past few years fast real time oscilloscopes with analog bandwidth up to
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40 GHz primarily designed for digital signal processing became available. In combination

with sufficiently fast photodiode (commercially available with bandwidth up to ∼ 60 GHz) a

powerful tool for single ultrashort laser pulse characterization appeared. The photodiode

- oscilloscope system for measurement of such laser pulses has several advantages. This

procedure is simple to perform because the laser beam can be easily directed on the

photodiode and very precise alignment of the measuring system is not necessary. The

measurement is also repeatable, quick, and moreover duration of several pulses in the train

can be recorded simultaneously from the single laser shot which enables investigation of

special effects, such as pulse shortening in the laser output pulse train (Kubecek, 2009).

Furthermore, oscilloscopes offer sophisticated functions and e.g. pulse duration statistics from

thousands of pulses can be studied.

The subject of this chapter is theoretical and experimental study of the diagnostics of

picosecond laser single pulses and pulse trains with repetition rates below 100 Hz using

measuring system consisting of a fast real time oscilloscope and InGaAs PIN photodiode.

In the first section physics of detection and general properties of photodiodes are described.

In the second section theoretical analysis of pulse duration measurement method using

oscilloscope - photodiode system is performed. Measuring system impulse response based

on calculation from the corresponding datasheet parameters is discussed and subsequently

resulting value is calculated for the given system. The third section deals with experimental

verification of the described measurement method and calculated impulse response. Three

laboratory laser systems based on neodymium (Nd) doped active materials and operated in

quasi-continuously pumped regime were studied. The lasers were passively mode-locked

by the semiconductor saturable absorbers and generated output trains consisted of 5 to

100 pulses. For some measurements single pulse was extracted. The pulses had duration

in the range between 10 and 200 ps depending on the laser system. The pulse duration

was measured simultaneously by our oscilloscope - photodiode system and at least one of

precise optical measuring system (autocorrelator or streak camera) to investigate how short

pulses can be measured with sufficient accuracy. Subsequently, it was possible to use the

measuring system not only for instantaneous estimation of duration of the pulse shorter than

corresponding impulse response, but moreover to investigate pulse duration stability using

oscilloscope sophisticated statistics functions. In addition, two tested laser systems were

operated under special regime resulting in pulse duration shortening along the output pulse

train, which was possible to study precisely at each individual laser shot.

2. Physics of detection and photodiodes

Photodiodes represent one of fundamental light detection devices and play almost

un-substitutable role in many applications, where the time and amplitude characteristic of

the incoming light pulses has to be investigated or further exploited. Among the main

advantages of photodiodes belong ease of use, fast time response, sensitivity at sufficiently

wide spectral region, reasonably low thermal and electrical noise, and small dimensions

enabling integration in electro-optics devices. Photodiodes are mostly used for detection of

laser light pulses in many applications, such as telecommunications, sensing, security, and

laser systems monitoring.

Light detection by a semiconductor material is based on the well-known phenomena of

photon absorption (Saleh, 2007). If the incident photon energy exceeds the band gap energy
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of the semiconductor, an electron-hole pair is released. These charge carriers move by

diffusion to places with lower concentration and may contribute to electrical current, if the

semiconductor is connected into some electrical circuit. Since the diffusion rate is slow, these

photo-conductors cannot be used as sufficiently fast photodetectors.

The situation changes when a photodiode formed by PN junction is used. Between the P

and N regions, there is a depletion layer consisted of positively and negatively charged fixed

ions. These ions form electrical field in the direction from N to P. If the photon is absorbed

in this depletion layer, the electrons and holes are accelerated by the described electrical field.

In this layer the carriers move by drift process which depends on the electrical field and is

much quicker than diffusion. The depletion layer can be further extended applying reverse

bias voltage on the photodiode which significantly decreases the carrier transit time. Reverse

bias voltage (below the breakdown threshold) increases the noise component formed by dark

current. In relation to the detector speed, capacitance formed by the depletion layer has

to be treated and kept as low as possible, because it significantly contributes to the overall

capacitance of the detector therefore influences its RC constant. Depletion layer capacitance is

proportional to its area and inversely proportional to its thickness. Because the area relates

to the photodiode responsivity, there has to be a trade-off between these values and fast

photodiodes have lower sensitivity.

In order to extend the depletion layer, the intrinsic-doped layer can be inserted between P and

N regions forming PIN diode. This leads to reduction of the necessary reverse bias voltage

to several volts and simultaneously to rise the detector speed because most of photons are

absorbed in this layer and generated carriers drift through this layer accelerated by the bias

voltage. Furthermore, thicker depletion layer decreases the junction capacitance.

In the following section photodiode parameters with emphasis on the spectral region and

response time will be discussed from the point of material and construction parameters.

Requested spectral region ranging approximately from 500 to 1500 nm and covers the most

of wavelengths used in solid state lasers enabling ultrashort pulses generation. Spectral

region of the photodiode is mainly limited by its material parameter - the absorption

layer band gap. As the photon absorption does not occur when the incident photon

energy is less than absorption layer band gap Eg, the long-wavelength component λcuto f f

is limited by λcuto f f = hc/Eg ⇒ λcuto f f [µm] = 1.24/Eg [eV]. Therefore, common silicon (Si)

photodiodes can be used for wavelengths only up to ∼ 1.1 µm. There is also second

well-known semiconductor-compound material - gallium arsenide (GaAs). In the pure form,

its long-wavelength region is limited to about 850 nm. By adding other component, the

wavelength region can be significantly extended. Usage of many compounds has been

published but in the commercially available photodiodes mainly Indium (In) component is

used in the discussed spectral region. Pure InAs has λcuto f f of about 3.4 µm and depending

on its concentration in InxGa1−xAs compound, the wavelength range can be tuned. Mainly

used compound has x∼ 0.5 determining λcuto f f of ∼ 1.7 µm (Bitter, 2000).

Usage of GaAs-based material for the PIN photodiode construction has also other advantage

in the charge carrier mobility. The electron mobility in GaAs is about five times higher

than in Si while the hole mobility is comparable (Gibbons, 1987). As for construction

parameters, it has already been said that in order to obtain fast response time it is necessary

to keep the depletion layer capacitance as low as possible. Because of the mentioned

reasons commercially available photodiodes based on GaAs / InGaAs have higher frequency
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bandwidth in comparison with the silicon photodiodes. The fastest photodiodes for

telecommunication have to be based on InGaAs because of its desirable spectral response

around 1.5 µm.

Besides these standard-type PIN photodiodes there is an extensive effort on the new

photodiodes concepts development and utilization mainly in the telecomunication technique.

Novel high-speed and high-power photodiodes with bandwith higher than 100 GHz were

demonstrated. These new configurations are aimed to overcome the main disadvantages of

the classical PIN photodiodes.

The bandwidth-efficiency and saturation current of the photodiode can be improved using

the Dual-Depletion Region (DDR) detector (Effenberger, 1996). The depletion region of this

structure consists of a InGaAs absorption layer and a InP drift (buffer) layer. This leads to the

reduction of the junction capacitance due to increased depletion layer thickness. Moreover,

the electrons must travel across both InGaAs and InP layers, whereas much slower holes must

travel only across the InGaAs layer resulting in equalization of the transit times for electrons

and holes.

Improved approach is the Uni-Travelling Carrier (UTC) photodiode (Ishibashi, 2000;

Nagatsuma, 2011). This device utilizes only electrons as the active carriers. The active

region consists of a p-InGaAs absorption layer and a wideband i-type carrier-collection

layer. Photo-generated minority electrons diffuse from the absorption layer to the depleted

collection layer, where they are accelerated and transported to the contact. A diffusion barrier

made in the p-InGaAs layer prevents the electrons from diffusing into the p-contact while

the generated holes can diffuse to the contact material. The photo-response is therefore

determined by the electron diffusion time in the absorption layer which can be very thin

leading to high bandwidth. Furthermore, the output peak current increases linearly with

increasing input energy, and the waveform does not significantly change until it reaches the

saturation point. In comparison with the waveform of the PIN photodiode, which consists

from two current components (initial fast component attributed to electron transport and the

slow tail caused by hole transport).

In order to increase the quantum efficiency of the standard (vertically-illuminated) PIN

photodiode, which depends on the absorption layer thickness, a waveguide detection scheme

was used, where the light absorption is perpendicular to current collection (Malyshev,

2004). Using this scheme it is possible to achieve high absorption efficiency and high speed

simultaneously due to the decoupling of the efficiency from the absorption layer thickness.

Efficient operation of these photodiodes based on the thin film germanium on silicon was

successfully demonstrated (Wang, 2008).

Another approach leading to high-speed photodetectors is based on the metal-semiconductor

Schottky junction, mainly developed in the MSM (Metal-Semiconductor-Metal) photodiode

(Berger, 1996; Kache, 2005). Its structure is comprised of back-to-back Schottky diodes that

use an interdigitated electrode configuration on the top of the active absorbing layer. This

construction leads to low capacitance in comparison with the standard PIN photodiodes and

therefore the MSM photodiode response speed is mostly limited by the transit time of the

photo-generated carriers. Different materials may serve as the active layer and besides IR and

visible spectral range also UV detectors were demonstrated successfully (Liu, 2010).
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3. Picosecond pulse measurement using oscilloscope - photodiode system

3.1 Measuring system response

This chapter is aimed at measurement of ultrashort light pulses with duration between 10 and

200 ps generated by mode-locked lasers. The measurement is performed using oscilloscope

- photodiode system and therefore overall response time of these both components has to

be treated. Response time of each electrical component is limited by its electrical frequency

bandwidth which is usually defined at the frequency where a sinusoidal output signal

amplitude is attenuated to about 70 % of its original value (or in other terms the signal power

is attenuated to 50 %), also known as -3 dB point. Let’s consider the pulse width (duration) as

full width at half maxima (FWHM) of light intensity. For the pulse width measurement the

laser pulse shape can be in good approximation considered as Gaussian and therefore sum of

square calculation of the real pulse duration FWHMREAL can be used:

FWHMREAL =

√

FWHM2
MEAS − FWHM2

SYSTEM (1)

where FWHMMEAS is measured pulse width and FWHMSYSTEM is the minimal pulse width

(impulse response or response to a Dirac delta function) of the measuring system. This

instrumental constant can be calculated as

FWHMSYSTEM =

√

FWHM2
OSC + FWHM2

PD (2)

where FWHMOSC is the oscilloscope minimal pulse width (given by the oscilloscope impulse

response) and FWHMPD is the photodiode minimal pulse width. Into this calculation also

influence of cables and connectors can be included when their frequency bandwidth cannot

be neglected in comparison with other measuring components bandwidth. Similar theorem

can be used for the calculation of rise time (RT) as the system response on the step input signal

(Johnson, 1993; Keller, 2007).

3.2 Minimal pulse width and rise time of the measuring system components

Minimal pulse width FWHM and rise time RT of the measuring components can be calculated

for the given frequency bandwidth f3dB according to the formulas

FWHM =
KFWHM

f3dB
, RT =

KRT

f3dB
(3)

Constant K varies in range from 0.3 to 0.5 according to the step or impulse response and also

according to calculation performed for the oscilloscope or photodiode.

3.2.1 Photodiode response

The photodiode rise time can be calculated for the given electrical bandwidth using KRT = 0.35.

This value is based on the RC element step response and derived for example in (Johnson,

1993; Keller, 2002). It is also accepted by most of photodiode manufacturers who state rise

time value in datasheets according to this calculation. The photodiode impulse response can

be calculated using KFWHM = 0.312 which is also derived in (Keller, 2002) and assumes the

Gaussian response.
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3.2.2 Oscilloscope response

Calculation of the oscilloscope response is little bit more complicated because the constant

K relates to the oscilloscope type. Generally, two types of oscilloscopes are distinguished

according to their shape of frequency response. Analog oscilloscopes and digital oscilloscopes

with 3 dB bandwidth less than 1 GHz usually have Gaussian frequency response. This type of

frequency response slowly decreases towards -3 dB attenuation and further. For this type of

oscilloscopes is possible to use similar constants as for the photodiode. However, fast digital

oscilloscopes with higher bandwidth have maximally flat or so-called brick wall response. In

this type the frequency response is much flatter below defined -3 dB frequency but then drops

rapidly. These oscilloscopes have several advantages. Signals with frequencies below f3dB

can be measured more precisely and higher frequency signals do not produce sampling alias

errors. However, for this type of oscilloscope the assumptions and formulas for the Gaussian

pulse are not valid precisely. Also the KRT value is higher and ranging from 0.4 to 0.5 (Agilent,

2011; Tektronix, 2009). The KFWHM is not precisely defined and according to uncertainty of

KRT its value can be just estimated.

3.2.3 Calculation of the measuring system impulse response

According to the previous analysis, the step and impulse response of the measuring system

used in our experiments can be calculated. The measuring system consisted of the PIN

photodiode EOT ET-3500 (EOT, 2011) connected by high frequency SMA cable to the real

time oscilloscope LeCroy SDA-9000 (LeCroy, 2009) 1. Datasheet parameters of the photodiode

are as following: cutoff frequency >15 GHz, rise and fall time <25 ps, spectral range 1000 -

1650 nm, responsivity 0.88 A/W @ 1550 nm, active area diameter 32 µm, junction capacitance

0.12 pF. Important datasheet parameters as well as rise time and minimal pulse width

calculation are summarized in Table 1.

Compo- Datasheet values Step response Impulse response
nents & f3dB RT RT KFWHM FWHM KFWHM FWHM
System [GHz] [ps] [ps] [ps] [ps]

LeCroy 9.0 <49 49 0.44 49 0.40 45
EOT 15.0 <25 25 0.31 21 0.31 21

System - - 55 - 53 - 50

Table 1. Datasheet values and calculated system response FWHMSYSTEM.

The system rise time can be calculated directly from the given datasheet values. The minimal

pulse width is calculated from the given frequency bandwidth. For the oscilloscopes two

values of KFWHM are used. The first value of 0.44 is the same as used for the step response

calculation, the second value of 0.4 is the estimation based on fact that the impulse response

for the Gaussian systems is about 0.9 times shorter than step response (Andrews, 1989). It can

be seen that the calculated minimal FWHM given by the impulse response is about 50 ps.

1 Trade names are used to specify the experimental setup only.
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4. Experimental investigation of picosecond laser pulses

4.1 Experimental determination of the measuring system minimal FWHM

Minimal FWHM was determined experimentally using an experimental fiber laser generating

mode-locked pulses at 1.5 µm with duration less than 2 ps (measured by the autocorrelator).

Pulse of this duration can be assumed as Dirac delta function for our measuring system. In

order to avoid nonlinearities in the photodiode and oscilloscope, during all the measurements

the oscilloscope vertical resolution was set at 5 mV/div and the signal amplitude was

about 20 mV. The oscilloscope bandwidth was set to maximal analogue bandwidth of

9 GHz with the sampling frequency of 40 GS/sec. The oscilloscope enables two regimes of

waveform acquisition and display - linear (only measured points are displayed) and sin(x)/x

(approximation by this function). It was experimentally found that the FWHM measurement

difference using these two acquisition regimes is about 1 ps and can be neglected. Therefore,

most of further described measurements were performed in the linear acquisition regime.

There are two possibilities how to determine the FWHM of the measured pulse. The first is use

of build-in function of the oscilloscope - Width at 50 %. The oscilloscope also enables to show

histogram or statistics of these measured values. The second possibility is to save the data

and perform a curve fit by Gaussian function. It has been found that using a Gaussian fit is for

our pulses adequate and the determined FWHM of a such pulse with duration below 80 ps is

about 18 % shorter than the value measured by the oscilloscope. Because of this uncertainty,

most of FWHM values presented below were determined by the Gaussian fit of the measured

pulse shape. All the presented values represent average value of about 100 pulses.

Recorded pulse from the 1.5 µm fiber laser with duration of 2 ps using sin(x)/x waveform

approximation is shown in Fig. 1. The width measured by the oscilloscope was 75.5± 1.5 ps.

Fig. 1. Oscilloscope trace of the measured 2 ps long pulse using sin(x)/x approximation.

In Fig. 2 similar pulse recorded in the linear acquisition regime is shown. The width measured

by the oscilloscope was 76± 2 ps. According to the Gaussian fit the pulse width was 63± 2 ps.

There is a difference of about 13 ps in comparison with theoretically calculated minimal

FWHM of ∼ 50 ps given in Table 1 which can be explained by uncertainity of used constants

K, datasheet values, and influence of the cable and connectors.

There is also the second possibility to determine the FWHMSYSTEM using the longer pulse

with known duration FWHMREAL and from the measured FWHMMEAS to calculate the
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Fig. 2. Measured 2 ps long pulse (dots) and its Gaussian fit (green line) and Spline fit (red
curve).

system response. In our experiments we have used a laboratory designed mode-locked

Nd:YAG laser providing stable 22± 2 ps pulses (measured by the streak camera and

autocorrelator) with repetition rate of 10 Hz at the wavelength of 1.06 µm (Jelinek, 2011;

Kubecek, 2011). The laser system schematic is shown in Fig. 3. From the Gaussian fit

of the measured pulse the width of 64± 2 ps was determined and using this value the

FWHMSYSTEM of 60 ps was calculated. This value is in good agreement with experimentally

determined value of 63 ps obtained using fiber laser.

Fig. 3. Schematic of the Nd:YAG laser system generating 22± 2 ps pulses.

4.2 Duration estimation of pulses shorter than system impulse response time

In order to determine how short pulses can be reliably measured using our calibrated

measuring system, pulses generated by two other passively mode-locked laser sources were

measured and the real pulse width was calculated using both constants FWHMSYSTEM. The

first source was continuously pumped and mode locked Nd:YAG laser generating pulses in

range of 17 to 21 ps (measured by the autocorrelator) with repetition rate of 110 MHz. The

112 Photodiodes – Communications, Bio-Sensings, Measurements and High-Energy Physics
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second source was quasi-continuously pumped and mode-locked Nd:GdVO4 laser generating

after cavity dumping from the Q-switched trains single pulses with duration of 56 ps

(measured by the autocorrelator and streak camera) at the repetition rate of 30 Hz (Kubecek,

2010). Calculated pulse widths are shown in Table 2 and also in Fig. 4 together with calibration

curves for both FWHMSYSTEM constants.

Pulse width FWHM [ps]
Laser Measured real LeCroy Gaussian Calculated value

(autocorrelator value approximation for FWHMSYSTEM:
or streak) (our value) 60 ps 63 ps

Er fiber CW ML2 2 76± 2 63± 2 19± 7 -

Nd:YAG SP ML2 22± 2 79± 2 64± 2 22± 5 11± 8

Nd:YAG CW ML2 17 - 21 79± 2 66± 3 27± 7 20± 9

Nd:GdVO4 SP ML2 56± 8 90± 6 82± 12 56± 16 52± 18

Table 2. Measured and calculated pulse widths for all studied laser sources.

Fig. 4. Calibration curves for our measuring photodiode-oscilloscope system (for
FWHMSYSTEM of 60 and 63 ps) and calculated real pulse durations of three measured laser
sources

It can be seen that the real pulse width calculation from the measured ∼ 20 ps pulses is

possible, but error up to 50 % may be introduced according to FWHMSYSTEM constant choice

and the uncertainty of the measurement and the Gaussian fit. The real pulse width calculation

for ∼ 50 ps pulses is more realistic and for both calibration curves (for different FWHMSYSTEM

constants) does not introduce significant error. The uncertainty originates mainly from the

laser stability itself.

2 ML: mode-locking, CW: continuous wave, SP: single pulse
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4.3 Single pulse duration stability investigation

The oscilloscope - photodiode system can be used for the single pulse duration stability

investigation. An example of such measurement is shown in Fig. 5. Duration of the single

pulses from the mode-locked Nd:GdVO4 laser was measured using oscilloscope’s build-in

function and histogram from ∼ 2000 successive pulses was shown. In spite of the fact that

using the oscilloscope - photodiode system there may be some uncertainty in the absolute

pulse width calculation, the width stability from many pulses can studied.

Fig. 5. Single pulse stability investigation using the oscilloscope statistical functions. Upper
trace: measured pulse, lower trace: pulse width histogram from ∼ 2000 successive pulses.

4.4 Investigation of the pulse shortening along the Q-switched mode-locked train

Using the oscilloscope - photodiode system it is possible to measure not only the temporal

and energetic stability of the single pulses, but moreover to study some special effects, such

as pulse width shortening along the laser output train containing tens to hundreds of pulses.

Investigation of such effect in single output train cannot be performed by available optical

measuring methods. As it was mentioned in the previous chapter, in spite of the fact that

using the oscilloscope - photodiode system there may be uncertainty in the absolute pulse

width, the pulse shortening effect studied in two pulsed laser systems can be clearly observed.

The first laser system was based on Nd:GdVO4 active material and passively mode locked by

the semiconductor saturable absorber. The active medium was quasi-continuously pumped

by the laser diode at repetition rate of 30 Hz. The 30 µJ laser output pulse train consisted of 12

pulses and its oscillogram is shown in Fig. 6. Lower traces show details of the highest pulse

- pulse no. 3 in the train and later pulse no. 9. Fig. 7 shows plotted dependence of pulse

duration evolution along the train measured from single laser shot and recalculated. It can

be seen that the pulse duration decreased from the initial 160 to 55 ps at the end of the train

(Kubecek, 2010).
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Fig. 6. Nd:GdVO4 laser system output pulse train oscillogram (upper trace) and zoomed
pulses no. 3 and 9 (lower traces).

Fig. 7. Calculated pulse duration evolution along the trains generated by the Nd:GdVO4 and
Nd:YAG laser systems.

Similar pulse shortening effect was also observed in the output train of the passively

mode-locked Nd:YAG laser with passive negative feedback when output trains containing

hundred of pulses can be generated. Stretched 100 ns long pulse train shown in Fig. 8 has

total energy of 60 µJ and contains ∼ 40 pulses. The pulse duration evolution along this train

is shown in Fig. 7. The pulse shortening effect from original 190 ps in the beginning of the

115Single Shot Diagnostics of Quasi-Continuously 
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train to the final 70 ps was observed (Kubecek, 2009) resulting from the combined effect

of the saturable absorber nonlinear transmission and passive negative feedback due to the

beam defocusing via two-photon absorption in GaAs substrate of the semiconductor saturable

absorber (Agnesi, 1992).

Fig. 8. Nd:YAG laser system output pulse train oscillogram (upper traces) and details of the
pulse shapes from the beginning and end of the train (lower traces).

5. Conclusion

The aim of this chapter was the investigation of capabilities of the photodiode - oscilloscope

measuring system for the single shot diagnostics of quasi-continuously pumped picosecond

lasers. After the introduction, physics of light detection and photodiodes with emphasis

on the response time of the PIN photodiodes was shortly discussed. In the third section,

the oscilloscope - photodiode measuring system response and minimal pulse width was

theoretically analyzed. According to this analysis, calculations based on datasheet values

were performed for the used system consisting of the real time digital oscilloscope LeCroy

SDA-9000 and PIN photodiode EOT ET-3500. The minimal pulse width (FWHM of the

impulse response) of 50 ps was estimated. In the next section, this minimal pulse width was

measured experimentally. Dependence of the width on different oscilloscope settings and

waveform fitting was discussed. Measured minimal pulse width resulted in values between

60 and 63 ps and according to these results two calibration curves were obtained. In order

to determine how short pulses can be reliably measured using the calibrated measuring

system, pulses generated by two other laser sources were measured and their real widths

were calculated and compared. It has been shown that even for pulses shorter than the

minimal pulse width the useful real pulse width estimation can be obtained. Measurement

and subsequent width calculation of the pulses with the duration comparable to the minimal

pulse width can be performed with sufficient precision. The advantages of the calibrated

measuring system were demostrated on the study of the laser pulse width stability and also

on the investigation of the special effect - pulse shortening along the laser output pulse train.
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