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1. Introduction

The advantages of the wavelet transform over conventional transforms, such as the Fourier
transform, are now well recognized. Because of its excellent locality in time-frequency
domain, wavelet transform is remarkable and extensively used for signal analysis,
compressing and denoising. Defining DWT by Mallat [1] provided possibility of its digitally
hardware or software implementation. The discrete wavelet transform (DWT) performs a
multiresolution signal analysis which has adjustable locality in both the space (time) and
frequency domains [1]. Unlike the Fourier transform, the wavelet transform has many
possible sets of basis functions. A trade-off can be made between the choice of basis functions
and the complexity of the corresponding hardware implementations. Using finite impulse
response (FIR) filters and then subsampling is the classical method for implementing the
DWT. Due to the large amount of computations required, there have been many research
efforts to develop new rapid algorithms [2]. In 1996, Sweldens presented a lifting scheme
for a fast DWT, which can be easily implemented by hardware due to significantly reduced
computations [3]. This method is entirely based on a spatial interpretation of the wavelet
transform. Moreover, it provides the capability of producing new mother wavelets for
the wavelet transform, based on space domain features. Due to recent advances in the
technology, implementation of the DWT on field programmable gate array (FPGA) and digital
signal processing (DSP) chips has been widely developed. As described in Sect. 3, in the
lifting scheme the structural processing elements, including multipliers, are arranged serially;
hence, the number of multipliers in each pipeline stage determines the clock speed of the
structure. Based on [4], the main challenges in the hardware architectures for 1-D DWT are
the processing speed and the number of multipliers, while for 2-D DWT it is the memory
issue that dominates the hardware cost and the architectural complexity. The reason is the
limitation of the on-chip memory and the power consumption [4,5].

2. DWT structures

The wavelet transform provides a time-frequency domain representation for the analysis
of signals. Therefore, there are two main methods to produce and implement wavelet
transforms. These methods are based on time domain or frequency domain features. The
frequency based method is Filter Banks (FB) and the time based one is called Lifting Scheme
(LS). We will describe them in following sections.
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2.1 Filter banks structure

In the FB method, for one level of wavelet decomposition, the input signal is divided into two
separate frequency parts by passing it simultaneously through a pair of low pass, H(z), and
high pass, G(z), filters, as shown in Fig. 1. Then, subsampling the filter’s output to produce
the low pass and high pass outputs (s,d). Therefore, the FB method performs the DWT based
on convolving filter taps and samples of the input signal. H(z) and G(z) can be written in this
form:

H(z) = h0 + h1z−1 + h2z−2 + ... + hN z−N

G(z) = g0 + g1z−1 + g2z−2 + ...+ gMz−M.

G(z) 2
d

H(z) 2
s

x

Fig. 1. Filter Banks Block diagram

As an example consider the CDF(2,2) wavelet. H(z) and G(z) for this transform are
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The low pass filter has 5 taps and the high pass has 3 taps, so we call it 5/3 wavelet. Although
FB structure is the prior one but it is only capable of providing wavelet transforms in the
frequency domain and not in the time domain. Moreover, in general, the FB filter coefficients
are not integer numbers; hence, they are not appropriate for hardware implementation. In
addition, the number of arithmetic computations in the FB method is very large.

2.2 Lifting structure

The LS method is a new method for constructing and performing wavelets based on the time
(space) domain [3].
As shown in Fig. 2, at first the LS structure splits the input signal samples into even and odd
samples. Then P function is applied on even samples as a prediction function. The word
prediction is used here because P function predicts odd samples using even samples.The
difference between this prediction and the actual value of odd sample, creates the high
frequency part of the signal which is called "detail" coefficients (d). Then applying the U
function on detail signal and combining the result with even samples update them so that the
output coefficients (s) have the desired properties. Usually the desired properties of s is the
same as the properties of input signal (x) but with half size. So the s signal is an approximation
for x and is called approximation coefficient.
Note that the details and approximation coefficients (d,s) in lifting scheme, respectively, are
the same as high pass and low pass outputs in FB.
Based on the above description we have

d = xodd − P(xeven),

42 Discrete Wavelet Transforms: Algorithms and Applications
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VLSI Architectures of Lifting-Based Discrete Wavelet Transform 3

for prediction block and
s = xeven + U(d)

for update block.
Equations for P and U functions are determined based on the implemented wavelet, also the
number and arrangement of P and U blocks in the lifting structure are different for various
types of wavelets.

split P U

-

+
x

x

x

d

s

Fig. 2. Block diagram of a lifting stage

We can write matrix equations for P and U blocks respectively as following:
[

xeven(z)
d(z)

]

=

[
1 0

t(z) 1

]

︸ ︷︷ ︸

P

[
xeven(z)
xodd(z)

]

[
s(z)
d(z)

]

=

[
1 s(z)
0 1

]

︸ ︷︷ ︸

U

[
xeven(z)

d(z)

]

.

Generally speaking, if we have more than one lifting step, the matrix equation is(3):
[

s(z)
d(z)

]

=

[
k 0
0 1/k

] m

∏
i=1

[
1 si(z)
0 1

] [
1 0

ti(z) 1

] [
xeven(z)
xodd(z)

]

(1)

In (1), k and 1/k are normalization factors. The last matrix is used only for normalization
and may be omitted in many applications such as compression. The relation between FB
coefficients and LS equations is (3):

E(z) =

[
he(z) ho(z)
ge(z) go(z)

]

=

[
k 0
0 1/k

] m

∏
i=1

[
1 si(z)
0 1

] [
1 0

ti(z) 1

]

Matrix E(z) is called a polyphase matrix, where according to the FB structure, he and ho are
even and odd taps of the low pass filter and ge and go are even and odd taps of the high
pass filter, respectively. si(z) and ti(z) are related to filter coefficients in FB structure. In other
words si(z) and ti(z) can be obtained from FB by factorization algorithm presented in [5].
Example: Let consider the previous example, 5/3 wavelet, in LS. This wavelet consist of one
lifting step (one P unit and one U unit together is a lifting step). For this wavelet the prediction
of each odd sample in signal is the average of two adjacent even samples. Then P block
calculates the difference between the real value of signal sample and its prediction:

d(n) = x(2n + 1)−
1

2
[x(2n) + x(2n + 2)].

U block updates even samples to have the same property as the original signal. It uses two
most recently computed differences for update procedure:

s(n) = x(2n) +
1

4
(d(n − 1) + d(n)).
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So the matrix equation for 5/3 wavelet is

[
s(z)
d(z)

]

=

[√
2 0

0 1√
2

] [
1 1

4 (1 + z−1)
0 1

] [
1 0

−1
2 (1 + z) 1

]

︸ ︷︷ ︸
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and the polyphase matrix is
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.

We propose the following lemma for using in hardware implementation of LS as will be
describe in section 3.1.
Lemma1: Factorization can be done so that si(z) and ti(z) are first-order or lower-order
polynomials.
Proof sketch: After a polyphase matrix representing a wavelet transform with finite filters
is factored into lifting steps, each step becomes a Laurent polynomial. Since the difference
between the degrees of the even and odd parts of a polynomial is never greater than 2, it is
always possible to find the common divisor of the first-order or lower-order polynomials.
Also, the lifting factorization process is non-unique and so there is freedom in the form
of factorization. Hence, a classical wavelet filter can always be factored into first-order or
lower-order Laurent polynomials (i.e., si(z) or ti(z)).�
Compared to the FB method, the LS method has many advantages [6,7]. The most important
one is the number of arithmetic computations. In the LS method, the number of arithmetic
operations, additions and multiplications, is nearly one-half of that of the FB, which is why
the LS structure is more efficient. Even the amount of computations in some types of DWT
can be reduced to a quarter of that needed for FB [8]. Furthermore the LS structure has
the advantage of implementing the Integer Wavelet Transform (IWT) efficiently. IWT is a
wavelet-like transform in which all of the decomposition coefficients are integer [9]. The IWT
is appropriate for hardware implementation of the DWT [10]. The practical advantages of
using the lifting-based IWT have been described in [11]. Moreover, by using the LS, it is easy
to implement the DWT in a fully in-place method, which is memory efficient [2,12].
Regarding the above explanation, the LS structure is used to implement 5/3 and 9/7 wavelets,
which are used, respectively, for lossless and lossy compression in the JPEG 2000 standard.

3. 1-DDWT

In this section, some types of lifting-based DWT processing elements and 1-D structures are
explained.

3.1 Basic functional units for lifting scheme

As pointed out in Lema1, factorization can be done so that si(z) and ti(z) are first order or
lower-order polynomials. Figure 3 shows three possible categories of the basic processing
unit and the related polynomials in such a factorization. Different kinds of lifting-based DWT
architectures can be constructed by combining the three basic lifting elements. Most of the
applicable DWTs like 9/7 and 5/3 wavelets consist of processing units, as shown in Fig. 3(a),
which is simplified as Fig. 4. This unit is called the processing element (PE). In Fig. 4, A, B
and C are input samples which arrive successively. To implement the P unit, A and C receive

44 Discrete Wavelet Transforms: Algorithms and Applications
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Fig. 3. Basic functional units for LS

Fig. 4. Most convenient basic PE for LS

even samples while B receives odd samples. On the other hand, for the U unit, A and C
are odd samples and B receives even samples. Now, the structure of Fig. 4 can be used to
implement 5/3 and 9/7 wavelets. For instance, Fig. 5 and Fig. 6 shows the architecture of
the 5/3 and 9/7 wavelets respectively, where each white circle represents a PE. In Fig. 6, the

R R

P

U

R

Fig. 5. Lifting Structure for 5/3 wavelet

R R

P

P

U

U

R

Fig. 6. Lifting Structure for 9/7 wavelet

input and output layers are essential (basic) layers and are fixed for each wavelet type, while
by changing the number of extended layers, the type of wavelet can be changed accordingly.
For example, omission of a single extended (added) layer in Fig. 6 will change the related
architecture from 9/7 type to 5/3 type. The black circles in Fig. 6 represent needed stored data
for computing outputs (s,d). R0, R1 and R2, are registers that get their values from new input
samples and are called data memory. The other three black circles which store the results
of previous computations are known as temporary memory. The number of data memory

45VLSI Architectures of Lifting-Based Discrete Wavelet Transform
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registers is constant and is equal to 3, while the number of temporary memory registers is
(2e + 1), where e is the number of extended layers [13]. This structure can be implemented
by using combinatorial circuits so that, when the input samples are fed to the architecture,
outputs are ready to be used after a delay time. Also, the implementation of the structure
can be performed via a pipelined structure by adding some registers. The number of pipeline
stages depends on the added registers. Increasing the pipeline stages results in increases in
the clock frequency, system latency and number of required registers [4]. Note that 2-D DWT
architectures are constructed from 1-D DWT units as row-wise and column-wise DWT units.
The data of a complete row is saved for each memory in a column-wise unit. So, the sum of
the data and temporary memories in the column-wise DWT unit determines the amount of
needed internal memory [14,15,16]. The pipeline registers do not affect the required internal
memory [17].

3.2 1-D DWT structures

By combining the functional units described in previous section we can construct 1
dimensional DWT. The architectures presented in Fig. 7 can be applied to implement
the lifting-based 1-D DWT. The structure shown in Fig. 7(a) processes all input samples
concurrently, in parallel form. In Fig. 7(b), input samples arrive in pairs at consecutive clock
pulses and the results for each pair are ready after five cycles. However, due to the pipelined
structure, the clock frequency of Fig. 7(b) is higher than that of Fig. 7(a). There is a trade-off
between the clock speed and the number of pipeline stages.

4. Hardware architectures

4.1 Simple hardware implementation

Figure 7 shows an architecture proposed in [18] for the 9/7 wavelet. Indeed, it is the hardware
Implementation of Fig. 6. Accordingly, the architecture presented in Fig. 9 can be used for the
5/3 wavelet.

4.2 Minimizing hardware architectures

In the structure of Fig. 8, there are two similar cascaded blocks which are different only in the
multiplier’s coefficients. According to [19], one of the similar blocks may be omitted as shown
in Fig. 10. Note that in Figs. 7 and 8, the delay unit represented by z−1 is implemented by
one register, while in Fig. 10 each delay unit contains two consecutive registers. Investigation
on the architecture depicted in Fig. 10 shows that this hardware contains one P and one U
unit. Note that, as mentioned in Sect. 2, both the P and U units can be implemented with the
functional unit depicted in Fig. 4. Therefore, the structure shown in Fig. 10 is implemented
by two similar sections which can be reduced to one section. The resulting architecture for the
9/7 wavelet is shown in Fig. 11. In this structure, U1(0) represents the current output of the
U1 unit and P1(-1) represents the previous output of the P1 unit, and so on. The control signal,
"S", which has four states, selects the inputs of the multiplexers sequentially. In the first state,
two consecutive input samples arrive and the P1 function with α coefficient is performed on
them. In the second state, the U1 function with β coefficient will be imposed on the result of
the previous state (first state’s output). Similarly, in the third and fourth states, computations
for P2 and U2 units will be performed on the results of the previous states. Thus, P2 and
U2 produce final outputs for the structure. The data flow for achieving a pair of wavelet
coefficients using the proposed structure is shown in Table 1.

46 Discrete Wavelet Transforms: Algorithms and Applications
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x x x x

P

P
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(a)
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T=3

(b)

Fig. 7. 1-D DWT structures based on lifting a)parallel architecture b) sequential-pipelined
architecture
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P1

Z +

+

×β

i0

Z Z

+
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×γ

P2

Z +

+

×δ

U1

Z

U2

o1

o0

Fig. 8. Lifting-based hardware architecture for 9/7 wavelet

S in1 in2 out F(factor)
0 i1 i0 P1 α

1 i0(-1) P1 U1 β
2 P1(−1) U2 P2 γ
3 U1(−1) P2 U2 ζ

Table 1. Time sequence for structure of Fig. 11

The calculation of consecutive wavelet coefficients is periodic and continuous; therefore, the
sequence of control signal "S" for data flow can be easily generated by a simple logic circuit.
Figure 11 shows the hardware architecture for Fig. 11. The 5/3 wavelet implementation of
the proposed architecture is depicted in Fig. 13. It is clear that only the number of coefficients

47VLSI Architectures of Lifting-Based Discrete Wavelet Transform
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i1

+

+

×-1/2

R1

+

+

×1/4

i0

o1

o0

R2

R0

Fig. 9. Lifting-based hardware architecture for 5/3 wavelet

i1
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Z

+

+

×
γ

Z +
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×

Z
o1

o0

α
δ

β

Fig. 10. Propose architecture in [19]

Z

in2

+

+

×
F

in1 out

s

s

s

Fig. 11. Minimized structure

and delay block registers, that is, the z−1 blocks, have been modified from four to two. So,
changing the wavelet type changes these two quantities, coefficients and registers, only. Both
P and U units in LS can be implemented by means of the PE shown in Fig. 4. We explored
this feature in the previous section and implemented a 1-D DWT structure containing only
one PE. We call this method the "folded method". The folded structure is an alternative for the
proposed method in [12] by which the lifting-based structures can be designed systematically.
As shown in Fig. 14 for 9/7 wavelet, the method in [12] produces systolic architecture, but
folded method produces folded architecture. In folded structure, the output of the PE unit is
fed back through the delay registers to the PE’s input. By incorporating different numbers of
delay registers and coefficients with PE, the structure for different wavelets can be designed.
For example the folded structure for 5/3 and 9/7 wavelets has two and four delay registers,
respectively. Also the coefficients for 5/3 wavelet are −1

2 and 1
4 while for 9/7 they are α, β, γ, δ.
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s

Fig. 12. Hardware implementation for Fig.10

+

+

×

out

s

s

s

Fig. 13. Minimized architecture for 5/3 wavelet

(a) Systolic method

PE

out

(b) Folded method

Fig. 14. 1-D Lifting-Based DWT for 9/7 wavelet by Systematic Design Method

In order to show the efficiency of our architecture, several architectures are chosen for
comparison. Ignoring the pipeline registers, the results of comparison for the 9/7 wavelet are
given in Table 2. It is obvious that compared to other architectures, the number of processing
units is reduced in the folded architecture, thus requiring less area to implement the DWT.
Having smaller 1-D DWT units is very effective in multidimensional architectures or in 2-D
DWT, where it is needed to increase the number of 1-D DWT units to achieve a higher
performance [20]. The cost is that, in the proposed architecture, the clock pulses required
to compute outputs are more than those in the previous architectures. This requirement is
due to the sequential states required to complete the computation of each output.

49VLSI Architectures of Lifting-Based Discrete Wavelet Transform
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Architecture Multiplier Adder Register
Lifting[18] 4 8 6

Proposed in [19] 2 4 6
Systolic[12] 4 8 4
Folded [30] 1 2 4

Table 2. Comparison of some different 1-D DWT architectures for 9/7 wavelet (J −→ ∞)

5. 2-D DWT structures

In this section, we review four convenient structures for 2-D DWT. It is assumed that the 2-D
wavelets reviewed in the following structures are separable, so that the 2-D wavelet transform
can be reduced to a 1-D wavelet transform performed on rows and columns, respectively.
In the direct method (step-by-step method), shown in Fig. 15, the input frame, stored in
external memory, arrives at the 1-D DWT, row by row. The primary outputs are wavelet
coefficients in the row direction and are stored in the external memory. After scanning all
the rows of the frame, again the coefficients are transferred from the external memory to the
1-D DWT block, but this time in the column-wise direction. The secondary outputs of the
1-D DWT block are 2-D DWT coefficients of the input frame, which are stored in the external
memory again. If computation of coefficients for one more decomposition level is needed, this
procedure must be repeated for the LL part of the previous level, whose size is a quarter of the
input frame size. This routine will be repeated for higher levels. The direct method hardware
is simple, but its latency and the number of external memory accesses are large. The number
of external memory accesses for computing a J-level 2-D DWT of an N × N input image can
be calculated by the expression below, where half of the sum is related to the external memory
reads and the other half is related to the external memory writes

4 × (1 +
1

4
+

1

16
+ · · ·+ (

1

4
)J−1)× N2 (2)

1-D

DWT

External memory

(N*N)

Fig. 15. Direct method

The line-based method can be implemented in two forms: single level and multilevel. In the
line-based single level method, which is shown in Fig. 16, each level of DWT is performed by
a 2-D DWT block. In this method, only internal memory is used to compute one level DWT
for both the row and column directions, hence, there is no external memory access during
the computation of one level 2-D DWT (except for reading rudimentary inputs and writing
final results for that level). The required internal memory is the sum of the data memory and
the temporal memory (black circles shown in Fig. 6) for each line. So the amount of needed
internal memory is 6N for 9/7 wavelet and 4N for 5/3 wavelet [13,21]. But the results of the
DWT in the row direction for even rows can be used for the computation of the DWT in the
column direction without storing them. Hence, the required internal memory for 9/7 and 5/3
2-D wavelets is reduced to 5N and 3N, respectively. Recently, some new modifications have
been made for the 2-D DWT block. For example, in [20] the number of data entrances has been
increased by using more 1-D DWT units in the 2-D DWT block. Although this modification

50 Discrete Wavelet Transforms: Algorithms and Applications
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increases the speed, it requires more internal memory and the size of the circuit is increased.
In [22], by replacing registers with line buffers and controlling data flow in a structure like Fig.
13, with 5 more registers, a 2-D DWT block for 5/3 wavelet has been proposed.
Obviously, for a higher-level 2-D DWT, only LL coefficients of the previous level are used, so
the total number of external memory access for a J-level 2-D DWT on an N × N image is

2 × (1 +
1

4
+

1

16
+ · · ·+ (

1

4
)J−1)× N2 (3)

The structure of Fig. 17 performs all levels of 2-D DWT, using only internal memory. So,

1-level

2-D DWT

External memory

(N*N)

Fig. 16. Single level line-based method

the total number of external memory accesses for a J-level 2-D DWT is limited to 2N2, which
corresponds to reading the input image for the first level and writing the final DWT results.
The line-based multilevel structure, shown in Fig. 17, is much faster than the previous
structures, but it needs a larger amount of hardware and so its hardware utilization (i.e., the
average value of the area of working parts versus the whole area of the hardware) is low [23],
but the 2-D recursive architecture proposed in [24] improves the hardware utilization for the
J-level 2-D DWT. In Fig. 17, the required internal memory for the 9/7 wavelet is obtained from
equation (4).

5N × (1 +
1

2
+

1

4
+ · · ·+ (

1

2
)J−1) (4)

J-level

2-D DWT

External memory

(N*N)

Fig. 17. Multilevel line-based method

There is a trade-off between the size of the internal memory and the number of external
memory accesses in the 2-D DWT structures mentioned previously. Now, a block-based
structure that parameterizes the aforementioned trade-off is introduced. The block-based
structure is similar to the line-based method, but instead of considering the total length of
a row for DWT in the row direction, only a part of it with length M pixels is considered (Fig.
18). It means that the first M columns of the main frame (the gray area in Fig. 18) are used
as the input frame and 2-D DWT coefficients are computed for them. So the required internal
memory, which is determined by the length of the rows, is decreased. As an example, for the
9/7 wavelet the internal memory size will be decreased from 5N to 5M (where M is a fraction
of N). It is possible to consider a block of image by partitioning the image in both the row and
column directions. In this method, the block (or window) slides across the image and both
the row- and column-wise 1-D DWT will be performed on them [25]. The size of tile windows
may be reduced to 2 × 2 pixels [26].
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Fig. 18. Scan method in block-based structure

6. Scan methods for block-based structure

However, in the above-mentioned method, there is a problem in the boundary region between
two M-pixel sections. To compute the DWT for the beginning pixel of the nextM-pixel section,
values of K previous pixels are needed. These K pixels produce values of temporary memory
(black circles shown in Fig. 19). K is equal to nt − 2, where nt is the number of filter taps
corresponding to the desired DWT. For the 9/7 wavelet, as shown in Fig. 19, K is equal to
7 (shaded circles). To solve the boundary problem, the overlapped scan method has been

Fig. 19. Boundary region for 9/7 wavelet

proposed in [27]. A new M-pixel section begins from the last K pixels in the previous section.
So two sections are overlapped in K pixels, and this causes the number of external memory

reads to be N2 M
(M−K)

instead of N2. The number of external memory writes is limited to writing

the output results and is equal to N2.
We can use an alternate scan method for the overlapped region at the boundary between two
M-pixel sections. The relationships for the new scan method are different from the previous
method. The temporary memory at the boundary of two M-pixel sections (black circles in Fig.
19) can be saved for the computation of the next section. These saved values will be used
for the computation of the next M pixels. Hence, a new M-pixel section begins without any
overlap with the previous section. The required memory to save temporary data is L × N,
where L is the value of the temporary memory in the related DWT core. For example, in Fig.

52 Discrete Wavelet Transforms: Algorithms and Applications
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Direct Single level line-based Block-Based

Internal Memory Size 0 5N 5M 5M

External Memory Reads 2N2 N2 N2 M
M−K N2(1 + 4

M )− 4N

External Memory Write 2N2 N2 N2 N2(1 + 4
M )− 4N

Control complexity Low Medium Medium Medium

Table 3. Comparison of different 2-D DWT structures for one level 9/7 wavelet

19, L is 4 for the 9/7 wavelet without pipelining. The storage of temporary memory may be
fulfilled in internal or external memory. If internal memory is used to save temporary data, the
number of external memory accesses is equal to N2 read and N2 write operations. However,
if external memory is used to save temporary memory, both of the external memory reads and
writes are increased by an amount of ( N

M − 1)N × L. Hence, the number of external memory

reads as well as the number of external memory writes is equal to N2 + ( N
M − 1)N × L. In

this expression, the ( N
M − 1) coefficient is the number of M-pixel sections. Due to hardware

limitations (the limit size of internal memory on FPGA ICs), we select the second case for
implementation. Comparisons of the aforementioned methods for one level 2-D DWT are
given in Table 3. The table shows the values of the internal memory size and external memory
accesses for the three algorithms. It is shown that in our proposed algorithm the internal
memory size is between those of two other algorithms (the direct method and the line-based
method). The same conclusion is true for the external memory size. The table also shows
the order of complexity for the control circuits of these methods based on [28]. Similar
comparisons for J-level (J −→ ∞) 2-D DWT are given in Table 4. Note that M has been
considered to be fixed for all levels of 2-D DWT. It means that the width of the M-pixel section
for the current level is the same as the one in the previous level. The J-level structure can
be implemented either in the form of a single level (Fig. 15) or multilevel structure (Fig.
16), and the relevant values are listed in Table 4. We observe that the parameter M can be
determined according to hardware limitations, such as internal memory. The conclusion from
the two tables is that the block-based structure with the new scan method, in comparison
with the direct method, needs more internal memory, but needs only about one-half of the
external memory accesses. Due to the shorter access time for internal memory, the clock
pulse frequency will increase, and based on the energy model in [5] the power consumption
will decrease. In comparison with other methods, the new method remarkably decreases
the needed internal memory at the cost of a soft increase in the number of external memory
accesses.

7. Experimental results

The folded 1-D DWT architecture was described in VHDL code and simulated by
Active-HDL6.3 software. Then the relevant VHDL code was synthesized by the Synplify7.5.1
software tool to be implemented on IC XC2V40 (from the VirtexII family of Xilinx FPGAs).
The maximum estimated frequency for implementing Fig. 12 on this IC is 122.4 MHz, which
is practical for real-time implementation of the 9/7 wavelet for large images. The maximum
frequency to implement the 5/3 wavelet on the IC is 163.1 MHz. Also, the block-based
architecture with the new scan method was modeled and simulated for the 5/3 wavelet with
N = 1024 and 8-bit pixels. The code was synthesized by Synplify7.5.1 for implementation on
VirtexII. After post place and route simulation, the clock pulse frequency achieved was 97
MHz. The structure receives one pixel as input per each clock pulse. So, according to the
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Block-Based
Direct Line-Based Single Level Line-Based Multilevel Line-Based

Single
Level

Multi-
level (27) (30) (27) (30)

Internal
Memory
Size

0 5N 10N 5M 5M (5M)J (5M)J

External
Memory
Reads

8
3 N2 4

3 N2 N2 4
3 (

N2 M
M−K )

4
3 N2(1 + 4

M )− 8N N2 + 4
3

N2K
M−K N2 + 16N2

M − 8N

External
Memory
Write

8
3 N2 4

3 N2 N2 4
3 N2 4

3 N2(1 + 4
M )− 8N N2 N2 + 16N2

M − 8N

Table 4. Comparison of different 2-D DWT structures for J level 9/7 wavelet (J −→ ∞)

calculations below, the folded structure can be used to perform 3 levels of 2-D DWT for 70
frames (1024×1024 pixels) per second, and it is suitable for use in real-time hardware video
codec.

t =
1024 × 1024 × (1 + 1

4 + 1
16 )

97MHz
= 14.2ms,

n f =
1

t
=

1

14.2ms
≃ 70( f rame/s).

8. Conclusion

Lifting Scheme and some different lifting based architectures for DWT presented in this
chapter. Then we focused on the size (area) of the architecture. An architecture to minimize
the number of multipliers and adders has been investigated for implementation of 1-D DWTs.
All types of 1-D DWTs can be implemented by modifying only the number of registers and
coefficients of the architecture. Thus, the folded architecture, which has fixed form units for
all DWT types, presents a new folded method for systematic implementation of DWT. It is
possible to design a software program to produce the folded architecture for different types
of wavelets. What is needed is to define coefficients (α, β, ...) required for each step of the
desired wavelet in the lifting scheme. The folded method can be extended for large and
complex structures such as multilevel discrete wavelet packet transforms [29] to reduce the
area. Also, we have reviewed the 2-D DWT block-based structure and shown its power
to trade off between the internal memory size and the number of external accesses by a
controlling parameter.
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