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Detecting edges is a very well known subject in the image#processing field. Edge detection is 
the process of the localization of significant discontinuities in the grey level image and the 
identification of the physical phenomena that originated them. Those significant intensity 
changes occur at different resolution or scales for a given image. As suggested by Rosenfeld 
and Thurston (Rosenfeld & Thurston, 1976) and Marr (Marr, 1982), we can obtain a 
description of the image changes at different scales combining the information given by an 
edge detector applied at different resolutions. This is the aim of the work presented in this 
paper. 
The first aspect to be covered by multiresolution analysis is the filter chosen to accomplish 
the low#pass filtering of the image at different scales. At a single resolution, low pass 
filtering is imposed because differentiation is an ill#posed problem (Torre & Poggio, 1984). 
The needed regularization process is implemented by means of a low pass filter. Marr 
(Marr, 1982) proposed the Gaussian filter because its optimal behaviour in terms of the 
smoothing and the localization in both the spatial and frequency domains. This filter has 
been commonly used in edge detectors. In a multiresolution approach the first or second 
directional derivatives of the low pass filtered image with Gaussians of different widths are 
used to detect edges. In the Bergholm edge focusing method (Bergholm, 1987) various edge 
maps extracted at different scales are integrated allowing distinguishing shadows contours 
from perfect ones using Canny’s operator (Canny, 1986) with different widths. Another 
possibility is to describe the image in terms of the scale space as proposed by Witkin 
(Witkin, 1983) and to detect edges in terms of the zero crossing of the Laplacian operator 
with different widths (Park et al., 1995) (Eklundth et al., 1982). 
Other multiresolution methods have been proposed. Mallat and Zhong (Mallat & Zhong, 
1992) related multiscale edge detection with the discrete wavelet transform (DWT). They 
proposed a wavelet to perform edge detection and they showed that the evolution of 
wavelet local maxima across scales characterizes the shape of irregular structures. In our 
work we will use the wavelet#based algorithm proposed by Mallat and Zhong and we will 
show the condition that must be satisfied by the Gaussian filter to be comparable with the 
Mallat and Zhong’s wavelet. Our aim is to detect and classify different edge types. Various 
edge profiles have been proposed. Rosenfeld (Rosenfeld & Kak, 1976) proposed the step, 
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ramp, pulse and stair as the basic edge types. He stated that these profiles are suited for a 
first intuitive classification of the edges found in the contours of real images. 
William and Shah (Williams & Shah, 1990, 1993) have studied these edge types using the 
first directional derivative of the Gaussian. Some other profiles like the blurred step have 
also been proposed and analyzed (Ziou & Tabbone, 1993). In a first step of this work we are 
going to analyze the evolution of the modulus of the wavelet coefficients at the edge 
position in order to classify the edges into four different profiles: step, ramp, stair and pulse 
(Beltrán et al., 1994). Then we will propose a general schema to detect, analyze and classify 
different edge types. 
Due to the high pass filtering operation involved in the edge detection algorithms, the noise is 
always amplified when detecting edges. Thresholding has been the most common way to 
eliminate the irrelevant or noise detected edges (Canny, 1986; Marr, 1982). To validate the 
proposed classification schema we will present the noise (Gaussian noise) as a new edge class 
(Beltrán et al., 1998). Then, we have analyzed this contour type and we have modified the 
proposed classification algorithm to include the noise as a new edge type. With the noise edges 
labelled we can easily implement a noise#filtering algorithm. Finally, we have developed a 
new classification algorithm including other edge profile models, such as the roof, ridge and 
two non#antisymmetrical step profiles, like the ones proposed by Paillou (Paillou, 1994). 
This chapter is divided as follows. Section 2 presents a survey of the wavelet formalism 
introduced by Mallat and Zhong. Then, we will show the geometrical contour types: step, 
ramp, pulse and stair. Section 3 presents the edge detection algorithm including the wavelet 
algorithm implementation. Section 4 presents the classification algorithm implementation 
details as well as the classification results obtained processing a 256x256 grey level synthetic 
image with four objects: a circle, a square, a triangle and a narrow line, each one having a 
different contour type. Section 5 deals with the characterization of the noise as a new type of 
contour. Section 6 copes with the new contour types just introduced, the modified 
classification algorithm together with the obtained results. In section 7 we present the main 
conclusions and the future work.  

 ����	��	������!�
�
�

Mallat and Zhong (Mallat & Zhong, 1992) introduced the relationship between the wavelet 
transform and a multiresolution edge detection algorithm. We are going to briefly 

summarize those results. Let be f(x,y) ∈ L2(R2� an image and ψ(x,y) a wavelet. The 
bidimensional wavelet transform of f(x,y)
is defined as: 

 
y v1 x u

W f(u,v) f(x,y) ψ ,s
s s s

+∞+∞ −− 
= ∫ ∫  

 −∞−∞
 (1) 

If we define the dilation by a factor s as: 

 ( ) y1 x
ψ x,y ψ ,s s s s

 
=  

 
 (2) 

and ( ) ( )ψ x,y ψ #x,#y=ɶ ɶ , we can rewrite (1) as a convolution:  

 ( ) ( )W f u,v f ψ u,vs s= ∗ ɶ  (3) 
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So, as expressed in (3), the wavelet transform can be seen as the filtering of f(x,y) by the filter 

ψs
ɶ (x,y), that is a variable width bandpass filter (Mallat, 1989). It is possible to define N 

directional wavelets ψi(x,y) (1 ≤ i ≤ N), satisfying energy conservation properties. In such a 

case the directional wavelet transform of f(x,y) is defined as: 

 ( ) ( )i iW f u,v f ψ u,vs s= ∗ ɶ  (4) 

Equation (4) represents the filtering of f(x,y) by the bidimensional, directional and bandpass 

filter iψs
ɶ (x,y). 

We can define the Discrete Wavelet Transform (DWT) by selecting the scales inside a dyadic 

grid; that is to say, the scale could be expressed as S=2j with j ∈ Z. Therefore, for discrete 

signals, we can understand the 2#D wavelet transform as the result of filtering the 2#D signal 

(the original image) with a bandpass directional FIR filter. 

Mallat and Zhong (Mallat & Zhong, 1992) designed a function specially suited for edge 

detection purposes, which is a wavelet. This function is not a orthogonal wavelet, so the 

only condition to be satisfied by ψ(x,y) is: 

 ( )ψ u,v dudv 0
+∞+∞

=∫ ∫
−∞−∞

 (5) 

We can define two functions ψ1(x,y) and ψ2(x,y)
as: 

 
1 2θ(x,y) θ(x,y)

ψ (x,y)  ,  ψ (x,y)
x y

∂ ∂
∂ ∂

= =  (6) 

Where θ(x,y) is a smoothing function, that is to say, the integral over x and y is one, and it 

converges to zero at infinity. With these conditions is easy to show that both ψ1(x,y)
 and


ψ2(x,y) satisfy (5), so they are wavelets. Following equation (3) we can say that the wavelet 

transform of f(x,y) is: 

 

1 1W f(x,y) f ψ (x,y)s s
2 2W f(x,y) f ψ (x,y)s s

= ∗

= ∗

ɶ

ɶ

 (7) 

From (6) and (7) it can be shown that the wavelet transform is the gradient of the image 

smoothed by a factor or scale s. It can be expressed as:  

 

(f θ )1 sW f(x,y) xs s s (f θ )s2W f(x,y) (f θ )s s
y

∂
∂
∂
∂

 ∗  
   = = ∇ ∗
   ∗   

 

�

 (8) 

We can define the modulus M and the phase Φ of the gradient at scale s as: 

 ( ) 2 21 2
s s sM (f θ ) W f(x,y) W f(x,y)∇ ∗ = +

�
 (9) 
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 ( )
2
s

s 1
s

W f(x,y)
(f θ ) atan

W f(x,y)

 
Φ ∇ ∗ =   

 

�
 (10) 

A point (x0,y0) will be an edge point of the smoothed image f *θs (x,y) if in this point there is 

a relative maximum of M in the direction addressed by Φ. The above statement is the 

classical definition of edge detection proposed by Canny [5]. In the wavelet case we have a 

discrete set of scales 2 �� =  (0 ≤ j ≤ J), and we can calculate the edges at each scale and not at 

an only one scale as described in Canny’s work. So, we can conclude that we can implement 

a multiresolution edge detection algorithm by means of the 2#D wavelet transform. The 

smoothing function could be a new defined function, as in Mallat and Zhong’s work, or a 

Gaussian function, as in Canny’s work.  

Mallat and Zhong (Mallat & Zhong, 1992) defined θ(x,y) as a separable bidimensional cubic 

spline, so ψ(x,y) is a separable bidimensional quadratic spline. Their 1#D expressions are: 

 

8 83 2x 8x 8x        if    1 x 1 2 
3 3

43 28x 8x              if   1 2 x 0
3

43 28x 8x                 if      0 x 1 2
3

8 83 2x 8x 8x     if      1 2 x 1
3 3

0                                   otherwise

θ̂(x)

 + + + − ≤ ≤ −

− − + − ≤ ≤

=  − + ≤ ≤

− + − + ≤ ≤












 (11) 

 

28x 16x 8        if    1 x 1 2 

224x 16x         if   1 2 x 0

2(x) 24x 16x            if      0 x 1 2

28x 16x 8      if      1 2 x 1

0                           otherwise

ψ̂

 + + − ≤ ≤ −
− − − ≤ ≤

=  − ≤ ≤

− + − ≤ ≤



 (12) 

In the 2#D case we can define ˆ ˆθ(x,y) θ(x)θ(y)= and ˆ ˆψ(x,y) ψ(x)ψ(y)= . We can compare the 

wavelet and the Gaussian functions behaviour. In figure 1 we can observe that both 

functions present a similar aspect. We have obtained a relationship between the Gaussian 

width σ and the scale s of the wavelet analysis. The Gaussian normalization constant is: 

1
N

2̟ σ
=

⋅
, and the smoothing function value at the origin is 

4
θ(0)

3
= . 

Equating both quantities we obtain σ= 0.3. So, to obtain a similar analysis with the wavelet 
and the Gaussian function, the Gaussian width and the scale should be related by the 
aforementioned expression. 
Now we will to present the edge profiles considered initially. We have considered that each 
profile contour is a function that represents a change in the grey level with respect to the 

image dimensions. In this work we will name Ui the contour height, ω the contour width, x0 
the contour position (at the middle of the contour) and s the scale. 

www.intechopen.com



���������������������
�������������������������

�����
������
������
����������������	
������
�
�������

�

�!�

 

Fig. 1. Left: Solid line: Smoothing function. Dotted line: Gaussian with σ = 0.3. Right: Solid 

line: Wavelet. Dotted line: First derivative of Gaussian with σ = 0.3. 

 ���"�	��

A step profile is shown in figure 2. We have named x0 the step location and U0 the step 
height. Let be u(x) the step function.  

 0 0

0

U   if x x
u(x)

0     if x x

≥
= 

<
 (13) 

 

 

Fig. 2. Step profile. Horizontal axis represents pixels. Vertical axis represents grey level. 

 � �#����

The ramp profile is drawn in figure 3. The point x0 is the middle point of the ramp; U0 is the 

height and ω is the ramp width. The ramp slope is m = U0/ω. Let be r(x) the ramp function.  

 

0

0 0 0

0 0

ω
0            if x x

2
ω ω

r(x) mx r   if x x x
2 2

ω
U          if x x

2

 < −



= + − ≤ ≤ +



> +

 (14) 

 

 

Fig. 3. Ramp profile. Horizontal axis represents pixels. Vertical axis represents grey level. 
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A stair profile with two steps, named s(x), is shown in figure 4. We have named the point x0 

the middle of the stair, ω is the stair width and U0 and U1 are, respectively, the steps height.  

 

0

1 0 0

0 0

ω
0    if  x x

2
ω ω

s(x) U   if  x x x
2 2

ω
U   if  x x

2

 < −



= − ≤ ≤ +



> +

 (15) 

 

 

Fig. 4. Stair profile. Horizontal axis represents pixels. Vertical axis represents grey level. 

 �%�&��
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A pulse profile, named p(x), is shown in figure 5. The point x0 is the middle of the pulse, ω is 
the width. U0 and U1 are, respectively, the maximum and minimum height. 

 

0

0 0 0

1 0

ω
0    if  x x

2
ω ω

p(x) U   if  x x x
2 2

ω
U   if  x x

2

 < −



= − ≤ ≤ +



> +

 (16) 

 

�
Fig. 5. Pulse profile. Horizontal axis represents pixels. Vertical axis represents grey level. 
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The processing algorithm we have used is the edge detection algorithm proposed in Mallat 
and Zhong’s work (Mallat & Zhong, 1992). For analysis purposes we have used six of the 

www.intechopen.com



���������������������
�������������������������

�����
������
������
����������������	
������
�
�������

�

�#�

eight possible scales for a 256x256 grey level image. The scale s forms a dyadic sequence (s = 
2j, j = 1..6). The algorithm is summarized in figure 6, and table 1 shows the values of the 

normalization coefficients λj. The algorithm outputs are twelve 256x256 grey level images 
for each original one, six corresponding to the modulus of the derivative and six to the 
phase. 
As we have pointed out in section 2, it is possible to perform a multiresolution analysis 

changing the smoothing function. The only difference between a typical Gaussian 

algorithm and the wavelet one is the filtering stage. In this case, instead of using the filter 

proposed by Mallat and Zhong, a Gaussian filter with a different size for each scale could 

be used. It leads to a different way to obtain the derivative of the image at different scales. 

A more detailed discussion about the Gaussian#based processing algorithm is given in 

Beltrán (Beltrán et al., 1998). Processing the image with the wavelet filter is faster, in 

computational cost terms, because the non#zero coefficients are constant independent on 

scale. 

In order to obtain the contour image, a top#down searching algorithm has been 

implemented. For accepting a maximum at one scale to be an edge, it has been imposed that 

the maxima have to be propagated to the lowest scale with no change in the gradient 

direction between scales. When a maximum is found at one scale s we look for extrema in 

the lower scale within an interval of 2s centered in the extrema position at the scale s, in the 

direction given by the gradient. This interval is greater than the theoretical one found by 

Beltrán (Beltrán, 1994), in order to cover the maxima displacement.  

The maximum appearing in the lower scale has to have the same direction that the upper 

one. The best edge position is given at the lowest scale. The first scale to be analyzed 

depends strongly on the image. Empirically we have noticed that this scale has to be no 

higher than either the 5th or the 6th. Otherwise, we have a strong blurring in the image 

that gives us information of global objects rather than finer patterns, like edges. The 

procedure has been iterated until first scale. A stop could be done at an upper scale, 

depending on the details we are looking for. If we were looking for finer details we 

should reach the first scale. A global threshold has been included in order to discard 

irrelevant edges. 

 

j λj 

1 1.5 

2 1.125 

3 1.031 

4 1.007 

5 1.001 

6 1 

Table 1. Wavelet filtering normalization coefficients.  

At the output of this block, we obtain a black and white image with the edge positions, and, 

for each detected edge, the values of the modulus of the gradient in each scale. The final step 

is the contour classification, which is made by analyzing the evolution of the modulus of the 

gradient across scales. 
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Fig. 6. Wavelet Algorithm.  
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To obtain real evolution patterns in an image we have analyzed the evolution across scales 
of the value of the wavelet transform modulus for each contour type at the point at which 
the edge is located in our test image (see figure 7). 
 

 

Fig. 7. Test image. Each object has a different contour profile. Circle: step. Square: ramp. 
Triangle: stair. Straight line: pulse.  

In figure 8 we present for each contour class both the median value (normalized to the 
highest value for each pixel) and the deviation for each scale.  
It can be seen a decreasing behavior in the evolution for each contour class in the upper 
scales due to the interaction between the opposite contours in the image. This decreasing 
pattern is not present in the 1#D case. From those results we can say that a step profile, 
figure 8(a), is characterized by an almost constant evolution across scales. The evolution 
pattern for a ramp, presented in figure 8(b), is a continuous growing from low to high scales. 
A constant value followed by an increasing in the normalized modulus of the gradient in the 
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           (a)                (b) 

  
             (c)              (d) 

Fig. 8. (a) Step evolution. (b) Ramp evolution. (c) Stair evolution. (d) Pulse evolution. (See 
text for details) 

edge position characterizes a stair contour, figure 8(c). As shown in figure 8(d) the pulse 
profile presents a sharp decreasing in the upper scales due to the interaction between the 
positive and negative slopes.  
Figure 9 shows a block diagram of the edge detection and classification algorithm. An 
immediate conclusion is that it is possible to implement an algorithm to detect and classify the 
above#characterized four profiles using the wavelet transform coefficients. Then, we are able to 
distinguish one contour type from another one only by looking at the coefficients evolution at 
the appropriate contour point and with no pre#processing in the coefficient values. 
The classification engine is based in a second#order polynomial#fitting algorithm. We have 
chosen a second order taking into account the easiness of implementation of properties such 
as derivability, continuity, concavity, and convexity. Analyzing the concavity and convexity, 
zero crossing and minimum abscissa and ordinate of the fitted polynomial we are able to 
distinguish between the four profiles presented. Typical values of the coefficients are 
presented in table 2 and the corresponding polynomial in figure 10. The second order 
polynomial is of the form: f(x)=a0+a1x+a2x2. We have used a standard polynomial#fitting 
algorithm with the 6 discrete values obtained for each contour at the edge location. 
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Fig. 9. Edge detection and classification algorithm. 

 

 a0 a1 a2 

Step 0.8295 0.1026 #0.0187 

Ramp #0.0249 0.3678 #0.0362 

Stair 0.3562 0.0894 0.0005 

Pulse 1.0087 #0.0732 #0.0131 

Table 2. Typical coefficients values of the fitted polynomial.  

The decision algorithm is presented in figure 11. We first analyze the convexity of the 
polynomial (a2>0), in the affirmative case we have a stair edge. In case of having a concave 
polynomial we analyze its slope. In case of a positive slope, we will have a ramp edge. In the 
opposite case, we will have to compute the zero crossing value. If this value is greater than, 
approximately, 6 the edge will be a step, otherwise it will be a pulse. 
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           (a)     (b) 

 
            (c)    (d) 

Fig. 10. Dotted lines: Original values. Solid lines: polynomial. (a) Polynomial fitting for the 
step profile. (b) Polynomial fitting for the ramp profile. (c) Polynomial fitting for the stair 
profile. (d) Polynomial fitting for the pulse profile. 

 

 

Fig. 11. Decision algorithm for edge classification. 
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As some preliminary results we can see the correct classification made in figure 12 for our 
test image. It is important to note that no post#processing (edge tracking, non#maxima 
suppression, etc.) has been made in the obtained contour image. 
 

 

Fig. 12. From left to right and top to bottom: step, ramp, pulse, and stair classified profiles. 

'��(��
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As a first practical result of our processing schema we have analyzed our algorithm 
behavior with respect to noise. In order to obtain a proper characterization of the noise we 
have to compare the evolution in the coefficients shown by the noise with that presented by 
other kind of profiles. Firstly, we have processed a simple image with only Gaussian noise. 
Secondly, we have analyzed the image with the edge detection and classification algorithm 
as described in section 4. The mean values of the modulus of the gradient evolution at the 
edge points are shown in figure 13a. This pattern characterizes isolated Gaussian noise. 
 

  

Fig. 13. (a) Mean values of Gaussian noise evolution. (b) Noise dependence on distance. 

But noise is rarely presented isolated in a real image, and its evolution depends strongly on 
the distance between the noise and the contour of the objects present in the image. To obtain 
the noise evolution we have processed the image of a simple square with a step profile 
corrupted with Gaussian noise. The evolution in the values of the noise, in terms of the 
distance between the noise and the square, are presented in figure 13b. These patterns serve 
us to classify and differentiate the noise from other contour types. We can see that the 
evolution pattern for a noise contour located very close to a real contour is quite similar to 
the stair evolution. This is the expected behavior because the stair has been defined as closed 
steps. We can include this contour type in our classification engine.  
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The final decision algorithm is presented in figure 14. We have to distinguish between the 
stair type and the noise one. If we have a convex polynomial (a2 > 0) we have a stair or noise 
edge. They are differentiated by means of the minimum ordinate value. If the minimum 
ordinate is close to 0 it is classified as a noise edge. 
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Fig. 14. Decision algorithm for edge classification. 

To analyze the robustness of the algorithm we have corrupted our test image with 20 dB of 
Gaussian noise. The classification results are shown in figures 15 and 16, respectively. No 
thresholding has been applied to the contour image.  
 

    
           (a)                (b)     (c)        (d) 

Fig. 15. Test image corrupted with 20 dB Gaussian noise. (a) Detected edges without 
thresholding. (b) Non noise edges. (c) Noise edges. (d) Detected edges with Canny 
algorithm. 

 

� � � �
           (a)                (b)      (c)        (d) 

Fig. 16. Edge profiles detected for the test image corrupted with 20 dB Gaussian noise. (a) 
Step edges. (b) Ramp edges. (c) Stair edges. (d) Pulse edges. 
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It can be seen that the noise is perfectly classified (figure 15c) and can be eliminated by 

simply removing this edge type (figure 15b). Figure 15d shows the output of the Canny edge 

detector. In this case Canny operator is more sensitive to noise than our algorithm. Figure 16 

shows the different edge profiles detected.  

���(	+����������*�	
�

The geometrical characterization of contour types gives us very promising results. To 

confirm the ability of our algorithm to distinguish different contour types we present here 

four new types of edge profiles that represent a more general gray#level transition than a 

simple step. We have included the roof profile, the ridge profile and two non#

antisymmetrical step profile models that have been already considered previously by 

Paillou (Paillou, 1994). 

����#����

A roof profile, named R(x), is shown in figure 17. We have named the point x0 the middle of 

the roof, ω
is the roof width and U0 the roof height. 

 

0

0 0

0 0

0 0

0

ω
0                 if  x x

2
ω

mx k       if  x x x
2

r(x) U               if  x x

ω
mx k     if  x x x

2
ω

0                 if  x x
2


< −


 + − ≤ ≤


= =

− + ≤ ≤ +



> +


 (17) 

 

 

Fig. 17. Roof profile. Horizontal axis represents pixels. Vertical axis represents grey level. 

�� �#���	�

A ridge profile, named R(x), is shown in figure 18. The point x0 is the middle of the ridge, ω1 

is the width of the first ramp, ω2 is the width of the plain part, while ω3 is the width of the 

second ramp. U0 is the ridge height. 
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

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

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
 > + +

 (18) 

 

 

Fig. 18. Ridge profile. Horizontal axis represents pixels. Vertical axis represents grey level. 
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The first non#antisymmetrical step profile, named nu(x), is shown in figure 19. The point x0 

is the step location, ω1 is the width of the first ramp and ω1 is the width of the second ramp. 
U1 and U3 are their respective heights. U2 is the step height at position x0. The first non#
antisymmetrical step function can be written as: 

 

0 1

0 1 0 1 2

0 1 2 0 1 2

3 0 1 2

0                 if  x x ω

mx k         if  x ω x x ω ω
nu(x)

mx k         if   x ω ω x x ω ω

U                if  x x ω ω

< −
 + − ≤ ≤ + −

= 
+ + − ≤ ≤ + +

 > + +

 (19) 

 

 

Fig. 19. First non#antisymmetrical step profile. Horizontal axis represents pixels. Vertical 
axis represents grey level. 
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The second non#antisymmetrical step profile, named nu2(x), is shown in figure 20. The point 

x0 is the middle of the main ramp, ω1 is the width of the first ramp, ω2 is the width of central 

ramp and ω3 is the width of the third ramp, respectively. U1, U2 and U3 are their respective 
heights (see figure). Let be nu2(x) the second non#antisymmetrical step function. 

 

0 1

2
0 1 0 1

2 2
0 1 0 1

2 2
0 1 3 0 1 3

2
3 0 1 3

0                    if  x x ω

ω
mx k           if  x ω x x ω

2
ω ω

nu2(x) cx k            if   x ω x x ω
2 2

ω ω
mx k           if  x ω ω x x ω ω

2 2
ω

U                  if  x x ω ω
2

< −

+ − ≤ ≤ + −

= + + − ≤ ≤ + +

+ + + − ≤ ≤ + + +

> + + +















 (20) 

 
 
 
 

 
 

Fig. 20. Second non#antisymmetrical step profile. Horizontal axis represents pixels. Vertical 
axis represents grey level. 
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Finally, we will include the four contour types in our classification algorithm. We will also 
work on the basis of the polynomial#fitting algorithm, by following characteristics such as 
convexity, concavity, zero crossings and minimum abscissa and ordinate as we did 
beforehand. Furthermore, we have also used a standard polynomial#fitting algorithm with 
the 6 discrete mean values obtained for each contour at the edge location. However, in this 
case, a third order polynomial fitting will serve us to classify some of the new profile models 
introduced above. In particular, the third order coefficient pattern matching will serve us to 
discriminate among the ridge, roof and ramp profiles, respectively. Maximum value at 
scales 5 or 6 and comparison between values at two different scales are also used. Figure 21 
shows the complete decision algorithm for edge classification. 
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Fig. 21. Modified decision algorithm for edge classification. 

The polynomial that characterizes the roof profile (as well as the ridge profile) is concave 

and with a positive slope in the first three scales, in the same way as the ramp profile does. 

In order to discriminate among these profile models just mentioned above, it is necessary to 

calculate the coefficient pattern for several fitting polynomials, third, fourth and fifth order). 

We find a remarkable difference among the ridge profile on one side, and the ramp and roof 

profiles on the other side. The coefficient pattern (#,+,#,+) ≡ (a0,a1,a2,a3), characterizes the 

ridge profile. In order to distinguish between the ramp and roof profiles, we have realized 

that the mean value at scale 6 is greater that the one at scale 2 in a ramp profile, whereas 

both are similar in a roof profile. This is the condition to put aside both profiles.  

As far as antisymmetrical step profiles are concerned, we must say that they both have 

some properties like the stair profile (convexity and minimum greater than zero). It can be 

shown that if the mean value at scale 6 is smaller than that at scale 1, we will obtain a stair 

profile, otherwise we will have the first non#antisymmetrical step profile. For the sake of 

algorithm efficiency, we have included a second condition: a stair profile has the 

maximum value at scales 5 or 6. In order to obtain the second non#antisymmetrical step 

profile, we compute whether the mean value at scale 2 is, at least 1.5 times the mean value 

at scale 1. 
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In order to show the results of the modified algorithm, we have created a new test image, 

including the new edge profiles. Figure 22 shows the new test image, together with the 

different detected edge profiles. Results with a real image are shown in figures 23 and 24. 

 
 

   
              (a)   (b)       (c) 
 

   
              (d)   (e)       (f) 
 

   
              (g)   (h)       (i) 
 

Fig. 22. (a) Test image. (b) Ramp edges. (c) Step edges. (d) Pulse edges. (e) Stair edges. (f) 

Ridge edges. (g) Roof edges. (h) First non#antisymmetrical step edges. (i) Second non#

antisymmetrical step edges. 

 

   
              (a)   (b)       (c)  

Fig. 23. (a) Original image. (b) Contour image. (c) Contour image after noise filtering. 
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              (a)   (b)       (c) 

   
              (d)   (e)       (f) 

   
              (g)   (h)       (i) 

Fig. 24. (a) Noise edges. (b) Ramp edges. (c) Step edges. (d) Pulse edges. (e) Stair edges. (f) 
Ridge edges. (g) Roof edges. (h) First non#antisymmetrical step edges. (i) Second non#
antisymmetrical step edges. 
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In this work, we have developed a new algorithm for edge detection and classification 

purposes using the coefficients given by the DWT. We have shown that Mallat’s wavelet is a 

very suitable tool to perform both edge detection and contour analysis. We have presented 

the results obtained with a 256x256 synthetic image with several objects, each one with a 

different contour profile, obtaining a very good segmentation. At this point, we are not only 

able to see the evolution across scales of the edges proposed by Rosenfeld (Rosenfeld & 

Thurston, 1976) like in Williams and Shah’s work (Williams & Shah, 1990, 1993), but we are 

also able to classify them.  

A new edge class has been introduced: the noise. This edge type presents a particular 

evolution across scales. This has allowed us to implement a simply noise filtering algorithm 

based on edge classification.  

The classification algorithm we have developed is based on second order polynomial fitting 

of the modulus of the wavelet transform coefficients. The mathematical behaviour of the 

polynomial is a robust indicator of the edge class. This kind of classification is good enough 

to obtain the five different profiles analyzed: step, ramp, stair, pulse, and noise. The 

robustness of the proposed classification schema has been tested including other profiles 
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appeared in the literature: roof, ridge and two kinds of non#antisymmetrical step models. A 

third order polynomial#fitting algorithm is needed to obtain a proper classification. This 

algorithm can be viewed as a new framework to classify different contour types.  

Some preliminary results, like the behaviour of ramp edges, are promising to obtain a 
classification of the contours appearing in real images (shadows, changes in illumination, 
corners and so on). A future work to perform, which has not been covered in this paper, is 
the study of the evolution across scales of these real edges. If there were some special 
evolution pattern for these real edge types it would be very important information for the 
next stages of an image understanding algorithm. 
An edge#closing algorithm based on the edge type is under developing in this moment. The 
extra information provided by the classification stage gives very good indicators to close 
edges and extract objects in an image. The processing results presented in this work have 
been obtained using Matlab®. 
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