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1. Introduction

An attractive issue in general relativity is the separation, and possibly the solution, of
field equation of arbitrary spin in space-time of physical relevance, especially from the
cosmological point of view. The knowledge of the normal mode solutions is a basic tool
in view of a quantization of the field that in turns can lead to a further adjustement of the
theoretical formulation of the cosmological model.
In case of the Robertson-Walker (RW) space-time metric, that is the base of spherically
symmetric homogeneous standard cosmology (Weinberg, 1972), the problem has been widely
considered (Penrose and Rindler, 1984; Fulling, 1989; Parker and Toms, 2009). Recently that

goal can be found solved, for arbitrary spin value, in RW metric by the Newmann-Penrose
formalism (Zecca, 2009). The separation method employed to that end has been developed
in the line of Chandrashekar’s separation of Dirac equation in Kerr metric (Chandrasekhar,
1983). In the specific case of spin 0, 1/2, 1 it has been pointed out (Zecca, 2009a; 2010a; 2010b)
that particle creation (annihilation) in expanding universe is possible. (Particle production by
universe expansion was originally discussed by Parker (1969; 1971); see also Parker and Toms,
2009). The presence of this effect modifies the gravitational dynamics of the Universe. An
extension of the Standard Cosmology has also been proposed that includes the back reaction
due to particle production (Zecca, 2010).
The separation of field equation of arbitrary spin has been obtained also in Schwarzschild
metric (Zecca, 2006b). This metric is interesting because it represents the gravitational field
outside a spherical central non rotating mass such as stars, planets, black holes, .. . In this
metric however the separated radial equation are much more difficult to disentagle.
Another situation of relevance concerns the spherically symmetric non homogeneous metrics,
and in particular the one that is the base of the Lemaître-Tolman-Bondi (LTB) cosmological

model. This metric represents a spherically symmetric inhomogeneous universe filled with
freely falling dust matter without pressure. The model can be completely integrated and the
general solution of the Einstein equation depends on three arbitrary functions of the radial
coordinate. (For a comprehensive study of the model see Krasinski, 1997). The separation of
the field equation for spins 0, 1/2 has been shown to be possible also in this model under a
special choice of the mentioned integration functions. The surviving configuration remains
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2 Will-be-set-by-IN-TECH

however sufficiently general because the cosmological model still depends on an arbitrary
function of the radial coordinate (Zecca, 2000; 2001).
In the line of the above considerations, it would be desirable to extend the solution of the
field equation to higher spin values. This seems a difficult task in the LTB metrics. Indeed
in curved space-time the spinor formulation of field equation of spin value greater than 1, in
general involves the knowledge of the Weyl spinor (e.g., Illge, 1993 and references therein).
Contrarily to what happens in the Robertson-Walker (RW) metric, the Weyl spinor does not
vanish in the LTB metrics (e. g., Zecca, 2000a) and makes the solution of the field equation
much more complex.

Therefore, in the present Chapter, we study the spin 1 field equation in LTB models. This is
a case that, as far as the author knows, has not yet been considered. Moreover it is the case
of the higher spin values where the field equation is insensible to the presence of the Weyl
spinor (Illge, 1993). On physical grounds the interest of the spin 1 field case lies in that in the
massless case it can be interpreted, in a standard way, in terms of electromagnetic field and in
the massive case in terms of Proca fields (Illge, 1993; Penrose and Rindler, 1984; Zecca, 2006).
For what concerns the separation of the equation, it is performed for a general LTB metric by
using the Newmann-Penrose formalism based on a previously determined null tetrad frame.
At this general level of the metric, the angular dependence separates. The separated angular
equations coincide with those relative to spin 1 field in Robertson-Walker and Schwarzschild
metric that have been previously integrated (Zecca, 1996; 2005a; 2006b). The complete variable
separation can be then achived for a class of LTD cosmological models. This is obtained under

a factorization assumption Y = Z(r)T(t) on the time and radial dependence of the physical
radius Y(r, t), the same assumption under which the spin 0 and spin 1/2 field equations
have been previously separated. There results that the separated radial dependence can be
reduced to the solution of two independent disentangled ordinary differential equations.
These equations still depend on an arbitrary radial function that is an integration function
of the cosmological model. For what concerns the separated time dependence, it can be
reduced to the solution of two coupled time equations. These equations do not depend on any
arbitrary function and have therefore an absolute character in the class of LTB model satisfying
the factorization assumption. In turn the time equations can be decoupled and reduced to
ordinary differential equations of known form. However due to the special dependence on
the physical parameters, an integration by series, that is explicitly performed in every case,
results unavoidable.
Finally a quantization of the scheme is performed by mimicking the procedure previously
developed for spin 1 field equation in the RW metric (Zecca, 2009a). In that case, the
number of one mode particle production per unit of time at time t was found to be
proportional to the Hubble “constant” Ṙ(t)/R(t). Here the quantization procedure again

leads to preview particle creation (annihilation) in expanding universe for the LTB models
admitting a factorization assumption of the physical radius Y. Moreover it is coherent with the
generally admitted big bang origin assumption of the universe because it avoids considering
“in states” with underlying Minkowskian space-time at time t = −∞ as often assumed in
different examples (Birrell and Davies, 1982; Moradi, 2008; Parker and Toms, 2009). There
results a generalization of the RW case. Here the number of one mode particle creation per
unit of time, at a given time, is proportional to Ẏ(r, t)/Y(r, t) = Ṫ(t)/T(t). The quantity of
particles produced by universe expansion, does not seem of relevance at a generic time of
the cosmological evolution, especially at the present time. Instead, for a cosmological model
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Separation and Solution of Spin 1 Field Equation and Particle Production in Lemaître-Tolman-Bondi Cosmologies 3

admitting a big bang origin, an enormous number of particles is foreseen to be produced near
the big bang.

2. Spin 1 field equation in a class of spherically symmetric comoving system.

The spin 1 field equation for particles of mass m0 can be formulated in a general curved
space-time by the spinor equation (Penrose and Rindler, 1984) in terms of the spinors

ΦAB, ΘAX′

∇A
X′ΦAB = −iµ∗ ΘBX′

∇X′
A ΘBX′ = iµ∗ ΦAB

(1)

with ΦAB = ΦBA,
√

2µ∗ the mass of the particle, ∇AX′ the covariant spinor derivative. The
formulation (1) holds in a general curved space-time (see e.g., Illge, 1993, and references
therein). The object is to solve the system of equations (1) in the general comoving spherically
symmetric Lemaître-Tolman-Bondi (LTB) metric whose line element is given by

ds2 = gµνdxµdxν = dt2 − eΓdr2 − Y2(dθ2 + sin2 θdϕ2) (2)

with Γ = Γ(r, t), Y = Y(r, t). (See e.g., Krasinski, 1997). The Newmann-Penrose (1962)
formalism is a powerfull tool to that end. Accordingly we consider the null tetrad frame
{l i, ni, mi, m⋆i} that was considered in Zecca 1993, for which the directional derivatives and
the non trivial spin coefficients, that we report for reader’s convenience, are

D ≡ ∂00′ = l i∂i =
1√
2
(∂t + e−Γ/2∂r),

∆ ≡ ∂11′ = ni∂i =
1√
2
(∂t − e−Γ/2∂r),

δ ≡ ∂01′ = mi∂i =
1

Y
√

2
(∂θ + i csc θ ∂ϕ),

δ⋆ ≡ ∂10′ = m⋆i∂i =
1

Y
√

2
(∂θ − i csc θ ∂ϕ). (3)

ρ = − 1

Y
√

2

(

Ẏ + Y′e−Γ/2
)

,

µ =
1

Y
√

2

(

Ẏ − Y′e−Γ/2)

β = −α =
cot θ

2Y
√

2
,

ǫ = −γ =
Γ̇

4
√

2

where Ẏ = ∂Y/∂t, Y′ = ∂Y/∂r. For the definitions see e. g., Chandrasekhar, 1983 and Penrose
and Rindler, 1984.
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4 Will-be-set-by-IN-TECH

By expliciting the covariant spinor derivatives in terms of the directional derivatives and spin
coefficients (3) the equation (1) reduces to the system of coupled differential equations

(D − 2ρ)Φ10 − (δ⋆ − 2α)Φ00 = iµ⋆Θ00′

(D − ρ + 2ǫ)Φ11 − δ⋆Φ10 = iµ⋆Θ10′

(∆ + µ − 2γ)Φ00 − δΦ01 = −iµ⋆Θ01′

(∆ + 2µ)Φ10 − (δ + 2β)Φ11 = −iµ⋆Θ11′

(D − ρ)Θ01′ − δΘ00′ = −iµ⋆Φ00

(D − ρ + 2ǫ)Θ11′ − (δ + 2β)Θ10′ + µΘ00′ = −iµ⋆Φ10

(δ⋆ + 2β)Θ01′ − (∆ + µ − 2γ)Θ00′ + ρΘ11′ = −iµ⋆Φ01

δ⋆Θ11′ − (∆ + µ)Θ10′ = −iµ⋆Φ11

(4)

(Note that the situation is similar to the general case of arbitrary spin field equation in RW
space-time (Zecca, 2009) when specialized to spin s = 1). To separate the system (4) it is
useful to put

ΦAB(r, θ, ϕ, t) = α(t)φk(r)Sk(θ)e
imϕ, k = A + B = 0, 1, 2

Θ00′ (r, θ, ϕ, t) = A(t)φ1(r)S1(θ)e
imϕ

Θ10′ (r, θ, ϕ, t) = A(t)φ2(r)S2(θ)e
imϕ

Θ01′ (r, θ, ϕ, t) = −A(t)φ0(r)S0(θ)e
imϕ,

Θ11′ = −Θ00′

(5)

where, for convenience, we we assume m = 0,±1,±2, . . .. By using (5) into equation (4) the
angular dependence factors out and one is left with the equations in the r, t variables

(D − 2ρ)(αφ1)−
λ1

Y
√

2
αφ0 = iµ∗Aφ1

(D − ρ + 2ǫ)(αφ2)−
λ2

Y
√

2
αφ1 = iµ∗Aφ2

(∆ + µ + 2ǫ)(αφ0)−
λ3

Y
√

2
αφ1 = iµ∗Aφ0

(∆ + 2µ)(αφ1)−
λ4

Y
√

2
αφ2 = iµ∗Aφ1

(D − ρ)(Aφ0) +
λ3

Y
√

2
Aφ1 = iµ∗αφ1

(D − ρ + 2ǫ)(Aφ1)− µAφ1 +
λ4

Y
√

2
Aφ2 = iµ∗αφ2

(∆ + µ + 2ǫ)(Aφ1) + ρAφ1 +
λ1

Y
√

2
Aφ0 = iµ∗αφ1

(∆ + µ)(Aφ2) +
λ2

Y
√

2
Aφ1 = iµ∗αφ2

(6)

Instead the angular functions satisfy the equations

242 Aspects of Today´s Cosmology

www.intechopen.com



Separation and Solution of Spin 1 Field Equation and Particle Production in Lemaître-Tolman-Bondi Cosmologies 5

L−
1 S0 = λ1 S1,

L−
0 S1 = λ2 S2,

L+
0 S1 = λ3 S0,

L+
1 S2 = λ4 S1,

(7)

where it has been set L±
n = ∂θ ∓ m csc θ + n cot θ. λi (i = 1, 2, 3, 4) are the corresponding

separation constants. These equations are the same of those relative to the separation of
spin 1 field in RW space-time (cfr. Zecca 2005; 2009). By setting λ1λ3 = λ2λ4 = −λ2 the
angular equations can be reduced to an eigenvalue problem (Zecca, 1996) whose solutions
are expressible (Zecca, 2005) in terms of Legendre functions and Jacobi polynomials (For the
definitions see e.g., Abramovitz and Stegun, 1970):

S1lm = (1 − ξ2)
m
2 Pm

l (ξ), l = |m|, |m|+ 1, ..

S2lm = (1 − ξ)
m−1

2 (1 + ξ)
m+1

2 P
(m+1,m−1)
l−m (ξ), m ≥ 1, l = m, m + 1, ..

S2lm = (1 + ξ)
|m|−1

2 (1 − ξ)
|m|+1

2 P
(|m|−1,|m|+1)
l−m (ξ), m ≤ 1, l = |m|, |m|+ 1, .. (8)

S2l0 = sin θ P
(1,1)
l+2 (cos θ), l = 0, 1, 2, ..

S0lm(θ) = S2l−m(θ), (ξ = cos θ),

with λ that takes the values λ2 = l(l + 1), l = 0, 1, 2, .. By possibly considering a

normalization factor, the angular functions satisfy

∫

dΩ Silm(θ)e
imϕ

(

Sil ′m′ (θ)eim′ϕ
)∗

= δll ′δmm′ (i = 0, 1, 2) (9)

a relation usefull in view of an ortho-normalization of the complete solution of (1).

For what concerns the separation of the r and t dependence in (6), it does not seem to be
obtainable in general even by using the explicit expression of the spin coefficients. In the
following we confine within a class of LTB model for which Γ is related to the function Y and
Y itself can be given in an explicit parametric factorized form.

3. Variable separation in Lemaître - Tolman - Bondi cosmological models.

The system (6) can be further separated in its r, t dependence in a sufficiently large class
of cosmological models. Suppose to that end that the universe is filled with freely falling
dust like matter without pressure, as seen in the comoving spherically symmetric space-time
coordinates (2). If the proper energy momentum tensor is considered, the corresponding
Einstein equation can be integrated exactly in parametric form and gives rise to what is widely
known as the Lemaître-Tolman-Bondi (LTB) cosmological model. (For a comprehensive study
of the model see Krasinski, 1997; in the Newman-Penrose formalism see e.g., Zecca, 1993).

243Separation and Solution of Spin 1 Field Equation
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The explicit solution is the following (Demianski and Lasota, 1973)

Y = G
m(r)

2E(r)
(cosh η − 1); t = t0(r) + G

m(r)

(2E(r))
3
2

(sinh η − η), η > 0, E > 0

Y = G
m(r)

−2E(r)
(1 − cos η); t = t0(r) + G

m(r)

(−2E(r))
3
2

(η − sin η), 0 ≤ η ≤ 2π, E < 0

Y =
[3

2

(

2m(r)
)

1
2
(

t − t0(r)
)

]
2
3
, E = 0

(10)

m(r), E(r), t0(r) are arbitrary integration functions that depend only on the radial coordinate
and G the gravitational constant. In particular m(r) can be interpreted as the mass contained
in a sphere of radius Y, m(r) = 4πG

∫ r
0 σ(r, t)Y2(r, t)Y′(r, t)dr, σ(r, t) being the matter density.

Moreover Γ and Y are no more independent but

exp Γ =
Y′2(r, t)

1 + 2E(r)
(11)

a relation usefull for the following purposes.
Suppose now to choose t0(r) = 0 in every case and, in case E 
= 0,

G m(r) =
(

2|E|
)

3
2 (12)

With this choices the physical radius in (10) reads

Y = E
1
2 (cosh η − 1); t = sinh η − η, η > 0, E > 0

Y = |E| 1
2 (1 − cos η); t = η − sin η, 0 ≤ η ≤ 2π, E < 0

Y =
( 9

2

)
1
3

m
1
3 t

2
3 , E = 0

(13)

These assumptions are sufficient to separate the system (6). Indeed from (13), Y is in every
case of the form Y = Z(r)T(t). By using this factorization and relation (11) in the expression
of the directional derivatives and spin coefficients, one is able to separate the time dependence
from eq. (6). The result is expressed in terms of the coupled time equation

α̇T + 2Ṫα − im0 AT = −ikα

AṪ + ȦT − im0αT = ikA
(14)

These equations are formally those of the separation of the spin 1 field equation in RW metric.
Therefore the solutions αk(t), Ak(t) satisfy the constraint

T3(t)
[

Ak(t)α
∗
−k(t) + A∗

−k(t)αk(t)
]

= const (15)

The result follows from Zecca (2006a) after the substitution R(t) → T(t). Also this property
is an usefull tool for the normalization of the complete solution of (1).
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Separation and Solution of Spin 1 Field Equation and Particle Production in Lemaître-Tolman-Bondi Cosmologies 7

Instead, for what concerns the radial dependence, one obtains

ik =

√
1 + 2E

Z′
φ′

1

φ1
+

2

Z

√
1 + 2E − λ1

Z

φ0

φ1

ik =

√
1 + 2E

Z′
φ′

2

φ2
+

1

Z

√
1 + 2E − λ2

Z

φ1

φ2

−ik =

√
1 + 2E

Z′
φ′

0

φ0
+

1

Z

√
1 + 2E +

λ3

Z

φ1

φ0

−ik =

√
1 + 2E

Z′
φ′

1

φ1
+

2

Z

√
1 + 2E +

λ4

Z

φ2

φ1

(16)

k is a separation constant, the same in all equations, to ensure consistency in the separation
procedure.

4. Decoupling and properties of the radial solutions.

The equations (16) are similar to the corresponding ones of the RW metric (Zecca, 2005) and
can therefore be disentangled in a similar way. By defining the operator

Ab =
√

1 + 2E
( 1

Z′
d

dr
+

b

Z

)

− ik, b ∈ C (17)

eqs. (16) reads

A2φ1 =
λ1

Z
φ0 A1φ2 =

λ2

Z
φ1

A∗
1φ0 = −λ3

Z
φ1 A∗

2φ1 = −λ4

Z
φ2

(18)

and can be easily reduced to equations in a single function

ZA2ZA∗
1φ0 = −λ1λ3φ0

ZA1ZA∗
2φ1 = −λ2λ4φ1

ZA∗
1ZA2φ1 = −λ1λ3φ1

ZA∗
2ZA1φ2 = −λ2λ4φ2

(19)

By taking into account that λ1λ3 = λ2λ4 = −λ2, one has further that the radial solutions
satisfy φ1 ≡ φ∗

1 , φ0 ≡ φ∗
2 . Therefore it suffices to solve two independent ordinary differential

equations. By expliciting the equations for φ0, φ1 one obtains respectively

Z

Z′2 (1 + 2E)φ′′
0 +

[

(1 + 2E)
( 4

Z′ −
ZZ′′

Z′3

)

+
E′Z
Z′

]

φ′
0+

+
[ E′

Z′ +
2 − λ2 + 4E

Z
+ k2Z + 2ik

√
1 + 2E

]

φ0 = 0 (20)

Z

Z′2 (1 + 2E)φ′′
1 +

[

(1 + 2E)
( 4

Z′ −
ZZ′′

Z′3

)

+
E′Z
Z′

]

φ′
1+

+
[2E′

Z′ + k2Z +
2 − λ2 + 4E

Z

]

φ1 = 0 (21)
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8 Will-be-set-by-IN-TECH

Note that the Robertson-Walker metric is a special case of the LTB metric with Y =
rR(t), Z(r) = r, 2E(r) = −ar2, (a = 0,±1). One can check that with this choice, eqs.
(20), (21) become exactly the separated radial equation of spin 1 field in RW metric that were
derived in (Zecca, 2005). In RW flat case, normal modes of the field equation, have also been
determined (Zecca, 2006a) and a quantization procedure developed leading to the possibility
of particle production in expanding universe (Zecca, 2009a). Consequently a simple extension
of the Standard Cosmological model has been proposed to include particle production (Zecca,
2010). Instead in the curved cases of the RW metric the eqs. (20), (21) have been solved by
reduction to Heun’s equation (Zecca, 2009a) without however succeding in determining the
normal modes.
In the LTB case, the solution of the radial equations seems quite difficult for a general E(r).
In particular this is due to the presence of the square root term in (20). One could try to
reduce the equations by expliciting, as assumed in (13), Z(r) = |E(r)|1/2 for E 
= 0 and

Z(r) =
(

9m(r)/2
)1/3

for E = 0. However, even with these specifications into the radial
equations, the solution does not become easier.

5. Solution of the separated time equations.

In the previous Sections the spin 1 field equation has been separated in the three classes
of LTB cosmological models, each of them depending on an arbitrary radial function. The
resulting time equations (14) are, contrarily to the radial equations, independent of any model
integration function. Therefore it seems usefull to give the explicit solution of the time
equations in each case. By setting B(t) = α(t)T2(t), γ(t) = A(t)T(t) the equations (14) can
be easily reported to the form

im0B = γ̇T − ikγ,

γ̈T + γ̇Ṫ + γ
(

m2
0T +

k2

T

)

= 0
(22)

In this way it suffices to solve the equation for γ(t) to obtain α(t) and A(t). The object is now
of integrating the equation (22) for γ by distinguishing according to the different situations of
E in (13).

5.1 Time equation for E = 0.

Here T(t) = t2/3. When substituted into the equation for γ in (22) and then by setting s = t1/3

one obtains
dγ

ds2
+ (9m2

0s4 + 9k2)γ = 0 (23)

The solution of (23) can be given by both odd and even regular functions that can be
determined by series. By setting γ = ∑

∞
0 cnsn into (23) one has the recurrence relation

(n + 1)(n + 2)cn+2 + 9k2cn = 0, n = 0, 1, 2, 3,

(n + 1)(n + 2)cn+2 + 9k2cn + 9m2
0cn−4 = 0, n = 4, 5, . . .

(24)

Two independent integral γ0, γ1 can be obtaind by setting respectively c1 
= 0, c0 = 0 and
c0 
= 0, c1 = 0. As a consequence of the recurrence relation (24), the general solution is of
the form γ(s) = a0γ0(s) + a1γ1(s), γ0, γ1 being respectively an odd and an even function.
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Separation and Solution of Spin 1 Field Equation and Particle Production in Lemaître-Tolman-Bondi Cosmologies 9

The radius of convergence of the series is different from 0, on account of general results (e.g.,
Moon and Spancer, 1961; Magnus and Winkler, 1979). One has therefore the t dependence

γ0(t) = c1t
1
3 + c3t + c5t

5
3 + c7t

7
3 + . . .

A0(t) = γ0T−1 =
c1

t
1
3

+ c3t
1
3 + c5t + c7t

5
3 + . . .

(25)

and α0(t) = B0(t)T
−2(t) where B0(t) follows from (25), the first equation (22) and the

expression of T(t). Similarly for α1(t), A1(t).

5.2 Time equation for E < 0 .

Since in the present case T(η) = 1 − cos η, t = η − sin η, the eq. (22) can be reported to a
differential equation in the variable η

d2γ

dη2
+

[

ν0 + ν1 cos η + ν2 cos 2η
]

γ = 0, 0 ≤ η ≤ 2π

ν0 =
3

2
m2

0 + k2, ν1 = −2m2
0, ν2 =

m2
0

2

(26)

Note that, by setting χ = η/2, the equation (26) assumes the form of a Wittaker-Hill equation
(Magnus and Winkler 1979) of period π;

d2γ

dχ2
+

[

λ0 + 4m̄q cos(2χ) + 2q2 cos(4χ)
]

γ = 0

λ0 = 4k2 + 3m2
0, q = ±m0, m̄ = ±2m0

(27)

The interest in this form of the equation lies in that it may have periodic solutions of period
π or 2π. However this possibility is prevented in the present case because the parameter

m̄ = ±2m0 is not, as required, an integer number (see e.g., Magnus and Winkler 1979, Theorem
7.9), m0 being the mass of the particle. Therefore it is convenient to solve directly eq. (26) by
series. It appears that a solution of (26) can be an odd or an even function, We consider
separately the cases. By setting γ(η) = ∑

∞
0 c2nη2n into the equation for γ in (26), one obtains

for the coefficients the recurrence relation

(2n + 2)(2n + 1)c2n+2 + ν0c2n +
n

∑
j=0

(−1)j

(2j)!

[

ν1 + ν222j
]

c2n−2j = 0, n = 0, 1, 2, . . . (28)

If instead one looks for odd solutions, γ(η) = ∑
∞
0 c2n+1η2n+1, one finds from (26) the

recurrence relation

(2n + 3)(2n + 2)c2n+3 + ν0c2n+1 +
n

∑
j=0

(−1)j

(2j)!

[

ν1 + ν222j
]

c2n+1−2j = 0, n = 0, 1, 2, . . . (29)

In both cases the coefficients are completely determined by the first one. To obtain γ(t) one
has to reverte the expression t = η − sin η to have η = η(t) to be substituted in the series
expression of the solution.
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5.3 Time equation for E > 0 .

By expressing now the unknown function γ in terms of η with T(η) = cosh η − 1, t = sinh η −
η, (η > 0), the γ-equation in (22) becomes

d2γ

dη2
+

[

m2
0(cosh η − 1)2 + k2]γ = 0 (30)

that can be put into the form

d2γ

dη2
+

[

σ0 + σ1 cosh η + σ2 cosh 2η
]

γ = 0

σ0 = k2 +
3

2
m2

0, σ1 = −2m2
0, σ2 =

m2
0

2

(31)

The last equation can be integrated by series by distinguishing again between even and odd
solutions. By setting γ1(η) = ∑

∞
0 c2nη2n into (31) one has the recurrence relation for the

coefficients cn’s

(2n + 2)(2n + 1)c2n+2 + (σ0 + σ1 + σ2)c2n +
n

∑
j=1

c2n−2j

(2j)!

(

σ1 + σ222j
)

= 0, n = 0, 1, 2, . . . (32)

Instead by setting γ1(η) = ∑
∞
0 c2n+1η2n+1 into (31) one has

(2n + 3)(2n + 2)c2n+3 + (σ0 + σ1 + σ2)c2n+1 +
n

∑
j=1

c2n+1−2j

(2j)!

(

σ1 + σ222j
)

= 0, n = 0, 1, .. (33)

Here the general solution, γ(t) = a1γ1(t) + a2γ2(t), follows again by expressing η = η(t) into
γ1(η), γ2(η).

5.3.1 Time equation for E > 0 and large t

In the present case one can also determine the behaviour of the situation for large t (large η).
To that end, by setting y = exp η, the equation (30) becomes

d2γ

dy2
+

1

y

dγ

dy
+

[m2
0

4
− m2

0
1

y
+

k2 + 3m2
0/2

y2
− m2

0

y3
+

m2
0

4

1

y4

]

γ = 0 (34)

that is in a suitable form for the mentioned purpose. By looking for asymptotic solutions of
the form

γ(η) = yδ eχ
∞

∑
n=0

c−n

yn
(35)

one finds, by inserting into eq. (34),

χ =
−1 ±

√

1 − m2
0

2
, δ = ± m2

0
√

1 − m2
0

(36)
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Therefore by considering the dominant term in (35), one has, for y → ∞

γ(y) ∼ y
± m2

0√
1−m2

0 e
−1±

√
1−m2

0
2 y (37)

that is a decaying behaviour, except for m0 = 1 in which case the approximation is not valid.

Note that for large t, t ∼ eη/2 = y/2 so that the behaviour (37) is also the same of that of γ(t)
for large t.

6. Remarks and comments.

In the previous Sections the spin 1 field equation has been separated in LTB space-times and
reduced to ordinary differential equations in one variable. The angular dependence of the

wave spinor factors out in a general LTB metric. Due to spherical symmetry it is the same that
the corresponding one in Robertson-Walker and Schwarzschild metric. The further separation
of the time and radial coordinates has been possible in LTB cosmologies for which the physical
radius has the factorised form Y = Z(r)T(t). This assumption still let the LTB comological
model depend on an arbitrary function E(r) (or m(r)). As a consequence the separated time
dependence is essentially unique in the sense that it depends only on the sign of E or on its
vanishing. The time equations have been separated and integrated in all cases.
Instead the radial dependence is reported to the solution of two independent ordinary
differential equations that explicitly depend on E. The choice E(r) = 0, Z(r) = r, T(t) = R(t)
(R(t) the radius on the universe in the RW metric) reduces the scheme to a special case
of the RW space-time. In this case the radial equations can be explicitly solved (Zecca,
2005). Moreover if one considers toghether with (1) also its complex conjugate equation,
a scalar product, induced by a conserved current, can be defined between solutions of (1).
Correspondingly normal modes can be defined, that are the base for a quantization of the
scheme. In turn this implies that particle creation is possible and that the number of one mode
created particles per unit time in expanding universe is proportional to Ṙ(t)/R(t) (Zecca,

2009a). These results, applied to the present LTB scheme with E = 0, R(t) = T(t) = t2/3, give
that the number of one mode created particles per unit time is proportional to Ṫ/T = 2/(3t).
Suppose now E 
= 0. The procedure of the mentioned RW case, can be applied to define a
scalar product between solution of (1), as induced by the conserved current (Zecca, 2006a;
2009a). This product finally factorizes in a product of reduced scalar products in a single
variable as a consequence of the assumption Y = Z(r)T(t). By taking into account the
orthogonality relation (9) for the angular solutions, the relation (15) for the time dependence
and by proceeding as in Zecca, 2006a, one is finally left with a one dimensional scalar product
for the solutions of the radial equations (20), (21). If the assumptions on E(r) are such that
the solutions of (20), (21) result ortho-normal in the reduced scalar product, then one recover
a set of normal mode for the solutions of (1). Accordingly, a quantization procedure can be
devoloped as in the flat RW case (Zecca, 2009a). On account of the complete analogy of the
two schemes, again one obtains the results of Zecca (2009a) with the substitution R(t) → T(t).
Therefore (with the mentioned suitable choice of E) the balance n(t) of one mode created and
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annihilated particles per unit of time is

n(t) ∝
Ṫ

T
=

sinh η

(cosh η − 1)2
; t = sinh η − η, η > 0, E > 0 (38)

n(t) ∝
Ṫ

T
=

sin η

(1 − cos η)2
; t = η − sin η, 0 ≤ η ≤ 2π, E < 0 (39)

Therefore, for an LTB cosmology for which Ẏ = Z(r)Ṫ(t) 
= 0 particle production is non
trivial. Note that for these models one has

Y ∝ Z(r) t
2
3 , t → 0 (40)

n(t) ∝
Ṫ

T
∝

2

3

1

t
, t → 0 (41)

for both E > 0 and E < 0. Hence the cosmological model admits a big bang origin at time
t = 0 and, if particle production is taken for grant, there is, near the big bang origin, an
enormous production of particles that does not depend on the sign of E. This is in some way
the converse of what happens in the flat RW metric where particle production is possible for
different cosmological dynamics, but with a well defined spatial configuration.
We now briefly comment the separation method employed here. The complete separation of

(6) has been done under the special condition (12) for which the physical radius results to
be factorized in the time and radial dependence. It would be interesting to know whether
the mentioned condition is also in some sense necessary to obtain separated time and radial
equations. This would throw also light in the separation of scalar and Dirac field equations
that can be separated in LTB models under the same condition (Zecca, 2009; 2001). Solutions
of (6) not involving Y-factorizations would be as well of interest.
Another point is the problem of the separation of field equations of spin values higher than 1
in LTB models. This is attractive because the explicit recursive structure of (4) is the same that
in the Robertson-Walker metric that in turn is a special case of the general recursive structure
for field equations of arbitrary spin (Zecca, 2009). However, as mentioned in the introduction,
the presence of a non vanishing Weyl spinor as it happens in LTB metric (e. g., Penrose and
Rindler, 1984; Zecca, 2000a) requires a more complex formulation of the field equation for
spin greater than 1 (see e. g., Illge, 1993 and references therein). Also in this case it would
be interesting to know whether the condition (11) still plays a central role for the separation
of the equation, at least in the simplest case of spin s = 3/2. The problem is currently under
investigation.

As final comment, if particle production is taken for grant, its effect is of modifying
the gravitational dynamics of the universe. Therefore it should be taken into account
in the formulation of a cosmological model. A precise formulation of the gravitational
modification seems problematic. The previous quantization scheme does indeed foresee
particle production but it does not specify where and with what density the particles are
produced. However, by mediating over possible spatial distributions, a simple modification
of the Standar Cosmological model has been proposed by an ansatz on the definition of energy
density and of the pressure of the universe (Zecca, 2010).
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