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1. Introduction 

Over the past decade, we have utilized the Veterans Affairs (VA) Decision Support 

System (DSS) database to identify medications that are associated with a reduced 

incidence and progression of dementia. Our studies identify two general classes of 

medications that are associated with reductions in the incidence of dementia, compared  

to a group of patients with similar cardiovascular risk profiles (Li et al., 2010; Wolozin  

et al., 2000; Wolozin et al., 2007). We have shown that simvastatin, a medication that 

blocks synthesis of cholesterol, is associated with a significant reduction in the hazard 

ratio for incident dementia (HR 0.46, CI 0.44 – 0.48 p<0.0001) (Wolozin et al., 2007).  

Simvastatin has two primary effects.  One effect is to lower cholesterol and a second 

effect, which is observed only at higher doses of simvastatin, is to reduce inflammation 

(Wolozin et al., 2006). The second major class of medications that are associated  

with reduced progression of dementia fall in the general category of angiotensin receptor 

blocking medications, which includes lisinopril, candesartan and valsartan (Li et al., 

2010). In this work, the reduction in dementia incidence (HR, 0.81, C.I., 0.68 – 0.96, 

p=0.016) was not as striking as for statins, but we also examined nursing  

home admissions, where we observed a strong effect (HR, 0.51, CI 0.36 – 0.72, p=0.0001). 

In addition, we observed additive effects when angiotensin receptor blockers (ARBs)  

were used in addition to Angiotensin Converting Enzyme (ACE) inhibitors (Li et al., 

2010). Finally, we have also examined the influence of coronary artery bypass on the 

incidence of dementia (Lee et al., 2005).  This work was recently expanded upon to 

include an examination of the putative role of gaseous anesthetics on the incidence of 

dementia (no evidence supporting such a hypothesis was observed) (Vanderweyde et al., 

2010). 
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This work derives from the immense size and richness of the DSS database, which is one of the 
largest integrated electronic health records in the world.  The DSS began capturing data in 
October 2001 (fiscal year 2002), although some parts of the database go back to 1996 (Smith 
and Joseph, 2003). The database captures information on approximately 5 million subjects per 
year, with over 100 million medication prescriptions per year.  The DSS database offers 
researchers a tool that is distinctly different than the classic cohorts developed at academic 
centers.  Cohorts developed at academic centers tend to be smaller by a factor of 500 – 5000, 
often being in the range of 1000 – 5000 patients. These cohorts offer rigorous, uniform 
evaluations of well-characterized and carefully selected subjects using evaluators who are 
following rigidly defined protocols (Hayden et al., 2006; Launer et al., 2000; Seshadri et al., 
2006). These types of cohorts are ideal for studying medications or other factors that are 
prevalent in the cohort (with a rate > 10%). However, such cohorts are unable to study most 
medications in a formulary because the prevalence of use is too low. The large size of the DSS 
database presents an outstanding resource for pharmaco-epidemiological studies where rates 
of use for many medications are 1% or less. We have used the DSS database for such studies, 
and have observed high concurrence with our studies upon investigation by other 
epidemiologists using other databases or cohorts. 
The material in this chapter will explain the design and execution of pharmaco-
epidemiological databases using the DSS database.  We will define the elements available in 
the DSS database, the strengths and the weaknesses of dataset.  The DSS dataset is 
particularly suited for studies meeting criteria that will be defined. An important 
preliminary point is that the size and security concerns related to using the DSS database 
create a unique set of requirements that must be considered and adhered to carefully.  We 
will describe the elements that should be considered in defining optimal cohorts for the 
study, and the types of factors that should be considered in characterizing the demographic 
profiles of these cohorts.  Cohorts, selection criteria and exclusion criteria all vary depending 
on the type of study, and the factors that should be considered in each of these decisions 
will be described.  Studies can be performed with a focus on incidence or progression, and 
the considerations required for each such study will be described. Multiple models should 
be used for a particular study.  The models can be varied based on the choice of covariates, 
exclusion criteria, comorbid illnesses allowed, concurrent medications allowed, as well as 
other elements.  The considerations related to each of these choices will be discussed.  The 
size of the DSS database offers the option for types of studies that are not feasible in smaller 
datasets. Medications can be compared by pharmacological properties, duration of exposure 
and medication switching. End points can include files in the DSS database, but increasingly 
can also include datasets not directly part of the DSS. For instance, the DSS data can be 
cross-referenced to Medicare, which can capture some off-plan elements such as nursing 
home utilization and use of health systems outside the system. After acquisition of the data, 
statistical models that can be applied include logistic regression, hazard rates and tests for 
sensitivity.  Statistical models can also inform choice of subjects for cohorts, for instance by 
applying propensity analysis.  Considerations for each of these choices will be examined. 
The DSS database is also being continually upgraded and expanded.  In the future, we can 
expect that computer based language algorithms will allow capture and quantification of 
written reports by the health care providers.  Genetics will also become increasingly 
accessible.  The VA is currently embarking on a plan to genotype DNA for 1 million 
subjects.  Although this dataset will cover only a fraction of the subjects in the VA system, 
the large number of subjects analyzed will create a unique resource. 
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2. Experimental design: General considerations 

The introduction above describes many of the inherent strengths of the DSS system.  
However, despite the apparent strengths, the DSS system also has some important 
weaknesses. The design of pharmaco-epidemiological studies of the VA DSS database must 
take into account these weaknesses. The VA pharmacy increasingly limits the medications 
that are used, trying to strongly encourage use of generic medications.  This leads to two 
important considerations. 
The first issue is that some medications commonly used outside the system, are not used 
inside the system.  For instance, among statin users, atorvastatin and rosuvastatin are used by 
many patients not in the VA system, but most patients in the system use simvastatin (Wolozin 
et al., 2007). This limits the breadth of medications that can be analyzed using the DSS system. 
Formulation considerations also impact in other manners that are subtler. Changes in the types 
of medications on the formulary lead to changes in medication utilization by patients.  Such 
changes alter the duration of time that patients might take a medication, which can lead to 
altered rates of disease.  For instance, if entire groups of patients switch medications, the 
resulting studies could make it seem as if a particular disease is less prevalent among patients 
taking that medication, although the real reason is that the duration of exposure might be less 
than for other medications that were used throughout the analytic period.  These types of 
biases can be adjusted for using careful analytic designs, but such analyses must be 
incorporated. Another large problem is that the clinical records have not been validated and 
are not uniform. The VA system comprises 23 VISNs, and multiple hospitals within each 
VISN. The size of the VA system leads to treatment diversity; physicians are trained 
differently. Diagnostic and/or treatment protocols can differ by VISN, as well as among 
physician within a VISN.  Such variations can be particularly important when evaluating 
outcomes such as dementia, for which no widely utilized, definitive biomarker exists. 
Other considerations include the demographics and health status of the patient population.  
The VA population is about 95% male, which means that most of the data will be represent a 
male cohort unless gender the study is designed to stratify by gender.  VA patients tend to 
have more comorbid diagnoses than patients in other databases, such as medicare or Kaiser 
Permanente Database (Whitmer et al., 2009).  Finally, a significant fraction of patients also 
utilize health care providers outside of the VA system to supplement their health plans.  
Such “out-of-network” services are not captured by the DSS database, and must be 
considered.  Utilization of services out of the network can lead to disparities among patient 
populations, since wealthier patients are more likely to use “out-of-network” providers.  In 
addition, use of providers out of the network can cause patients to be lost to follow-up.   
The analytic approaches that we have designed attempt to take these considerations into 
account. The first two approaches can be implemented using only the DSS system.  The 
third approach requires utilization of an additional database to validate the observations 
from the DSS system.  

2.1 Analysis using two parallel strategies 

One strategy is to match cohorts using a propensity analysis in which subjects are selected 
and matched based on risk factors for cardiovascular disease, dementia and the number of 
concurrent medication utilized.  Regression analyses is then performed to determine the 
appropriate weighting co-efficient for each matching variable. A second strategy is to 
analyze cohorts based on descriptive or multivariate regressions using logistic and hazard 
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rate models. For the descriptive analysis, one selects matched cohorts and characterizes the 
outcomes by odds ratios.  For the multivariate cohort analysis one identifies a cohort based 
on age, diagnosis and medication use, and follows the cohort prospectively employing a 
multivariate regression analysis that includes comorbid diagnoses and other medications (to 
control for poly-pharmacy). 

2.2 Using physiological responses to assess medication action 
Epidemiological studies are supposed to derive from hypotheses that rely on a biological 
basis of action for medications in question.  However, patients differ in their response to 
medications due to genetic factors (e.g., polymorphisms in metabolic genes), usage patterns 
(medication compliance) and environmental factors (e.g., other chemicals modifying drug 
metabolism).  The medication response for each patient can be assessed by examining 
biomarkers that are directly linked to the mode of action of the medication.  For instance, in 
the case of antihypertensive medications, such as angiotensin receptor blockers, one can 
analyze patients by degree of biomarker response, using blood pressure lowering to assess 
anti-hypertensive use.  The physiological response is then be employed as a covariate in the 
analyses, to insure that the outcome is tethered to the physiological activity of the 
medication. 

3. Establishing the cohorts: Propensity analysis 

3.1 Definition of cohorts 

Medications to be analyzed are grouped by action and compared as a group to determine 
whether the group is associated with differential outcomes.  For instance, in the study of 
angiotensin receptor blockers, ideal comparison cohorts are those corresponding to subjects 
with similar health problems taking medications that exert similar effects but through a 
different mechanism of action.  Beta-blockers provide a good example of a comparison 
cohort because beta-blockers are anti-hypertensive agents that act by a different set of 
receptors than angiotensin receptor blockers.  ACE inhibitors provide another comparison 
cohort because they act on a different molecular target than angiotensin receptor blockers, 
however ACE inhibitors have the weakness that their ability to reduce angiotensin II levels 
would also reduce action at the angiotensin AT1 receptor (much like angiotensin receptor 
blockers).  A more general cohort would be subjects taking cardiovascular medications other 
than angiotensin receptor blockers. If the group shows an effect, then it is possible to code 
the data in a manner that allows stratification of the data within each group by individual 
medications, and then quantify outcomes for each medication within each group.  
Comparing individual medications can be important because medications can differ in 
many important properties, such as brain penetration and off-target effects. 
Regardless of the particular choice of medication cohort, it is important to consider poly-
pharmacy.  Subjects frequently take multiple medications.  Poly-pharmacy can be taken into 
account by considering other medications as a covariate, or by excluding particular 
medications from each cohorts.  The latter approach, though conceptually appealing, has the 
weakness that it frequently reduces the cohort size and therefore power of the study. 

3.2 Medication utilization 

A critical issue in studying pharmaceutical action, is to make sure that any subjects being 
studied actually use the medication as prescribed.  Medication utilization can be assessed by 
requiring several criteria for inclusion of subjects in a cohort:  
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3.2.1 Subjects must exhibit utilization of the medication as demonstrated by 80% 
medication coverage over the first 6 months upon entry into the study, and for the 6 
months preceding any event. 
3.2.2  Subjects must be on each medication for at least 6 months prior to any outcome 
event. 
3.2.3 Subjects must use the health care system at least once in the 6 months preceding an 
event or the end of the study; those who do not fulfill this requirement are considered 
lost to follow-up and removed from the study. 

3.3 Components for propensity analysis:  Co-variates and matching variables 

Setting up a cohort requires assessment of key variables.  In the case of our studies of 
angiotensin receptor blockers, and of statins, used the following criteria: 

3.3.1 Age: A clear risk factor for dementia.  

3.3.2 Co-morbidities: Major diseases that are known risk factors for AD.  Subjects will 
receive an additional point for each ICD9 diagnosis: cardiovascular disease (ICD9 277.7, 
429.2, 410-414, 428-429, 440, 444, 445), stroke (430-438) and diabetes (ICD9 250). 
Retinopathy (ICD9 362), neuropathy (ICD9 249.6, 250.6) and nephropathy (ICD9 249.4, 
250.4) will also be included in the scoring because these are manifestations of 
microvascular disease.  Note: hypertension (ICD9 401-405 and 459.3) are not used in the 
propensity scoring because it is present in all subjects taking anti-hypertensive 
medications and does not affect the outcome.  
3.3.3 Number of prescription medications: Patients receive a point for each medication 

for which they have a prescription.   

3.3.4 Cholesterol/blood pressure/HbA1C/GFR/BMI: For each laboratory value 
subjects are categorized into one of three groups for the propensity analysis: Normal 
(<1 Std. Dev. from Mean), High (1-2 Std. Dev. from Mean) and Very High (>2 Std. Dev. 
from Mean).  Mean values for each subject will be determined based on values obtained 
during the first year in the study: HDL, LDL, triglyceride values, blood pressure values 
(diastolic and systolic as independent variables), HbA1C, BMI and estimated 
glomerular filtration rates (GFR, calculated as a measure of renal function based on the 
modification of diet in renal disease, MDRD, equation).  
3.3.5 Smoking status: Smoking status is captured from VA/KP screening tools.  

3.3.6 Prior healthcare utilization: Health utilization is determined for the year preceding 

entry into the study.  For subjects who were already on anti-hypertensive medications 

prior to 2002 (the earliest year of the DSS database), health care utilization is assessed 

based on fiscal year 2002. 

3.4 Scoring method 

Propensity scores are used to reduce selection-to-treatment bias. A matched-propensity 
score approach reduces the dimension of the confounding variables by providing an 
estimate of the probability of receiving treatment, essentially reducing the number of 
variables to one. 
The distribution of propensity scores is examined in the comparison samples to check for 
sufficient overlap and balance in the strongest predictors. If the balance is not sufficient, the 
samples may be further stratified, interactions and transformation of variables considered; if 
there is no overlap in some part of the distributions of propensity scores, patients with the 
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non-overlapping propensity scores will be removed from the analyses (after noting why 
they are different in their likelihood to receive a particular treatment). A propensity score is 
the conditional probability that a patient receives a treatment. It is estimated from a logistic 
regression model: Expected(log-odds of treatment A compared to B) = b0 + bX where X is a 
vector of patient characteristics and conditions at the time of treatment assignment. If there 
are more than two treatments, three propensity scores and comparisons are made, A to B, A 
to C, and C to B. A greedy-match algorithm (http://www2.sas.com/proceedings/sugi26/ 
p214-26.pdf) is used to match patients by propensity scores. Once matched, one obtains 
estimates of effects using either conditional regression models or paired comparison of 
outcomes. 

4. Outcomes: Incident dementia, nursing home admission and death 

Each cohort is matched based on propensity to develop dementia, as described in the section 
above. The risk of dementia is compared among each cohort using a Cox proportional 
hazards model for the outcomes listed below. The hazard rates are adjusted using the 
covariates listed below. The risk of AD or dementia, nursing home admission and death 
among the general population is studied excluding subjects who have a pre-existing 
diagnosis of AD or dementia (based on analysis of medical records in the year preceding 
entry into the study). We will also study the risk of nursing home admission and death 
specifically among subjects with an existing diagnosis of AD or dementia. 

4.1 Outcomes 

Outcomes for each of the cohorts also are plotted with a log(-log(time)) vs. log(time) graph. 
Curves parallel for each of the groups, validate the application of the Cox proportional 
hazards model approach. Others models such as the Weibull model can be tested for 
purposes of sensitivity analysis, to determine if results are corroborated. 
End of follow-up is defined as a particular date (for example, December 31, 2009), 
disenrollment from the health care system, nursing home admission, initiation of dialysis or 
death. Membership in the health care system can be determined from administrative 
databases. AD (ICD9 331.0) or dementia (ICD9 290, 294, 331.0) is ascertained based on ICD9 
diagnoses. Nursing home admission is ascertained through the DSS and Medicare records. 
Note: the VA system recently established an agreement to allow purchasing of Medicare 
records and harmonization with the VA, this agreement is to being finalized between the 
VA and the Center for Medicare and Medicaid Services (CMS). Records are obtained to 
insure that we are capturing all nursing home admissions. Death is ascertained from linkage 
to the VA mortality files (to be obtained through the VA HERC which has the most 
complete records of VA mortality combining mortality records from multiple sources that 
include the VA BIRLS files and have been previously validated).  

4.2 Co-variates 

Establishing covariates increases the power of a study by identifying factors that could bias 
the outcomes, and then incorporating them into the model. 

4.2.1 Age: Age is of course the major risk factor for any disease and must always be 
included as a covariate. 
4.2.2 Health Index/Co-morbidities: The major disease risk factors that we will 
characterize are cardiovascular disease (ICD9 277.7, 429.2, 410-414, 428-429, 440, 444, 445), 
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stroke (430-438) and diabetes (ICD9 250); hypertension (ICD9 401-405 and 459.3) will not 
be analyzed as a covariate because our preliminary studies indicate that it is present in all 
subjects taking anti-hypertensive medications and does not affect the outcome.  
4.2.3 Microvascular disease: Retinopathy (ICD9 362), neuropathy (ICD9 249.6, 250.6) 
and nephropathy (ICD9 249.4, 250.4) are manifestations of microvascular disease.  
4.2.4 Hospital utilization:Hospital utilization rates are calculated for subjects and 
include these as co-variates. 
4.2.5 Cholesterol/blood pressure/HbA1C/GFR/BMI (all are co-variates): Captured 
variables include: HDL, LDL, triglyceride values, blood pressure values (diastolic and 
systolic as independent variables), HbA1C and BMI. Estimated glomerular filtration 
rates (GFR) are also captured and calculated as a measure of renal function based on the 
modification of diet in renal disease (MDRD) equation.  
4.2.6 Duration of Insulin use: Insulin use is commonly associated with late stage Type II 
diabetes, which is strongly associated with dementia.  
4.2.7 Diuretic use: Anti-hypertensive medications are frequently used in conjunction 
with diuretics. We include diuretic use as a co-variate a binary measure for diuretic use 

as one group ( diuretic).  
4.2.8 Location: VA centers (VISN groups) where treatment occurred are identified, and 
these regions are used as co-variates. In the event that a subject utilized multiple 
centers, the first center identified in the record is the designated center for the analyses.  
4.2.9 Gender:  The gender ratio is determined (by counting the number of male and 
female subjects), and used as a co-variate.  
4.3.0 Smoking status: This is captured from VA screening tools on the basis of the CDC 
BRFSS items previously administered in the VA.  
4.3.1 Medications: Other cardiovascular medications on the VA formulary are analyzed 
as covariates to control for poly-pharmacy.  
4.3.2 Ethnicity: Ethnicities can differ in medication responsiveness. Between 5 – 20% of 
subjects in the DSS database have defined ethnicities other than Caucasian. Categories 
of defined ethnicity (e.g., Caucasian,Asian, African-American and Hispanic.  
4.3.3 Prior healthcare utilization: Health utilization is determined for the year preceding 
entry into the study. For subjects who were already on anti-hypertensive medications 
prior to 2002 (the earliest year of the DSS database), health care utilization is assessed 
based on fiscal year 2002. 

4.4 Outcomes: Secondary analyses 

Should one observe differences among the medication groups, one can examine the specific 
groups using the secondary analyses described below: 

4.4.1 Dose-response: The mean daily exposure for each medication is derived for each 
subject by dividing the total use of each medication (cumulative dose based on 
prescription records for each medication) by the cumulative the days of use. Subjects 
will be stratified into a high dose and low dose groups around the median daily 
exposure. A Cox proportional hazard model is used to determine HRs for each 
medication with a model utilizing multivariate regression involving co-variates. 
4.4.2 Medication switching: One approach to validating effects is to examine medication 
switching. In such a study, one identifies subjects who are using only one class of anti-
hypertensive medications (concurrent use of diuretics will be allowed and will be 
analyzed as a covariate), and show stable use of the medication over the first 6 months 
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following entry into the study. Subjects are followed and the type of medication used at 
the end of the study will be determined. Subjects using one particular anti-hypertensive 
medication, and who showed stable use of the medication over the 6 months preceding 
the end of the study will be selected for further analysis. The data are analyzed using a 
Cox proportional hazard model to determine whether switching from one group of 
anti-hypertensive medications to another group is associated with a change in the HR. 
4.4.3 Ethnicity: Each cohort can also be stratified by ethnicity. Ethnicities to be examined 
will include the major ethnicities (to allow sufficient power for the analysis): Caucasian, 
African American, Hispanic, Asian (see section E.4., Power Analysis, for a 
quantification of ethnic distributions).  
4.4.4 Gender: Gender can be included as a co-variate. However, because the DSS 
database is predominantly male, a study using gender stratification will be restricted to 
the KP database. 

5. Interpretations 

5.1 Incidence and progression 

The approaches outlined above enable us to make assessments of the association of 
particular medications with measures of dementia, including incidence and progression. 
Population based epidemiological studies typically examine incidence of a disease, but 
employing outcomes that are commonly associated only with more severe forms of 
dementia allows us to also gain insight into progression. A key element in assessing 
progression is to use outcomes that are unequivocally associated with progression. These 
considerations led us to restrict out markers of progression to two very extreme outcomes, 
nursing home admission and death. Studies of incidence provide utility from the public 
health perspective, but do not necessarily help those who already suffer from disease 
symptoms (cognitive decline). Subjects typically present to the neurologist only when they 
are already experiencing cognitive decline. Hence, one would like to be able to gain insight 
into medications that specifically address this group of patients. 

5.2 Pharmacological properties 

The large size of the DSS database allows a depth of analysis that is typically not possible 
with smaller datasets. We have used this size to query whether the epidemiological results 
are consistent with known pharmacological properties of particular medications. For 
instance, classic studies of pharmacology employ dose response profiles. We tested the 
strength of the ARB findings by examining whether differences in ARB exposure was 
associated with corresponding differential outcomes (Li et al., 2010). These studies focused 
on dementia because the larger number of incident dementia cases allowed for sufficient 
statistical power to enable further stratification of the groups. The mean daily exposure to 
for each ARB was determined for each subject by dividing the total use of ARBs (cumulative 
dose based on prescription records for each medication) by the cumulative number of days 
of use. Subjects were then stratified into a high dose and low dose groups around the 
median daily exposure. A Cox proportional hazard model was used to determine HRs for 
each ARB. The model included age, stroke, diabetes and cardiovascular disease as 
covariates. Each of the major ARBs used by the VA system, candesartan, irbesartan, losartan 
and valsartan showed clear dose-response relationships, and exhibited lower rates of 
incident dementia with higher doses of medication. 
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We also examined whether subjects who switched from ACE inhibitors to ARBs, or vice-
versa, adopted the dementia risk value for the subsequent medication (Li et al., 2010). We 
identified subjects without a prior diagnosis of dementia who were prescribed either ARBs 
or ACE inhibitors (but not both), and showed stable use of the medication over the first 6 
months following entry into the study. The “ACE inhibitor” group included all of the ACE 
inhibitors on the VA formulary. Subjects were followed and the type of medication (ACE 
inhibitor or ARB) used at the end of the study (dementia or censoring) was determined. 
Subjects using either ARBs or ACE inhibitors (but not both), and who showed stable use of 
the medication over the 6 months preceding the end of the study were selected for further 
analysis. The data were analyzed using a Cox proportional hazard model adjusting for age, 
stroke, diabetes and cardiovascular disease. Subjects who were on ARBs throughout the 
study or who started on ACE inhibitors and switched to ARBs showed a significantly lower 
HR (protective) for incident dementia compared to the reference group (Li et al., 2010). 
These data show that the association between ARB use and risk of incident dementia is 
sensitive to dose of medication and medication switching. 
Another pharmacological characteristic that we examined was correlation between effect 
and expected brain penetration of the medications based on the published literature. Our 
study of statins, in 2007, produced striking results in this respect (Wolozin et al., 2007). The 
statins differ in their order of lipophilicity, which leads to the observation that some statins 
cross the blood brain barrier well, while others don’t (Reinoso et al., 2002). Lovastatin,  
and (to some extent) simvastatin are lipophilic, which allows them to cross the blood brain 
barrier, while pravastatin and atorvastatin are hydrophilic and do not cross the blood  
brain barrier; despite these traits, both lipophilic and lipophobic statins appear to modulate 
cholesterol metabolism in the CNS (Reinoso et al., 2002; Vega et al., 2003). In the 2007 study, 
we observed that simvastatin was associated with an effect size for incident dementia that 
was significantly stronger than that for atorvastatin or lovastatin HR, 0.46, CI 0.44-0.48,  
p < 0.0001, for simvastatin, HR 0.91, CI 0.80-1.02, p = 0.11 for atorvastatin and HR 0.95,  
CI 0.86-1.05 for lovastatin (Wolozin et al., 2007). Our study of ARBs also showed evidence 
that medications with greater brain penetration appear to be associated with better 
outcomes (Li et al., 2010). The rank order of effect size for the different ARBs was 
candesartan>irbesartan>losartan>valsartan (HRs: 0.73, 0.84, 0.82, 0.91 respectively), which 
corresponds strongly with brain penetration for each medication (Li et al., 2010). 

6. Conclusion 

The approaches and results presented above show a range of data-mining strategies that can 
be applied to the DSS database. Much of the strength of the DSS database comes from its 
large size and the availability of multiple types of data. The power of the database increases 
as the duration of time from the inception of the DSS database increases. The positive 
attributes of this database must be balanced against weaknesses that are inherent to any 
population based data source derived from dispersed centers. Despite these weaknesses, the 
studies performed by our group have shown good reproducibility in subsequent literature. 
Epidemiologists throughout the world have reproduced our observation of a reduction in 
incident dementia associated with statin. Work on ARBs by other groups is only beginning, 
however in collaboration with Rachel Whitmer (Kaiser Foundation), we have already 
reproduced major elements of this story and have presented this replication at major 
meetings (AAICAD, 2010, Whitmer et al). 
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What lies in the future? One of the most exciting prospects is that of pharmaco-genomics. 
The VA is collecting DNA from 1 million subjects, for use in genetic studies. As this genetic 
information becomes available, it will be possible to cross-reference it with the DSS database 
and investigate potential interactions between genetic polymorphisms and health care 
outcomes. 
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