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1. Introduction 

The main objective on the active vibration control problem of vehicles suspension systems is 
to get security and comfort for the passengers by reducing to zero the vertical acceleration of 
the body of the vehicle. An actuator incorporated to the suspension system applies the 
control forces to the vehicle body of the automobile for reducing its vertical acceleration in 
active or semi-active way. 
The topic of active vehicle suspension control system has been quite challenging over the 
years. Some research works in this area propose control strategies like LQR in combination 
with nonlinear backstepping control techniques (Liu et al., 2006) which require information 
of the state vector (vertical positions and speeds of the tire and car body). A reduced order 
controller is proposed in (Yousefi et al., 2006) to decrease the implementation costs without 
sacrificing the security and the comfort by using accelerometers for measurements of the 
vertical movement of the tire and car body. In (Tahboub, 2005), a controller of variable gain 
that considers the nonlinear dynamics of the suspension system is proposed. It requires 
measurements of the vertical position of the car body and the tire, and the estimation of 
other states and of the profile of the ride.  
This chapter proposes a control design approach for active vehicle suspension systems using 
electromagnetic or hydraulic actuators based on the Generalized Proportional Integral (GPI) 
control design methodology, sliding modes and differential flatness, which only requires 
vertical displacement measurements of the vehicle body and the tire. The profile of the ride 
is considered as an unknown disturbance that cannot be measured. The main idea is the use 
of integral reconstruction of the non-measurable state variables instead of state observers. 
This approach is quite robust against parameter uncertainties and exogenous perturbations. 
Simulation results obtained from Matlab are included to show the dynamic performance 
and robustness of the proposed active control schemes for vehicles suspension systems. 
GPI control for the regulation and trajectory tracking tasks on time invariant linear systems 
was introduced by Fliess and co-workers in (Fliess et al., 2002). The main objective is to avoid 
the explicit use of state observers. The integral reconstruction of the state variables is carried 
out by means of elementary algebraic manipulations of the system model along with suitable 
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invocation of the system model observability property. The purpose of integral reconstructors 
is to get expressions for the unmeasured states in terms of inputs, outputs, and sums of a finite 
number of iterated integrals of the measured variables. In essence, constant errors and iterated 
integrals of such constant errors are allowed on these reconstructors. The current states thus 
differ from the integrally reconstructed states in time polynomial functions of finite order, with 
unknown coefficients related to the neglected, unknown, initial conditions. The use of these 
integral reconstructors in the synthesis of a model-based computed stabilizing state feedback 
controller needs suitable counteracting the effects of the implicit time polynomial errors. The 
destabilizing effects of the state estimation errors can be compensated by additively 
complementing a pure state feedback controller with a linear combination of a sufficient 
number of iterated integrals of the output tracking error, or output stabilization error. The 
closed loop stability is guaranteed by a simple characteristic polynomial assignment to the 
higher order compensated controllable and observable input-output dynamics. Experimental 
results of the GPI control obtained in a platform of a rotational mechanical system with one 
and two degrees of freedom are presented in (Chávez-Conde et al., 2006).  Sliding mode 
control of a differentially flat system of two degrees of freedom, with vibration attenuation, is 
shown in (Enríquez-Zárate et al., 2000). Simulation results of GPI and sliding mode control 
techniques for absorption of vibrations of a vibrating mechanical system of two degrees of 
freedom were presented in (Beltrán-Carbajal et al., 2003). 
This chapter is organized as follows: Section 2 presents the linear mathematical models of 
suspension systems of a quarter car. The design of the controllers for the active suspension 
systems are introduced in Sections 3 and 4. Section 5 divulges the use of sensors for 
measuring the variables required by the controller while the simulation results are shown in 
Section 6. Finally, conclusions are brought out in Section 7. 

2. Quarter-car suspension systems 

2.1 Mathematical model of passive suspension system 
A schematic diagram of a quarter-vehicle suspension system is shown in Fig. 1(a). The 
mathematical model of passive suspension system is described by  
 

 

Fig. 1. Quarter-car suspension systems: (a) Passive Suspension System, (b) Active 
Electromagnetic Suspension System and (c) Active Hydraulic Suspension System. 
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 ( ) ( ) = 0s s s s u s s um z c z z k z z       (1) 

 ( ) ( ) ( ) = 0u u s s u s s u t u rm z c z z k z z k z z         (2) 

where sm represents the sprung mass, um  denotes the unsprung mass, sc  is the damper 

coefficient of suspension, sk  and tk  are the spring coefficients of suspension and the tire, 

respectively, sz  is the displacements of the sprung mass, uz  is the displacements of the 

unsprung mass and rz  is the terrain input disturbance. 

2.2 Mathematical model of active electromagnetic suspension system 
A schematic diagram of a quarter-car active electromagnetic suspension system is illustrated 

in Fig.1 (b). The electromagnetic actuator replaces the damper, forming a suspension with 

the spring (Martins et al., 2006). The friction force of an electromagnetic actuator is 

neglected. The mathematical model of electromagnetic active suspension system is given by  

 ( ) =s s s s u Am z k z z F   (3) 

 ( ) ( ) =u u s s u t u r Am z k z z k z z F      (4) 

where sm , um , sk , tk , sz , uz  and rz  represent the same  parameters and variables as ones 

described for the passive suspension system. The electromagnetic actuator force is 

represented here by AF , which is considered as the control input. 

2.3 Mathematical model of hydraulic active suspension system 
Fig. 1(c) shows a schematic diagram of a quarter-car active hydraulic suspension system. 

The mathematical model of this active suspension system is given by 

  ( ) ( ) =s s s s u s s u f Am z c z z k z z F F         (5) 

 ( ) ( ) ( ) =u u s s u s s u t u r f Am z c z z k z z k z z F F          (6) 

where sm , um , sk , tk , sz , uz  and rz  represent the same parameters and variables shown for 

the passive suspension system. The hydraulic actuator force is represented by AF  , while fF  

represents the friction force generated by the seals of the piston with the cylinder wall inside 

the actuator. This friction force has a significant magnitude (> 200 )N  and cannot be ignored 

(Martins et al., 2006; Yousefi et al., 2006). The net force given by the actuator is the difference 

between the hydraulic force AF  and the friction force fF . 

3. Control of electromagnetic suspension system 

The mathematical model of the active electromagnetic suspension system, illustrated in Fig. 

1(b) is given by the equations (3) and (4). Defining the state variables
1

= sx z , 
2

= sx z , 
3

= ux z  

and 
4

= ux z , the representation in the state-space is,  
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4 4 4 4 1 4 1( ) = ( ) ( ) ( ); ( ) , , , ,rx t Ax t Bu t Ez t x t A B E             (7) 
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 (8) 

The force provided by the electromagnetic actuator as the control input is = Au F . 

The system is controllable with controllability matrix, 

  

2

2

2

2

1
0 0 ( )

1
0 ( ) 0

= ,1
0 0 ( )

1
0 ( ) 0

s s

s s s u

s s

s s s u
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u s u u

k k
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k k

m m m m

C k k k

m m m m

k k k

m m m m

   
 
 

  
 
 

  
 
   
 
 
 

 (9) 

and flat (Fliess et al., 1993; Sira-Ramírez  & Agrawal, 2004), with the flat output given by the 
following expression relating the displacements of both masses (Chávez et al., 2009): 

1 3
= s uF m x m x  

For simplicity, in the analysis of the differential flatness for the suspension system we have 

assumed that = 0t rk z . In order to show the differential parameterization of all the state 

variables and control input, we first formulate the time derivatives up to fourth order for  

F , resulting,  

 

1 3

2 4

3

(3)

4

2

(4)

1 3 3

=

=

=

=

=

s u

s u

t

t

t s t t

u u u

F m x m x

F m x m x

F k x

F k x

k k k k
F u x x x

m m m









  


  

Then, the state variables and control input are parameterized in terms of the flat output as 

follows  
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3.1 Integral reconstructors 
The control input u  in terms of the flat output and its time derivatives is given by 

 (4)= 1u s u s s

t t s t s

m k m k k
u F F F

k k m k m

 
    
 

  (10) 

where (4) =F v defines an auxiliary control input variable. The expression (10) can be 

rewritten of the following form:  

 (4)

1 2 3
=u d F d F d F   (11) 

where 

1

2

3

=

= 1

=

u

t

s u s

t s t

s

s

m
d

k

k m k
d

k m k

k
d

m

   

An integral input-output parameterization of the state variables is obtained from equation 
(11), and given by 

 

    

    

(3)
2 3

1 1 1

2 2
2 3

1 1 1

3 3
2 3

1 1 1

1
=

1
=

1
=

d d
F u F F

d d d

d d
F u F F

d d d

d d
F u F F

d d d

 

 

 

 

 

  







 

For simplicity, we will denote the integral  0

t d   by   and   10 0 0

1 1t

n n
n d d           

by   n    with n a positive integer. 
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The relations between the state variables and the integrally reconstructed states are given by  







(3)
(3) (3) 2 (3)

(3)

(3) 2

1
= (0) (0) (0) (0)

2

= (0) (0)

1
= (0) (0) (0)

2

F F F t F t F F

F F F t F

F F F t F t F

   

 

  

 

  

   

 

where (3) (0)F , (0)F  and (0)F  are all real constants depending on the unknown initial 

conditions. 

3.2 Sliding mode and GPI control 
GPI control is based on the use of integral reconstructors of the unmeasured state variables 
and the output error is integrally compensated. The sliding surface inspired on the GPI 
control technique can be proposed as 

        (3) 2 3

5 4 3 2 1 0
= F F F F F F F                (12) 

The last integral term yields error compensation, eliminating destabilizing effects, those of 

the structural estimation errors. The ideal sliding condition  = 0  results in a sixth order 

dynamics, 

  (6) (5) (4) (3)

5 4 3 2 1 0
= 0F F F F F F F             (13) 

The gains of the controller 
5 0
, ,   are selected so that the associated characteristic 

polynomial 6 5 4 3 2

5 4 3 2 1 0
s s s s s s            is Hurwitz. As a consequence, the error 

dynamics on the switching surface ˆ = 0  is globally asymptotically stable. 

The sliding surface ˆ = 0  is made globally attractive with the continuous approximation to 

the discontinuous sliding mode controller as given in (Sira-Ramírez, 1993), i.e., by forcing to 

satisfy the dynamics,  

        


= [ ( )]sign  (14) 

where   and   denote real positive constants and “sign” is the standard signum function. 

The sliding surface is globally attractive,   


< 0  for  0  , which is a very well known 

condition for the existence of sliding mode presented in (Utkin, 1978). Then the following 
sliding-mode controller is obtained 

 
1 2 3

=u d v d F d F   (15) 

with 

       (3) 2

5 4 3 2 1 0
= [ ( )]v F F F F F F sign                     

This controller requires only the measurement of the variables of state sz  and uz  

corresponding to the vertical displacements of the body of the car and the wheel, respectively. 
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4. Control of hydraulic suspension system 

The mathematical model of active suspension system shown in Fig. 1(c) is given by the 
equations (5) and (6). Using the same state variables definition than the control of 
electromagnetic suspension system, the representation in the state space form is as follows: 

 

1 1

2 2

3 3

4 4

0 1 0 0 0
0

1
0

= 0
0 0 0 1 0

1

s s s s

s s s s s

r

t

s s s t s

u

u u u u u

x xk c k c

m m m m mx x
u z

x x
k

x xk c k k c
m

m m m m m

   
                                                                






 (16) 

The net force provided by the hydraulic actuator as control input = A fu F F , is the 
difference between the hydraulic force AF  and the frictional force fF .  
The system is controllable and flat (Fliess et al., 1993; Sira-Ramírez  & Agrawal, 2004),  with 
positions of the body of the car and wheel as output 1 3= s uF m x m x , (Chávez et al., 2009).  
The controllability matrix and coefficients are: 
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It is assumed that = 0t rk z  in the analysis of the differential flatness for the suspension 

system.  To show the parameterization of the state variables and control input, we first 

formulate the time derivatives for
1 3

= s uF m x m x  up to fourth order, resulting,  

1 3

2 4

3

(3)

4

2

(4)

2 4 1 3 3

=
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= ( ) ( )

s u
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t

t

t s t s t t

u u u u

F m x m x

F m x m x

F k x

F k x

k c k k k k
F u x x x x x

m m m m









    


  

Then, the state variables and control input are parameterized in terms of the flat output as 
follows 

(3)
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4.1 Integral reconstructors 
The control input u  in terms of the flat output and its time derivatives is given by 

 
(3)= 1u s u s s u s s s

t t s t t s t s s
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u v F F F F
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   (18) 

where (4) =F v , defines the auxiliary control input. Expression (19) can be rewritten in the 

following form:  

 (3)

1 2 3 4 5
=u v F F F F          (19) 

where 

1

2

3

4 5
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An integral input-output parameterization of the state variables is obtained from equation 
(20), and given by  

  

     

      

(3)
2 3 4 5

1 1 1 1 1

2 2
2 3 4 5

1 1 1 1 1

3 2 3
2 3 4 5

1 1 1 1 1

1
=

1
=

1
=

F u F F F F

F u F F F F

F u F F F F

   
    

   
    

   
    

   

   

   

 

  

   

 

 



 

For simplicity, we have denoted the integral  0

t d   by   and   10 0 0

1 1t

n n
n d d           

by   n    with n as a positive integer. 

The relationship between the state variables and the integrally reconstructed state variables 
is given by 
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(3) 2 (3)

(3) 2

= (0) (0) 2 (0) (0) 2 (0)
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F F F t F t F t F F

F F F t F t F

    

    

  

  

    

   

 

where (3) (0)F , (0)F  and (0)F  are all real constants depending on the unknown initial 

conditions. 

4.2 Sliding mode and GPI control 
The sliding surface inspired on the GPI control technique is proposed according to 
equations (12), (13), and (14). This sliding surface is globally attractive (Utkin, 1978). Then 
the following sliding-mode controller is obtained:  

   (3)

1 2 3 4 5
=u v F F F F          (20) 

With 

      (3) 2

5 4 3 2 1 0
= [ ( )]v F F F F F F sign                    

This controller requires only the measurement of the variables of state sz  and uz  

corresponding to the vertical positions of the body of the car and the wheel, respectively. 

5. Instrumentation of active suspension system 

5.1 Measurements required 
The only variables required for implementation of the proposed controllers are the vertical 

displacement of the body of the car sz , and the vertical displacement of the wheel uz . These 

variables are needed to be measured by sensors. 
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5.2 Using sensors 
In (Chamseddine et al., 2006), the use of sensors in experimental vehicle platforms, as well 
as in commercial vehicles is presented. The most common sensors, used for measuring the 
vertical displacement of the body of the car and the wheels, are laser sensors. This type of 

sensor could be used to measure the variables sz  and sz  needed for implementation of 

the controllers. Accelerometers or other types of sensors are not needed for measuring the 

variables sz  and uz ; these variables are estimated with the use of integral reconstruction 

from knowledge of the control input, the flat output and the differentially flat system 
model.  
The schematic diagram of the instrumentation of the active suspension system is illustrated 
in Fig. 2. 
 

 

Fig. 2. Schematic diagram of the instrumentation of the active suspension system. 

6. Simulation results with MATLAB/Simulink 

The simulation results were obtained by means of MATLAB/Simulink ® , with the Runge-

Kutta numerical method and a fixed integration step of1 ms . 

6.1 Parameters and type of road disturbance 
The numerical values of the quarter-car suspension model parameters (Sam & Hudha, 2006) 
chosen for the simulations are shown in Table 1. 
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Parameter Value 

Sprung mass, sm  282 [ ]kg  

Unsprung mass, um  45[ ]kg  

Spring stifness, sk  17900 [ ]
N

m
 

Damping constant, sc  1000 [ ]
N s

m


 

Tire stifness, tk  165790 [ ]
N

m
 

Table 1. Vehicle suspension system parameters for a quarter-car model. 

In this simulation study, the road disturbance is shown in Fig. 3 and set in the form of (Sam 
& Hudha, 2006): 

1 (8 )

2
r

cos t
z a


  

with = 0.11a [m] for 0.5 0.75t  , = 0.55a [m] for 3.0 3.25t  and 0 otherwise. 

 

 

Fig. 3. Type of road disturbance. 

The road disturbance was programmed into Simulink blocks, as shown in Fig. 4. Here, the 
block called “conditions” was developed as a Simulink subsystem block Fig. 5. 
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Fig. 4. Type of road disturbance in Simulink. 

 

 

Fig. 5. Conditions of road disturbance in Simulink. 
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6.2 Passive vehicle suspension system 
Some simulation results of the passive suspension system performance are shown in Fig. 6. 
The Simulink model of the passive suspension system used for the simulations is shown in 
Fig. 7.  
 

 

Fig. 6. Simulation results of passive suspension system, where the suspension deflection is 

given by (zs − zu) and the tire deflection by (zu − zr). 

6.3 Control of electromagnetic suspension system 
It is desired to stabilize the system at the positions = 0sz  and = 0uz . The controller gains 

were obtained by forcing the closed loop characteristic polynomial to be given by the 

following Hurwitz polynomial:  

  2 2 2

1 1 2 1 1 1
( )( )( 2 )d n np s s p s p s s        

with 
1

= 90p , 
2

= 90p  
1

= 0.7071 , 
1

= 80n , = 95  y = 95 .  

The Simulink model of the sliding mode based GPI controller of the active suspension 

system is shown in Fig. 8. The simulation results are illustrated in Fig. 9 It can be seen the 

high vibration attenuation level of the active vehicle suspension system compared with the 

passive counterpart.   
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Fig. 7. Simulink model of the passive suspension system. 

 
 

 

Fig. 8. Simulink model of the sliding mode based GPI controller. 
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6.3 Control of hydraulic suspension system 
It is desired to stabilize the system in the positions = 0sz  and = 0uz . The controller gains 

were obtained by forcing the closed loop characteristic polynomial to be given by the 
following Hurwitz polynomial:  

  2 2 2

2 3 4 2 2 2
( )( )( 2 )d n np s s p s p s s        

with 3 = 90p , 4 = 90p ,  2 = 0.9 ,  2 = 70n , = 95  and = 95 . The performance of the sliding 

mode based GPI controller is depicted in Fig. 10. One can see the high attenuation level of 
road-induced vibrations with respect to passive suspension system. 
The same Matlab/Simulink simulation programs were used to implement the controllers for 
the electromagnetic and hydraulic active suspension systems. For the electromagnetic active 
suspension system, it is assumed that cz = 0. 

7. Conclusions 

In this chapter we have presented an approach of robust active vibration control schemes for 
electromagnetic and hydraulic vehicle suspension systems based on Generalized 
Proportional-Integral control, differential flatness and sliding modes. Two controllers have 
been proposed to attenuate the vibrations induced by unknown exogenous disturbance 
excitations due to irregular road surfaces. The main advantage of the controllers proposed, 
is that they require only measurements of the position of the car body and the tire. Integral 
reconstruction is employed to get structural estimates of the time derivatives of the flat 
output, needed for the implementation of the controllers proposed. The simulation results 
show that the stabilization of the vertical position of the quarter of car is obtained within a 
period of time much shorter than that of the passive suspension system. The fast 
stabilization with amplitude in acceleration and speed of the body of the car is observed. 
Finally, the robustness of the controllers to stabilize to the system before the unknown 
disturbance is verified. 
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