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1. Introduction

Several observations suggest that in galaxies and galaxy clusters there is an important
quantity of matter that is not interacting electromagnetically, but only through gravitation.
This is the well known dark matter problem. Several solutions have been consider for
this problem, modifying the gravitational theory or introducing new forms of matter and
interaccions. To address the dark matter problem Saez and Ballester (SB) (Saez & Ballester,
1986) formulated a scalar-tensor theory of gravitation in which the metric is coupled with a
dimensionless scalar field. In a recent analysis using the standard scalar field cosmological
models (Socorro et al., 2010; 2011), contrary to claims in the specialized literature, it is shown
that the SB theory cannot provide a realistic solution to the dark matter problem of Cosmology
for the dust epoch, because the contribution of the scalar field is equivalent to stiff matter. We
can reinterpret this result in a sense that the galaxy halo was formed during this primigenius
epoch and its evolution until the dust era using the standard scalar field cosmological theory.
In this theory the strength of the coupling between gravity and the scalar field is determined
by an arbitrary coupling constant ω. This constant ω can be used to have a lorenzian (-1,1,1,1)
or seudo-lorenzian (-1,-1,1,1) signature when we build the Wheeler-DeWitt equation. The
values for this constant, in the classical regime, are dictated by the condition to have real
functions. Other problem inherent to this theory is that not exist how build the invariants
with this field as in the case to scalar curvature. So, was necessary to reinterpret the formalism
where this field is considered as matter content in the theory in the Einstein frame.
On the other hand, this approach is classified with another name, by instant,
Armendariz-Picon et al, called this formalism as K-essence (Armendariz et al., 2000), as
a dynamical solution for explaining naturally why the universe has entered an epoch of
accelerated expansion at a late stage of its evolution. Instead, K-essence is based on the
idea of a dynamical attractor solution which causes it to act as a cosmological constant only
at the onset of matter domination. Consequently, K-essence overtakes the matter density
and induces cosmic acceleration at about the present epoch. Usually K-essence models are
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2 cosmology

restricted to the Lagrangian density of the form

S =
∫

d4x
√

−g f(φ) (∇φ)2 . (1)

One of the motivations to consider this type of Lagrangian originates from string theory
(Armendariz et al., 1999). For more details for K-essence applied to dark energy, you can see
in (Copeland et al., 2006) and reference therein. Many works in SB formalism in the classical
regime have been done, where the Einstein field equation is solved in a direct way, using a
particular ansatz for the main scalar factor of the universe (Singh & Agrawal, 1991; Ram &
Singh, 1995; Mohanty & Pattanaik, 2001; Singh & Ram, 2003), yet a study of the anisotropy
behaviour trough the form introduced in the line element has been conected (Reddy & Rao,
2001; Mohanty & Sahu, 2003; 2004; Adhav et al., 2007; Rao et al., 2007; 2008a-2008b; Shri et al.,
2009; Tripathy et al., 2009; Singh, 2009; Pradhan & Singh, 2010).
On another front, the quantization program of this theory has not been constructed. The
main complication can be traced to the lack of an ADM type formalism. We can transform
this theory to conventional one where the dimensionless scalar field is obtained from
energy-momentum tensor as an exotic matter contribution, and in this sense we can use this
formalism for the quantization program, where the ADM formalism is well known (Ryan,
1972).
In this work, we use this formulation to obtain classical and quantum exact solutions to
anisotropic Bianchi Class A cosmological models with stiff matter. The first step is to write
SB formalism in the usual manner, that is, we calculate the corresponding energy-momentum
tensor to the scalar field and give the equivalent Lagrangian density. Next, we proceed to
obtain the corresponding canonical Lagrangian Lcan to Bianchi Class A cosmological models
through the Legendre transformation, we calculate the classical Hamiltonian H, from which
we find the Wheeler-DeWitt (WDW) equation of the corresponding cosmological model under
study. We employ in this work the Misner parametrization due that a natural way appear the
anisotropy parameters to the scale factors.
The simpler generalization to Lagrangian density for the SB theory (Saez & Ballester, 1986)
with the cosmological term, is

Lgeo = (R − 2Λ − F(φ)φ,γφ,γ) , (2)

where φ,γ = gγαφ,α, R the scalar curvature, F(φ) a dimensionless function of the scalar field.
In classical field theory with scalar field, this formalism corresponds to null potencial in the
field φ, but the kinetic term is exotic by the factor F(φ).
From the Lagrangian (2) we can build the complete action

I =
∫

Σ

√

−g(Lgeo + Lmat)d
4x, (3)

where Lmat is the matter Lagrangian, g is the determinant of metric tensor. The field equations
for this theory are

Gαβ + gαβΛ − F(φ)

(

φ,αφ,β −
1

2
gαβφ,γφ,γ

)

= −8πGTαβ, (4a)

2F(φ)φ,α
;α +

dF

dφ
φ,γφ,γ = 0, (4b)
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Cosmological Bianchi Class A Models in Sáez-Ballester Theory 3

where G is the gravitational constant and as usual the semicolon means a covariant derivative.
The equation (4b) take the following form for all cosmological Bianchi Class A models,

assuming that the scalar field is only time dependent ( here ′ = d
dτ = d

Ndt )

3Ω′φ′F + φ′′F +
1

2

dF

dφ
φ′2 = 0,

which can be put in quadrature form as

1

2
Fφ′2 = F0e−6Ω, (5)

this equation is seen as corresponding to a stiff matter content contribution.

The same set of equations(4a,4b) is obtained if we consider the scalar field φ as part of the
matter budget, i.e. say Lφ = −F(φ)gαβφ,αφ,β with the corresponding energy-momentum
tensor

Tαβ = F(φ)

(

φ,αφ,β −
1

2
gαβφ,γφ,γ

)

, (6)

which is conserved and equivalent to a stiff (see appendix section 7). In this new line of

reasoning, action (3) can be rewritten as a geometrical part (Hilbert-Einstein with Λ) and
matter content (usual matter plus a term that corresponds to the exotic scalar field component
of SB theory).
In this way, we write the action (3) in the usual form

I =
∫

Σ

√

−g
(

R − 2Λ + Lmat + Lφ
)

d4x, (7)

and consequently, the classical equivalence between the two theories. We can infer that

this correspondence also is satisfied in the quantum regime, so we can use this structure for
the quantization program, where the ADM formalism is well known for different classes of
matter (Ryan, 1972). Using this action we obtain the Hamiltonian for SB. We find that the
WDW equation is solved when we choose one ansatz similar to this employed in the Bohmian
formalism of quantum mechanics and the gravitational part in the solutions are the same that
these found in the literature, years ago (Obregón & Socorro, 1996).
This work is arranged as follow. In section 2 we present the method used, employing the
FRW cosmological model with barotropic perfect fluid and cosmological constant. In section
3 we construct the Lagrangian and Hamiltonian densities for the anisotropic Bianchi Class
A cosmological model. In section 4 the classical solutions using the Jacobi formalism are
found. Here we present partial results in the solutions for some Bianchi’s cosmological
models. Classical solution to Bianchi I is complete in any gauge, but the Bianchi II and
VIh=−1, the solutions are found in particular gauge. Other Biachi’s, only the master equation
are presented. In Section 5 the complete cuantization scheme is presented, obtaining the
corresponding Wheeler-DeWitt equation and its solutions are presented in unified way using
the classification scheme of Ellis and MacCallum (Ellis & MacCallum, 1969) and Ryan and
Shepley, (Ryan & Shepley, 1975).
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4 cosmology

2. The method

Let us start with the line element for a homogeneous and isotropic FRW universe

ds2 = −N2(t)dt2 + a2(t)
[

dr2

1 − κr2
+ r2dΩ2

]

, (8)

where a(t) is the scale factor, N(t) is the lapse function, and κ is the curvature constant that
can take the values 0, 1 and −1, for flat, closed and open universe, respectively. The total
Lagrangian density then reads

L =
6ȧ2a

N
− 6κNa +

F(φ)a3

N
φ̇2 + 16πGNa3ρ − 2Na3Λ , (9)

where ρ is the energy density of matter, we will assume that it complies with a barotropic
equation of state of the form p = γρ, where γ is a constant. The matter content is assumed
as a perfect fluid Tμν = (ρ + p)uμuν + gμνp where uμ is the fluid four-velocity satisfying
uμuμ = −1 . Taking the covariant derivative we obtain the relation

3Ω̇ρ + 3Ω̇p + ρ̇ = 0,

whose solution becomes
ρ = ργe−3Ω(1+γ), (10)

where ργ is an integration constant.
From the canonical form of the Lagrangian density (9), and the solution for the barotropic
fluid equation of motion, we find the Hamiltonian density for this theory, where the momenta

are defined in the usual way Πqi = ∂L
∂q̇i , where qi = (a, φ) are the field coordinates for this

system,

Πa =
∂L
∂ȧ

=
12aȧ

N
, → ȧ =

NΠa

12a
,

Πφ =
∂L
∂φ̇

=
2Fa3φ̇

N
, → φ̇ =

NΠφ

2Fa3
, (11)

so, the Hamiltonian density become

H =
a−3

24

[

a2Π2
a +

6

F(φ)
Π2

φ + 144κa4 + 48a6Λ − 384πGργa3(1−γ)
]

. (12)

Using the transformation Πq =
dSq

dq , the Einstein-Hamilton-Jacobi (EHJ) associated to Eq. (12)

is

a2

(

dSa

da

)2

+
6

F(φ)

(

dSφ

dφ

)2

+ 48a6Λ − 384πGργa3(1−γ) = 0 . (13)

The EHJ equation can be further separated in the equations

6

F(φ)

(

dSφ

dφ

)2

= μ2 , (14)

a2

(

dSa

da

)2

+ 48a6Λ − 384πGργa3(1−γ) = −μ2 , (15)
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Cosmological Bianchi Class A Models in Sáez-Ballester Theory 5

where μ is a separation constant. With the help of Eqs. (11), we can obtain the solution up to
quadratures of Eqs. (14) and (15),

∫ √

F(φ) dφ =
μ

2
√

6

∫

a−3(τ) dτ , (16a)

Δτ =
∫ a2da

√

8
3 πGργa3(1−γ) − Λ

3 a6 − ν2
, (16b)

with ν =
μ
12 . Eq. (16a) readily indicates that

F(φ)φ̇2 = 6ν2a−6(τ) . (17)

Also, this equation could be obtained by solving equation (4b). Moreover, the matter
contribution of the SB scalar field to the r.h.s. of the Einstein equations would be

ρφ =
1

2
F(φ)φ̇2

∝ a−6 , (18)

this energy density of a scalar field has the range of scaling behaviors (Andrew & Scherrer,
1998; Ferreira & Joyce, 1998), is say, scales exactly as a power of the scale factor like, ρφ ∝ a−m,
when the dominant component has an energy density which scales as similar way. So, the
contribution of the scalar field is the same as that of stiff matter with a barotropic equation of
state γ = 1. This is an interesting result, since the original SB theory was thought of as a way
to solve the missing matter problem now generically called the dark matter problem. To solve
the latter, one needs a fluid behaving as dust with γ = 0, it is surprising that such a general
result remains unnoticed until now in the literature about SB. This is an instance of the results
of the analysis of the energy momentum tensor of a scalar field by Marden (Marden, 1988) for
General Relativity with scalar matter and by Pimentel (Pimentel, 1989) for the general scalar
tensor theory. In both works a free scalar field is equivalent to a stiff matter fluid.
Furthermore, having identified the general evolution of the scalar field with that of a stiff
fluid means that the Eq. (16b) can be integrated separately without a complete solution for
the scalar field. In (Socorro et al., 2011) appear a compilation of exact solutions in the case of
the original SB theory to FRW cosmological model and in (Socorro et al., 2010) were presented
the classical and quantum solution to Bianchi type I.

3. The master Hamiltonian to Bianchi Class A cosmological models

Let us recall here the canonical formulation in the ADM formalism of the diagonal Bianchi
Class A cosmological models. The metric has the form

ds2 = −dt2 + e2Ω(t) (e2β(t))ij ωi ωj, (19)

where βij(t) is a 3x3 diagonal matrix, βij = diag(β+ +
√

3β−, β+ −
√

3β−,−2β+), Ω(t) is a

scalar and ωi are one-forms that characterize each cosmological Bianchi type model, and that
obey dωi = 1

2 Ci
jkωj ∧ ωk, Ci

jk the structure constants of the corresponding invariance group,

these are included in table 1.
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6 cosmology

Bianchi type 1-forms ωi

I ω1 = dx1, ω2 = dx2, ω3 = dx3

II ω1 = dx2 − x1dx3, ω2 = dx3, ω3 = dx1

VIh=−1 ω1 = e−x1
dx2, ω2 = ex1

dx3, ω3 = dx1

VII0 ω1 = dx2 + dx3, ω2 = −dx2 + dx3, ω3 = dx1

VIII ω1 = dx1 + [1 + (x1)2]dx2 + [x1 − x2 − (x1)2x2]dx3,

ω2 = 2x1dx2 + (1 − 2x1x2)dx3,

ω3 = dx1 + [−1 + (x1)2]dx2 + [x1 + x2 − (x1)2x2]dx3

IX ω1 = − sin(x3)dx1 + sin(x1) cos(x3)dx2,

ω2 = cos(x3)dx1 + sin(x1) sin(x3)dx2, ω3 = cos(x1)dx2 + dx3

Table 1. One-forms for the Bianchi Class A models.

We use the Bianchi type IX cosmological model as toy model to apply the method discussed
in the previous section. The total Lagrangian density then reads

LIX = e3Ω

[

6
Ω̇2

N
− 6

β̇2
+

N
− 6

β̇2
−

N
+

F(φ)

N
φ̇2 + 16πGNρ − 2NΛ

+Ne−2Ω

{

1

2

(

e4β++4
√

3β− + e4β+−4
√

3β− + e−8β+

)

−
(

e−2β++2
√

3β− + e−2β+−2
√

3β− + e4β+

)}]

, (20)

making the calculation of momenta in the usual way, Πqμ = ∂L
∂q̇μ , where qμ = (Ω, β+, β−, φ)

ΠΩ =
12

N
e3ΩΩ̇, → Ω̇ =

N

12
e−3ΩΠΩ,

Π+ = −12

N
e3Ω β̇+, → β̇+ = − N

12
e−3ΩΠ+,

Π− = −12

N
e3Ω β̇−, → β̇− = − N

12
e−3ΩΠ+,

Πφ =
2F

N
e3Ωφ̇, → φ̇ =

N

2F
e−3ΩΠφ,

and introducing into the Lagrangian density, we obtain the canonical Lagrangian as

LIX = Πqμ q̇μ − NH⊥,

with the Hamiltonian density

H⊥ =
e−3Ω

24

(

−Π2
Ω − 6

F(φ)
Π2

φ + Π2
+ + Π2

− + U(Ω, β±) + C1

)

, (21)

where the gravitational potential becomes,

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

( )4 4 3 4 4 3 4 4 2 2 3 2 2 34U( , ) 12e e e e 2{e e e } ,β β β β β β β β β βΩΩ β + − + − + + + − + −+ − − − +
± = + + − + +  

with C1 = 384 G 1 corresponding to stiff matter epoch,  = 1. 
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The equation (21) can be considered as a master equation for all Bianchi Class A cosmological
model in the stiff epoch in the Sáez-Ballester theory, with U(Ω, β±) is the potential term of the
cosmological model under consideration, that can read it to table II.

Bianchi type Hamiltonian density H
I e−3Ω

24

[

−Π2
Ω − 6

F Π2
φ + Π2

+ + Π2
− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

]

II e−3Ω

24

[

−Π2
Ω − 6

F Π2
φ + Π2

+ + Π2
− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

+12e4Ωe4β++4
√

3β−
]

VI−1
e−3Ω

24

[

−Π2
Ω − 6

F Π2
φ + Π2

+ + Π2
− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

+48e4Ωe4β+

]

VII0
e−3Ω

24

[

−Π2
Ω − 6

F Π2
φ + Π2

+ + Π2
− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

+12e4Ω
(

e4β++4
√

3β− − e4β+ + e4β+−4
√

3β−
)]

VIII e−3Ω

24

[

−Π2
Ω − 6

F Π2
φ + Π2

+ + Π2
− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

+12e4Ω
(

e4β++4
√

3β− + e4β+−4
√

3β− + e−8β+

−2
{

e4β+ − e−2β+−2
√

3β− − e−2β++2
√

3β−
})]

IX e−3Ω

24

[

−Π2
Ω − 6

F Π2
φ + Π2

+ + Π2
− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

+12e4Ω
(

e4β++4
√

3β− + e4β+−4
√

3β− + e−8β+

−2
{

e4β+ + e2β+−2
√

3β− + e−2β++2
√

3β−
})]

Table 2. Hamiltonian density for the Bianchi Class A models.

4. Classical scheme

In this section, we present the classical solutions to all Bianchi Class A cosmological models
using the appropriate set of variables,

β1 = Ω + β+ +
√

3β−,

β2 = Ω + β+ −
√

3β−,

β3 = Ω − 2β+. (22)

4.1 Bianchi I

For building one master equation for all Bianchi Class A models, we begin with the simplest
model give by the Bianchi I, and give the general treatment. The corresponding Lagrangian
for this cosmological model is written as

LI = eβ1+β2+β3

[

2β̇1 β̇2

N
+

2β̇1 β̇3

N
+

2β̇2 β̇3

N
+

F(φ)φ̇2

N
+ 16NπGργ e−(1+γ)(β1+β2+β3) − 2NΛ

]

,

(23)

191Cosmological Bianchi Class A Models in Sáez-Ballester Theory
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8 cosmology

the momenta associated to the variables (βi, φ) are

Π1 =
2

N
(β̇2 + β̇3)e

β1+β2+β3 , β̇1 =
N

4
e−(β1+β2+β3)(Π2 + Π3 − Π1),

Π2 =
2

N
(β̇1 + β̇3)e

β1+β2+β3 , β̇2 =
N

4
e−(β1+β2+β3)(Π1 + Π3 − Π2),

Π3 =
2

N
(β̇1 + β̇2)e

β1+β2+β3 , β̇3 =
N

4
e−(β1+β2+β3)(Π1 + Π2 − Π3),

Πφ =
2Fφ̇

N
eβ1+β2+β3 , φ̇ =

N

2F
e−(β1+β2+β3)Πφ, (24)

so, the Hamiltonian is

HI =
1

8
e−(β1+β2+β3)

[

−Π2
1 − Π2

2 − Π2
3 +

2

F
Π2

φ + 2Π1Π2 + 2Π1Π3 + 2Π2Π3

+16Λe2(β1+β2+β3) − 128πGργe(1−γ)(β1+β2+β3)
]

, (25)

using the hamilton equation, where ′ = d
dτ = d

Ndt , we have

Π′
1 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3), (26)

Π′
2 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3), (27)

Π′
3 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3), (28)

Π′
φ =

1

4
e−(β1+β2+β3) F′

F2φ′ Π2
φ, (29)

β′1 =
1

4
e−(β1+β2+β3) [−Π1 + Π2 + Π3] , (30)

β′2 =
1

4
e−(β1+β2+β3) [−Π2 + Π1 + Π3] , (31)

β′3 =
1

4
e−(β1+β2+β3) [−Π3 + Π1 + Π2] , (32)

φ′ =
1

2F
e−(β1+β2+β3)Πφ, (33)

equations (26,27,28) implies
Π1 = Π2 + k1 = Π3 + k2. (34)

Also, the differential equation for field φ can be reduced to quadratures when we use
equations (29) and (33), as

1

2
F(φ)φ′2 = φ0e−2(β1+β2+β3), ⇒

√

F(φ)dφ =
√

2φ0 e−(β1+β2+β3)dτ, (35)

which correspond to equation (5) obtained in direct way from the original Einstein field
equation. The corresponding classical solutions for the field φ for this cosmological model
can be seen in ref. (Socorro et al., 2010).

Using this result and the equation for the field φ given in (24) we can find that 2
Π2

φ

F = 16φ0.
From the hamilton equation for the momenta Π1 can be written for the two equations of state

192 Aspects of Today´s Cosmology
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Cosmological Bianchi Class A Models in Sáez-Ballester Theory 9

γ = ±1, introducing the generic parameter

λ =

{

−4Λ, γ = 1
−4Λ + 32πGρ1, γ = −1

(36)

as Π′
1 = λeβ1+β2+β3 , then re-introducing into the Hamiltonian equation (25) we find one

differential equation for the momenta Π1 as

4

λ
Π′2

1 + 2Π2
1 − κΠ1 − k3 = 0, (37)

where the corresponding constants are

κ = 2(k1 + k2), k3 =

{

k2
1 + k2

2 − 16φ0, γ = −1
k2

1 + k2
2 − 16φ0 + 128πGρ1, γ = 1

(38)

and whose solution is

Π1 =
κ

6
±

√

κ2 + 12k3

6
sin

[√
3λ

2
Δτ

]

. (39)

On the other hand, using this result in the sum of equation (52,53,54), we obtain that

β1 + β2 + β3 = Ln

[

α√
12λ

cos

[√
3λ

2
Δτ

]]

, α = 2

√

κ2 + 12k3, (40)

solution previously found in ref. (Socorro et al., 2010) using the Hamilton-Jacobi approach.

4.2 Bianchi’s Class A cosmological models

The corresponding Lagrangian for these cosmological model are written using the Lagrangian
to Bianchi I, as

LII = LI + Neβ1+β2+β3

[

1

2
e2(β1−β2−β3)

]

, (41)

LVIh=−1
= LI + Neβ1+β2+β3

[

2e−2β3

]

, (42)

LVIIh=0
= LI + Neβ1+β2+β3

[

1

2
e2(β1−β2−β3) +

1

2
e2(−β1+β2−β3) − e−2β3

]

, (43)

LVIII = LI +
N

2
eβ1+β2+β3

[

e2(β1−β2−β3) + e2(−β1+β2−β3) + e2(−β1−β2+β3)

−2
(

−e−2β1 + e−2β2 + e−2β3

)]

, (44)

LIX = LI +
N

2
eβ1+β2+β3

[

e2(β1−β2−β3) + e2(−β1+β2−β3) + e2(−β1−β2+β3)

−2
(

e−2β1 + e−2β2 + e−2β3

)]

, (45)

the momenta associated to the variables (βi, φ) are the same as in equation (24), so, the generic
Hamiltonian is

HA = HI −
1

2
e−(β1+β2+β3) [UA(β1, β2, β3)] , (46)

193Cosmological Bianchi Class A Models in Sáez-Ballester Theory
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where the potential term UA(β1, β2, β3) is given in table III, where A corresponds to particular
Bianchi Class A models (I,II, VIh=−1,VIIh=0,VIII,IX). If we choose the particular gauge to the

lapse function N = e(β1+β2+β3), the equation (46) is much simpler,

HA = HI −
1

2
[UA(β1, β2, β3)] , (47)

where HI is as in equation (25) but without the factor e−(β1+β2+β3)

Bianchi type Potential UA(β1, β2, β3)
I 0

II e4β1

VIh=−1 4e2(β1+β2)

VIIh=0 e4β1 + e4β2 − 2e2(β1+β2)

VIII e4β1 + e4β2 + e4β3 − 2e2(β1+β2) + 2e2(β1+β3) + 2e2(β2+β3)

IX e4β1 + e4β2 + e4β3 − 2e2(β1+β2) − 2e2(β1+β3) − 2e2(β2+β3)

Table 3. Potential UA(β1, β2, β3) for the Bianchi Class A Models.

The Hamilton equations, for all Bianchi Class A cosmological models are as follows

Π′
1 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3)

+
∂

∂β1

(

1

2
e−(β1+β2+β3) [UA(β1, β2, β3)]

)

, (48)

Π′
2 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3)

+
∂

∂β2

(

1

2
e−(β1+β2+β3) [UA(β1, β2, β3)]

)

, (49)

Π′
3 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3)

+
∂

∂β3

(

1

2
e−(β1+β2+β3) [UA(β1, β2, β3)]

)

, (50)

Π′
φ =

1

4
e−(β1+β2+β3) F′

F2φ′ Π2
φ, (51)

β′1 =
1

4
e−(β1+β2+β3) [−Π1 + Π2 + Π3] , (52)

β′2 =
1

4
e−(β1+β2+β3) [−Π2 + Π1 + Π3] , (53)

β′3 =
1

4
e−(β1+β2+β3) [−Π3 + Π1 + Π2] , (54)

φ′ =
1

2F
e−(β1+β2+β3)Πφ. (55)

In this cosmological models, it is remarkable that the equation for the field φ (35) is mantained
for all Bianchi Class A models, and in particular, when we use the gauge N = eβ1+β2+β3 , the
solutions for this field are independent of the cosmological models.
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4.3 Classical solution in the gauge N = eβ1+β2+β3 , Λ = 0 and γ = 1
With these initial choices, the main equations are written for this gauge as (now a dot means
d
dt )

HA =
1

8

[

−Π2
1 − Π2

2 − Π2
3 +

2

F
Π2

φ + 2Π1Π2 + 2Π1Π3 + 2Π2Π3 − C1

]

−1

2
[UA(β1, β2, β3)] , (56)

with C1 = 128πGρ1.
The hamilton equation, for all Bianchi Class A cosmological models are

Π̇1 = +
∂

∂β1

(

1

2
[UA(β1, β2, β3)]

)

, (57)

Π̇2 = +
∂

∂β2

(

1

2
[UA(β1, β2, β3)]

)

, (58)

Π̇3 = +
∂

∂β3

(

1

2
[UA(β1, β2, β3)]

)

, (59)

Π̇φ =
1

4

Ḟ

F2φ̇
Π2

φ, (60)

β̇1 =
1

4
[−Π1 + Π2 + Π3] , (61)

β̇2 =
1

4
[−Π2 + Π1 + Π3] , (62)

β̇3 =
1

4
[−Π3 + Π1 + Π2] , (63)

φ̇ =
1

2F
Πφ. (64)

4.3.1 Bianchi II

Π̇1 = 2e4β1 , (65)

Π̇2 = 0, → Π2 = p2 = cte, (66)

Π̇3 = 0, → Π3 = p3 = cte, (67)

Π̇φ =
1

4

Ḟ

F2φ̇
Π2

φ, (68)

β̇1 =
1

4
[−Π1 + p2 + p3] , (69)

β̇2 =
1

4
[−p2 + Π1 + p3] , (70)

β̇3 =
1

4
[−p3 + Π1 + p2] , (71)

φ̇ =
1

2F
Πφ, (72)
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introducing (65) into (56) we find the differential equation for Π1 as Π̇1 = − 1
2 Π2

1 + bΠ1 + c
where the constants are defined as b = p2 + p3 and c = 8φ0 − 1

2

(

p2
2 + p2

3 + C1

)

. The solution
for Π1 is

Π1 = b +
√

−b2 − 2cTan

[

−1

2

√

−b2 − 2cΔt

]

, (73)

and the solutions for βi then are

Δβ1 = −1

2
Ln

[

Cos

(

1

2

√

−b2 − 2cΔt

)]

, (74)

Δβ2 =
1

2
p3Δt +

1

2
Ln

[

Cos

(

1

2

√

−b2 − 2cΔt

)]

, (75)

Δβ3 =
1

2
p2Δt +

1

2
Ln

[

Cos

(

1

2

√

−b2 − 2cΔt

)]

, (76)

(77)

and the solution for the φ field is similar to (35)

1

2
F(φ)φ̇2 = φ0, ⇒

√

F(φ)dφ =
√

2φ0 dt. (78)

So, the solutions in the original variables are

Ω =
1

6

[

(p2 + p3)Δt + Ln

[

Cos

(

1

2

√

−b2 − 2cΔt

)]]

,

β− =

√
3

6

[

−1

2
p3Δt − Ln

[

Cos

(

1

2

√

−b2 − 2cΔt

)]]

,

β+ =
1

12

[

(p3 − 2p2)Δt − 2Ln

[

Cos

(

1

2

√

−b2 − 2cΔt

)]]

. (79)

4.3.2 Bianchi VIh=−1

Π̇1 = 4e2(β1+β2), (80)

Π̇2 = 4e2(β1+β2), → Π2 = Π1 + a1, (81)

Π̇3 = 0, → Π3 = p3 = cte, (82)

Π̇φ =
1

4

Ḟ

F2φ̇
Π2

φ, (83)

β̇1 =
1

4
[−Π1 + Π2 + p3] , (84)

β̇2 =
1

4
[−Π2 + Π1 + p3] , (85)

β̇3 =
1

4
[−p3 + Π1 + Π2] , (86)

φ̇ =
1

2F
Πφ. (87)
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introducing (81) into (56) we find the differential equation for Π1 as Π̇1 − p3Π1 + k1 = 0
where k1 = 1

4

(

p2
3 + a2

1 − 16φ0 + C1 − 2a1p3

)

who solution become as

Π1 =
1

p3

[

ep3Δt + k1

]

, (88)

then the solutions for βi become

Δβ1 =
1

4
(a1 + p3)Δt, (89)

Δβ2 =
1

4
(p3 − a1)Δt, (90)

Δβ3 =
1

4
(a1 − p3)Δt +

1

2p3

[

ep3Δt + k1

]

, (91)

(92)

and the solutions in the original variables are

Ω =
1

12p3

[

2k1 + p3 (a1 + p3)Δt + 2ep3Δt
]

,

β− =
a1

4
√

3
Δt,

β+ = − 1

12p3

[

2k1 + p3 (a1 − 2p3)Δt + 2ep3Δt
]

. (93)

5. Quantum scheme

The WDW equation for these models is achived by replacing Πqμ = −i∂qμ in (21). The factor

e−3Ω may be factor ordered with Π̂Ω in many ways. Hartle and Hawking (Hartle & Hawking,
1983) have suggested what might be called a semi-general factor ordering which in this case
would order e−3ΩΠ̂2

Ω as

− e−(3−Q)Ω ∂Ωe−QΩ∂Ω = −e−3Ω ∂2
Ω + Q e−3Ω∂Ω ,

− 6

F
φs ∂

∂φ
φ−s ∂

∂φ
= − 6

F

∂2

∂φ2
+

6s

F
φ−1 ∂

∂φ
, (94)

where Q and s are any real constants that measure the ambiguity in the factor ordering
in the variables Ω and φ. We will assume in the following this factor ordering for the
Wheeler-DeWitt equation, which becomes

�Ψ − 6

F(φ)

∂2Ψ

∂φ2
+

6s

F
φ−1 ∂Ψ

∂φ
+ Q

∂Ψ

∂Ω
− U(Ω, β±)Ψ − C1Ψ = 0, (95)

where � is the three dimensional d’Lambertian in the ℓμ = (Ω, β+, β−) coordinates, with
signature (- + +).
When we introduce the Ansatz Ψ = χ(φ)ψ(Ω, β±) in (95), we obtain the general set
of differential equations (under the assumed factor ordering) for the Bianchi type IX
cosmological model

�ψ + Q
∂ψ

∂Ω
−

[

U(Ω, β±) + C1 − μ2
]

ψ = 0, (96)
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6

F(φ)

∂2χ

∂φ2
− 6s

F
φ−1 ∂χ

∂φ
+ μ2χ = 0. (97)

When we calculate the solution to equation (97), we find interesting properties on this, as

1. This equation is a master equation for the field φ for any cosmological model, implying
that this field φ is an universal field as cosmic ground, having the best presence in the stiff
matter era as an ingredient in the formation the structure galaxies and when we consider
two types of functions, F(φ) = ωφm and F(φ) = ωemφ, we have the following exact
solutions (Polyanin & Zaitsev, 2003)

(a) F(φ) = ωφm

the differential equation to solver is

d2χ

dφ2
− sφ−1 dχ

dφ
+ αφmχ = 0, (98)

with α =
ωμ2

6 . The solutions depend on the value to m and s,

i. General solution for any m 	= −2 and s, are written in terms of ordinary and modify
Bessel function,

χ = c1φ
1+s

2 Zν

(

2
√

α

m + 2
φ

m+2
2

)

, (99)

with c1 an integration constant, Zν is a generic Bessel function, ν = 1+s
m+2 is the order.

When α > 0 imply ω > 0, Zν become the ordinary Bessel function, (Jν, Yν). If
α < 0,→ w < 0, Zν → (Iν, Kν).

ii. m = −2 and any s,

χ = φ
1+s

2

⎧

⎨

⎩

c1 φμ + c2φ−μ , si μ > 0
c1 + c2Lnφ , si μ = 0
c1 sin (μLnφ) + c2 cos (μLnφ) , if μ < 0

, (100)

where μ = 1
2

√

|(1 + s)2 − 4α|.
iii. m = −6 and s = 1

χ(φ) = φ2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c1 sinh
(√

|α|
2φ2

)

+ c2 cosh
(√

|α|
2φ2

)

, α < 0 → ω < 0

c1 sin
(√

|α|
2φ2

)

+ c2 cos
(√

|α|
2φ2

)

, α > 0 → ω > 0
(101)

(b) F(φ) = ωemφ, for this case we consider the case s = 0,

d2χ

dφ2
+ αemφχ = 0, (102)

i. m 	= 0

χ = CZ0

(

2
√

α

m
e

mφ
2

)

, (103)

with C is a integration constant and Z0 is the generic Bessel function to zero order.
So, if α > 0 then ω > 0, Z0 is the ordinary Bessel function (J0, Y0). When α < 0,→
ω < 0, Z0 → (I0, K0).
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ii. for m = 0,

χ =

⎧

⎨

⎩

c1 sinh
(

√

|α|φ
)

+ c2 cosh
(

√

|α|φ
)

, if α < 0 → ω < 0

c1 sin
(

√

|α|φ
)

+ c2 cos
(

√

|α|φ
)

, if α > 0 → ω > 0
(104)

2. If we have the solution for the parameter s=0 for arbitrary function F(φ), say χ0, then we
have also the solution for s=-2, as χ(s = −2) = χ0

φ .

To obtain the solution of the other factor of Ψ we use the particular value for the constants
C1 = μ2, and make the following Ansatz for the wave function

ψ(ℓμ) = W(ℓμ)e−S(ℓμ), (105)

where S(ℓμ) is known as the superpotential function, and W is the amplitude of probability
to that employed in Bohmian formalism (Bohm, 1986), those found in the literature, years ago
(Obregón & Socorro, 1996). So (96) is transformed into

�W − W� S − 2∇W · ∇S + Q
∂W
∂Ω

− QW
∂S
∂Ω

+ W
[

(∇S)2 − U
]

= 0, (106)

where � = Gμν ∂2

∂ℓμ∂ℓν , ∇W · ∇Φ = Gμν ∂W
∂ℓμ

∂Φ
∂ℓν , (∇)2 = Gμν ∂

∂ℓμ
∂

∂ℓν = −( ∂
∂Ω )2 + ( ∂

∂β+
)2 +

( ∂
∂β−

)2, with Gμν = diag(−1, 1, 1), U is the potential term of the cosmological model under

consideration.
Eq (106) can be written as the following set of partial differential equations

(∇S)2 − U = 0, (107a)

W
(

�S + Q
∂S
∂Ω

)

+ 2∇W · ∇ S = 0 , (107b)

�W + Q
∂W
∂Ω

= 0. (107c)

Following reference (Guzmán et al., 2007), first we shall choose to solve Eqs. (107a) and (107b),
whose solutions at the end will have to fulfill Eq. (107c), which play the role of a constraint
equation.

5.1 Transformation of the Wheeler-DeWitt equation

We were able to solve (107a), by doing the change of coordinates (22) and rewrite (107a) in
these new coordinates. With this change, the function S is obtained as follow, with the ansatz
(105),
In this section, we obtain the solutions to the equations that appear in the decomposition of
the WDW equation, (107a), (107b) and (107c), using the Bianchi type IX Cosmological model.

So, the equation [∇]2 = −( ∂
∂Ω )2 + ( ∂

∂β+
)2 + ( ∂

∂β−
)2 can be written in the following way (see

appendix section 8)

[∇]2 = 3

[

(

∂

∂β1

)2

+

(

∂

∂β2

)2

+

(

∂

∂β3

)2
]

− 6

[

∂

∂β1

∂

∂β2
+

∂

∂β1

∂

∂β3
+

∂

∂β2

∂

∂β3

]

= 3

(

∂

∂β1
+

∂

∂β2
+

∂

∂β3

)2

− 12

[

∂

∂β1

∂

∂β2
+

∂

∂β1

∂

∂β3
+

∂

∂β2

∂

∂β3

]

. (108)
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The potencial term of the Bianchi type IX is transformed in the new variables into

U = 12

[

(

e2β1 + e2β2 + e2β3

)2
− 2e2(β1+β2) − 2e2(β1+β3) − 2e2(β2+β3)

]

. (109)

Then (107a) for this models is rewritten in the new variables as

3

(

∂S
∂β1

+
∂S
∂β2

+
∂S
∂β3

)2

− 12

[

∂S
∂β1

∂S
∂β2

+
∂S
∂β1

∂S
∂β3

+
∂S
∂β2

∂S
∂β3

]

− 12

[

(

e2β1 + e2β2 + e2β3

)2
− 4e2(β1+β2) − 4e2(β1+β3) − 4e2(β2+β3)

]

= 0. (110)

Now, we can use the separation of variables method to get solutions to the last equation for
the S function, obtaining for the Bianchi type IX model

SIX = ±
(

e2β1 + e2β2 + e2β3

)

. (111)

In table 4 we present the corresponding superpotential function S and amplitude W for all
Bianchi Class A models.
With this result, and using for the solution to (107b) in the new coordinates βi, we have for W
function as

WIX = W0 e[(1+
Q
6 )(β1+β2+β3)], (112)

and re-introducing this result into Eq. (107c) we find that Q = ±6. Therefore we have two
wave functions

ψIX (βi) = WIX (βi)Exp
[

±
(

e2β1 + e2β2 + e2β3

)]

= Exp
[

±
(

e2β1 + e2β2 + e2β3

)]

{

W0, Q=-6
W0Exp [2 (β1 + β2 + β3)], Q=6

(113)

similar solutions were given by Moncrief and Ryan (Moncrief & Ryan, 1991) in standard
quantum cosmology in general relativity. In table 4 we present the superpotential function
S, the amplitude of probability W and the relations between the parameters for the
corresponding Bianchi Class A models.
If one looks at the expressions for the functions S given in table 4, one notes that there is a
general form to write them using the 3x3 matrix mij that appear in the classification scheme
of Ellis and MacCallum (Ellis & MacCallum, 1969) and Ryan and Shepley (Ryan & Shepley,
1975), the structure constants are written in the form

Ci
jk = ǫjks msi + δi

[kaj], (114)

where ai = 0 for the Class A models.
If we define gi(βi) = (eβ1 , eβ2 , eβ3 ), with βi given in (22), the solution to (107a) can be written
as

S(βi) = ±[gi Mij (gj)
T], (115)

where Mij = mij for the Bianchi Class A, excepting the Bianchi type VIh=−1 for which we
redefine the matrix to be consistent with (115)

Mij = (β1 − β2)

⎛

⎝

0 1 0
1 0 0
0 0 0

⎞

⎠ .
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Bianchi Superpotential S Amplitude of probability W Constraint
type

I constant e(
r
3 +

b
6 +

√
3c
6 )β1+( r

3 +
b
6 −

√
3c
6 )β2+( r

3 − b
3 )β3 r2 − Qr − a2 = 0,

a2 = b2 + c2

II e2β1 e(a−1− Q
6 )β1+aβ2+(a−b)β3 144b2 − 144ab + 36

−Q2 + 24aQ = 0

VIh=−1 2(β1 − β2) e(β1+β2) ea(β1+β2) Q = 0

VIIh=0 e2β1 + e2β2 e(1+ Q
6 )(β1+β2+β3)+a(β1+β2) Q2 − 48a − 36 = 0

VIII e2β1 + e2β2 − e2β3 W0 e[(1+
Q
6 )(β1+β2+β3)] Q = ±6

IX e2β1 + e2β2 + e2β3 W0 e[(1+
Q
6 )(β1+β2+β3)] Q = ±6

Table 4. Superpotential S, the amplitude of probability W and the relations between the
parameters for the corresponding Bianchi Class A models.

Then, for the Bianchi Class A models, the wave function Ψ can be written in the general form

Ψ = χ(φ)W(βi) exp [±[gi Mij (gj)
T]]. (116)

6. Final remarks

Using the analytical procedure of hamilton equation of classical mechanics, in appropriate
coordinates, we found a master equation for all Bianchi Class A cosmological models, we
present partial result in the classical regime for three models of them, but the general equation
are shown for all them. In particular, the Bianchi type I is complete solved without using a
particular gauge. The Bianchi type II and VIh=−1 are solved introducing a particular gauge.
An important results yields when we use the gauge N = eβ1+β2+β3 , we find that the solutions
for the φ field are independent of the cosmological models, and we find that the energy density
associated has a scaling behaviors under the analysis of standard field theory to scalar fields
(Andrew & Scherrer, 1998; Ferreira & Joyce, 1998), is say, scales exactly as a power of the
scale factor like, ρφ ∝ a−m. More of this can be seen to references cited before. On the

other hand, in the quantum regime, wave functions of the form Ψ = W e±S are the only
known exact solutions for the Bianchi type IX model in standard quantum cosmology. In the

SB formalism, these solutions are modified only for the function χ, Ψ = χ(φ)W(ℓμ) e±S(ℓμ)

when we include the particular ansatz C1 = μ2. This kind of solutions already have been
found in supersymmetric quantum cosmology (Asano et al., 1993) and also for the WDW
equation defined in the bosonic sector of the heterotic strings (Lidsey., 1994). Recently, in
the books (Paulo, 2010) appears all solutions in the supersymmetric scheme similar at our
formalism. We have shown that they are also exact solutions to the rest of the Bianchi Class
A models in SB quantum cosmology, under the assumed semi-general factor ordering (94).
Different procedures seem to produce this particular quantum state, where S is a solution to
the corresponding classical Hamilton-Jacobi equation (107a).

7. Appendix: Energy momentum tensor

From Eq. (6) we see that the effective energy momentum tensor of the scalar field is

Tα β = F(φ)
(

φ,αφ,β −
1

2
gαβφ,γφ,γ

)

, (117)
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this energy momentum tensor is conserved, as follows from the equation of motion for the
scalar field

∇βTα β = ∇β

[

F(φ)

(

φ,αφ,β −
1

2
gαβφ,γφ,γ

)]

= F′(φ)φ,β

(

φ,αφ,β −
1

2
gαβφ,γφ,γ

)

+F(φ)

(

φ
;β

,α φ,β + φ,αφ
;β

,β − 1

2
gαβφ

;β
,γ φ,γ − 1

2
gαβφ,γφ,γ;β

)

= F′(φ)
(

1

2
φ,γφ,γφ,α

)

+ F(φ)
(

φ
;β

,α φ,β + φ,αφ
;β

,β − gαβφ
;β

,γ φ,γ
)

=
1

2
φ,α

(

F′(φ)φ,γφ,γ + 2F(φ)φ
;β

,β

)

= 0. (118)

Now we proceed to show that the energy momentum tensor has the structure of an imperfect
stiff fluid,

Tα β = (ρ + p)UαUβ + pgα β = (2ρ)[UαUβ +
1

2
gα β], (119)

here ρ is the energy density, p the pressure, and Uα the velocity If we choose for the velocity
the normalized derivative of the scalar field, assuming that it is a timelike vector, as is often
the case in cosmology, where the scalar field is only time dependent

Uα = S−1/2φ,α, S = −φ,σφ,σ. (120)

It is evident that the energy momentum tensor of the SB theory is equivalent to a stiff fluid
with the energy density given by

ρ =
S F(φ)

2
= −φ,σφ,σ F(φ)

2
. (121)

Therefore the most important contribution of the scalar field occurs during a stiff matter phase
that is previous to the dust phase.

8. Appendix: Operators in the βi variables

The operators who appear in eqn (95) are calculated in the original variables (Ω, β+, β−);
however the structure of the cosmological potential term gives us an idea to implement new
variables, considering the Bianchi type IX cosmological model, these one given by eqn (22).
The main calculations are based in the following

∂

∂Ω
=

∂

∂β1
+

∂

∂β2
+

∂

∂β3
,

∂2

∂Ω2
=

∂2

∂β2
1

+
∂2

∂β2
2

+
∂2

∂β2
3

+ 2

[

∂2

∂β1∂β2
+

∂2

∂β1∂β3
+

∂2

∂β2∂β3

]

,

∂

∂β+
=

∂

∂β1
+

∂

∂β2
− 2

∂

∂β3
,

∂2

∂β2
+

=
∂2

∂β2
1

+
∂2

∂β2
2

+ 4
∂2

∂β2
3

+ 2

[

∂2

∂β1∂β2
− 2

∂2

∂β1∂β3
− 2

∂2

∂β2∂β3

]

,

∂

∂β−
=

√
3

(

∂

∂β1
− ∂

∂β2

)

,
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∂2

∂β2
−

= 3

(

∂2

∂β2
1

+
∂2

∂β2
2

− 2
∂2

∂β1∂β2

)

. (122)

So, the operator (∇)2, �, ∇S∇W are written as

(∇)2 = Gμν ∂

∂ℓμ

∂

∂ℓν
, Gμν = diag(−1, 1, 1), ℓ

μ = (Ω, β+, β1)

= 3

{

(

∂

∂β1

)2

+

(

∂

∂β2

)2

+

(

∂

∂β3

)2

− 2

[

∂

∂β1

∂

∂β2
+

∂

∂β1

∂

∂β3
+

∂

∂β2

∂

∂β3

]

}

= 3

{

[

∂

∂β1
+

∂

∂β2
+

∂

∂β3

]2

− 4

[

∂

∂β1

∂

∂β2
+

∂

∂β1

∂

∂β3
+

∂

∂β2

∂

∂β3

]

}

,

� = Gμν ∂2

∂ℓμ∂ℓν
= 3

(

∂2

∂β2
1

+
∂2

∂β2
2

+
∂2

∂β2
3

)

− 6

(

∂2

∂β1∂β2
+

∂2

∂β1∂β3
+

∂2

∂β2∂β3

)

,

∇S · ∇W = Gμν ∂S

∂ℓμ

∂W

∂ℓν

= 3

(

∂S

∂β1

∂W

∂β1
+

∂S

∂β2

∂W

∂β2
+

∂S

∂β3

∂W

∂β3

)

−3

(

∂S

∂β1

∂W

∂β2
+

∂S

∂β1

∂W

∂β3
+

∂S

∂β2

∂W

∂β3
+

∂S

∂β2

∂W

∂β1
+

∂S

∂β3

∂W

∂β1
+

∂S

∂β3

∂W

∂β2

)

. (123)
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