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1. Introduction  

This study aims to describe a design method for Field Programmable Gate Array (FPGA) 

(Maxfield, 2004) applied, in particular, to the design of a Frequency Hopping Spread 

Spectrum (FHSS) transceiver (Simon et al., 1994). Simulink (MathWorks, 2011) is a tool 

integrated in Matlab, which allows the design of systems using block diagrams in a fast and 

flexible way. Xilinx is one of the most important FPGA manufacturers and provides System 

Generator (Xilinx, 2011), it is a design environment over Simulink for FPGA based on the 

method described. The design is based on a previous FHSS transceiver designed for indoor 

wireless optical communications made with discrete components (Pérez et al., 2003). One of 

the improvements in the proposed system is the physical integration. 

2. The physical device  

Initially, there were several alternatives for the system hardware. In principle, an 

Application Specific Integrated Circuit (ASIC) can be used (Maxfield, 2004), but to configure 

these devices must be sent to the manufacturer, which increases development time and 

makes more expensive the prototype. This technology achieves good physical performances: 

low area, low power consumption and minimal delays. 

At the other extreme Digital Signal Processor (DSP) can be used which are very cheap 

(Maxfield, 2004). The DSPs do not have the best physical performances; normally they 

occupy maximum area, have high power consumption and maximum delay. In fact, when 

the volume of calculus is high, easily they do not have real time response. This is because 

the architecture is rigid, in both data and operations formats. 

In the middle are FPGA, which have a reasonable cost for the design of prototypes; in 
general an intermediate cost to the two previous cases. The FPGA have significant physical 
benefits, without reaching the performances of ASIC. FPGAs have benefits outweigh the 
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DSP because the FPGA final architecture can be configured in a fully flexible way, in both 
data and operations size. 
It must be emphasized that FPGA are integrated circuits reprogrammable by the designer 
and can be used for different projects, or in a project during its different phases. The FPGAs 
are also available in the market on printed circuit boards, with power and programming 
connectors, auxiliary memories and input-output pins; this avoid to design and construct 
the printed circuit board, and makes it ideal for prototyping design. 

3. Design methodology 

A transceiver can be designed using discrete electronic components. In general, the overall 
design is not flexible and highly dependent on technology and available devices, has long 
design time, occupies large area, has high power consumption and high delays and low 
maximum operating frequency. 
In general, the trend is to integrate the design in a digital integrated circuit and place around 
the necessary external components; this eliminates the previous inconveniences. It must be 
emphasized that these designs can be easily portable between devices, even from different 
manufacturers. This portability is possible because the design can be described with a 
standard hardware description language (HDL). 
In digital systems, when floating point arithmetic is used, the range and precision can be 
adjusted with the number of bits of exponent and mantissa, it is then possible to obtain a 
wide range and high precision in this type of representation. However, floating point 
operations require many hardware resources and long time execution (Hauck & DeHon, 
2008). On the other hand, the fixed point arithmetic requires fewer hardware resources, but 
the range and precision can be improved only by increasing the number of bits. If the 
number of bits is constant, to increase the range causes a decrease in the precision. It is 
possible to use fixed point arithmetic in most applications when the range of signals is 
known or can be determined by statistical methods. In fixed point arithmetic the 2's 
complement representation is used because its arithmetic rules are simpler than the 1's 
complement representation. 
Ordinarily the systems can be designed using a standard hardware description language: 
VHDL (Very High Speed Integrated Circuit Hardware Description Language) (Pedroni, 
2004) or Verilog (Palnitkar, 2003). Manual coded of complex systems using one of these 
languages is little flexible and has a great design time. To solve these problems several 
design programs have been developed. One of them is the System Generator from Xilinx, 
which is installed in Simulink. 

3.1 System generator 

When System Generator is installed some Blocksets (Fig. 1) are included in Simulink of 
Matlab. Each block is configured after opening its dialog window, this permits fast and 
flexible designs. Basically, System Generator allows minimizing the time spent by the 
designer for the description and simulation of the circuit. On the other hand, the design is 
flexible; it is possible to change the design parameters and check quickly the effect on the 
performances and the architecture of the system. The functional simulation is possible even 
before the compilation of the model designed. The compilation generates the files of the 
structural description of the system in a standard hardware description language for the 
Integrated System Environment (ISE) for Xilinx FPGAs. 
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Fig. 1. System Generator Blocksets in Simulink 

The FPGA boundary in the Simulink model is defined by Gateway In and Gateway Out 
blocks. The Gateway In block converts the Simulink floating point input to a fixed point 
format, saturation and rounding modes can be defined by the designer. The Gateway Out 
block converts the FPGA fixed point format to Simulink double numerical precision floating 
point format. 
In the System Generator the designer does not perceive the signals as bits; instead, the bits 
are grouped in signed or unsigned fixed point format. The operators force signals to change 
automatically to the appropriate format in the outputs. A block is not a hardware circuit 
necessarily; it relates with others blocks to generate the appropriate hardware. The designer 
can include blocks described in a hardware description language, finite state machine flow 
diagram, Matlab files, etc. The System Generator simulations are bit and cycle accurate, this 
means results seen in a simulation exactly match the results that are seen in hardware. The 
Simulink signals are shown as floating point values, which makes easier to interpret them. 
The System Generator simulations are faster than traditional hardware description language 
simulators, and the results are easier for analyzing. Otherwise, the VHDL and Verilog code 
are not portable to other FPGA manufacturers. The reason is that System Generator uses 
Xilinx primitives which take advantages of the device characteristics. 
System Generator can be used for algorithm exploration or design prototyping, for 
estimating the hardware cost and performance of the design. Other possibility is using 
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System Generator for designing a portion of a big system and joining with the rest of the 
design. Finally, System Generator can implement a complete design in a hardware 
description language. Designs in System Generator are discrete time systems; the signals 
and blocks generate automatically the sample rate. However, a few blocks set the sample 
rate implicitly or explicitly. System Generator supports multirate circuits and some blocks 
can be used for changing the sample rate. 
Often an executable specification file is created using the standard Simulink Blocksets (see 
Fig. 2). The specification file can be designed using floating point numerical precision and 
not hardware detail. Once the functionality and basic dataflow have been defined, System 
Generator can be used to specify the hardware implementation details for the Xilinx devices. 
System Generator uses the Xilinx DSP Blockset from Simulink and will automatically invoke 
Xilinx Core Generator to generate highly optimized netlists for the building blocks. System 
Generator can execute all the downstream implementation tools to get a bitstream file for 
programming the FPGA device. An optional testbench can be created using test vectors 
extracted from the Simulink environment for using with Integrated System Environment 
simulators. 
 

 

Fig. 2. System Generator design flow (download from www.xilinx.com) 

Every system designed with System Generator must contain a System Generator block (Fig. 
3); this block specifies how simulation and code generator can be used. Firstly, the type of 
compilation in the System Generator block can be specified to obtain: HDL netlist, Bitstream 
for programming, etc. Secondly, the FPGA type can be chosen. The target directory defines 
where the compilation writes the files of Integrated System Environment project. The 
synthesis tool specifies which tool is chosen for synthesizing the circuit: Synplify, Synplify 
Pro or Xilinx Synthesis Tool (XST). In the hardware description language the designer can 
choose between VHDL and Verilog. Finally, clock options defines the period of the clock, its 
input pin location, the mode of multirate implementation and the Simulink system period, 
which is the greatest common divisor of the sample periods that appear in the system. In the 
block icon display, the type of information to be displayed is specified. 
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System

Generator

  

Fig. 3. System Generator block and its dialog window 

3.2 Integrated system environment  

In Xilinx Integrated System Environment it is possible to compile the hardware description 
language files, and simulate the system behavioral or timing analysis. Also the occupancy 
rate, power consumption and operating temperature of the FPGA are obtained. Afterwards 
the program file can be generated for the chosen device; this file can be downloaded from 
the computer to the board where the FPGA is included. Finally, the performance of the 
design system must be checked with electronic measure equipment. 
When the designer clicks on Generate in dialog window of System Generator block, the 
structural description files in a hardware description language are obtained, and a project is 
created for Integrated System Environment. Now it is possible to check the syntax of the 
hardware description language files (Fig. 4). The first step in the compilation process is 
synthesizing the system. The synthesis tool used is Xilinx Synthesis Tool, it is an application 
that synthesizes hardware description language designs to create Xilinx specific netlist files 
called NGC (Native Generic Circuit) files. The NGC file is a netlist that contains both logical 
design data and constraints. The NGC file takes the place of both Electronic Data 
Interchange Format (EDIF) and Netlist Constraints File (NCF) files. In synthesis options 
optimization goal for area or speed can be fixed; by default, this property is set to speed 
optimization. Similarly, optimization effort can be established as normal or high effort; in 
the last case additional optimizations are performed to get best result for the target FPGA 
device. Synthesis report can be analyzed by the designer; moreover, the designer can view 
Register Transfer Level (RTL) schematic or technology schematic. After synthesizing the 
system, the design is implemented in four stages: translate, map, place and route. The 
translation process merges all the input netlists and design constraint information and 
outputs a Xilinx Native Generic Database (NGD) file. Then the output NGD file can be 
mapped to the targeted FPGA device family. The map process takes the NGD file, runs a 
design rule checker and maps the logic design to a Xilinx FPGA device. The result appears 
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in a Native Circuit Design (NCD) file, which is used for placing and routing. The place and 
route process takes a NCD file and produces a new NCD file to be used by the 
programming file generator. The generator programming file process runs the Xilinx 
bitstream generation program BitGen to produce a bit file for Xilinx device configuration. 
Finally, the configuration target device process uses the bit file to configure the FPGA target 
device. Behavioral simulations are possible in the design before synthesis with the simulate 
behavioral model process. This first pass simulation is typically performed to verify the 
Register Transfer Level or behavioral code and to confirm the designed function. Otherwise, 
after the design is placed and routed on the chip, timing simulations are possible. This 
process uses the post place and route simulation model and a Standard Delay Format (SDF) 
file. The SDF file contains true timing delay information of the design. 
 

 

Fig. 4. Overview of design flow of Integrated System Environment (download from 
www.xilinx.com) 

4. The transceiver  

This chapter is based on a previous FHSS transceiver (Fig. 5) for wireless optical 
communications. The FHSS and analog synchronization signals were emitted by two 
separated Light Emitting Diodes (LED) to avoid adding them with discrete analog circuits. 
 

 

Fig. 5. Block diagram with FHSS transceiver designed previously 

Demodulated 

data 
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Binary  

data 
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The core of the transmitter was a discrete Direct Digital Synthesizer (DDS) AD9851 from 
Analog Devices (Analog Devices, 2011). The discrete DDS (Fig. 6) is a digital system 
excepting the final Digital to Analog Converter; its output signal is a sinusoidal sampled 
signal at 180 MHz. The emitted FHSS signal was smoothed by the 100 MHz bandwidth of 
the optical emitter. In the DDS used, the output frequency is fixed by the expression (1), 
where fDDS_CLK is the frequency of the DDS clock (180 MHz), N is the number of bits of the 
tuning word (32 bits) and Word is the decimal value of 32 bit frequency tuning word. 

 fout=(Word·fDDS_CLK)/2N (1) 

 

 

Fig. 6. Block diagram of discrete DDS AD9851 from Analog Devices (download from 
www.analog.com) 

In the demodulator of the receiver, two similar discrete DDS were used as local oscillators. 
In the new design, the full transceiver with the previous methodology is described. The 
modulator matches with the transmitter designed previously, excepting the optical emitters 
and the output Digital to Analog Converter of the discrete DDS. In the same way, the two 
DDS in the demodulator were integrated in the FPGA. In the previous design, discrete 
analog filters were used. In the new design, these filters were integrated in the FPGA as 
digital filters. The new design methodology is improved by DDS block and filter design 
capabilities in System Generator. The Fig. 7 shows the new FHSS transceiver. In Fig. 8, the 
data in the transmitter and the demodulated data are shown. After the synchronization is 
reached in the receiver, the demodulation is executed perfectly. 
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Fig. 7. Frequency Hopping Spread Spectrum transceiver 

www.intechopen.com



  
Applications of MATLAB in Science and Engineering 

 

300 

0 1 2 3 4 5 6 7 8 9

x 10
-5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

x 10
-5

0

0.2

0.4

0.6

0.8

1

 

Fig. 8. Data signals in the transceiver: a) transmitted data, b) demodulated data 

If Port Data Type is enabled in Simulink, after the system simulation the data types are 
shown in every point of the design. It can be: Bool (boolean); double, Simulink floating point 
format; UFix_m_n, unsigned m bits two’s complement fixed point format with n fractional 
bits; Fix_m_n, signed m bits two’s complement fixed point format with n fractional bits. 
Otherwise, the signals can be analyzed in different ways using Simulink Sinks blockset. 
First, the Scope block can be used; this was the method used for adjusting the transceiver, it 
is quick but not convenient for capturing signals. Secondly, signals can be captured with the 
To Workspace block, but these signals are only stored temporarily in Matlab. Finally, To File 
block keeps the captured signals in a mat file permanently; for this reason To File block was 
used to capture and present simulations of this design. 

5. The transmitter 

The block diagram of the designed transmitter is drawn in Fig. 9. It is composed of an 
internal data generator, a pseudorandom code generator, and two DDS, used to generate the 
FHSS and synchronization signals. An external clock of 180 MHz is needed for the system. 
In this transmitter it is possible to choose between internal or external binary data. 
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Fig. 9. Block diagram of FHSS transmitter designed with System Generator 

 

a) 
 
 
 
b) 
 

www.intechopen.com



 
Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA 

 

301 

5.1 Pseudorandom data generator 

Application of the internal data generator (Fig. 10) avoids using an external data source; it was 
designed using a Linear Feedback Shift Register (LFSR) block as pseudorandom generator of 
15 bits long at 500 kilobits per second. A pulse in the pseudorandom data generator is formed 
each time the sequence begins; this provides a high quality periodic signal to synchronize the 
oscilloscope. The LFSR block is configured with the dialog windows (Fig. 11). The clock, the 
data synchronization pulse and the pseudorandom data are shown in Fig. 12. 
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Fig. 10. Internal pseudorandom data generator 

 

 

Fig. 11. Linear Feedback Shift Register dialog windows 
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Fig. 12. Pseudorandom data generator signals: a) clock at bit rate, b) the data 
synchronization pulse, c) the pseudorandom binary data 
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5.2 Pseudorandom code generator 

The pseudorandom code generator and its Simulink simulation signals are shown in Figures 
13 and 14. The code rate is called chip frequency; its value is 1.5 Megachips per second. 
Consequently, three codes are generated by each data bit. The code generator is based on a 
Linear Feedback Shift Register of 31 states. In the pseudorandom code generator, a pulse is 
generated each time the sequence begins. A five bits word is obtained with the four most 
significant bits of the pseudorandom code generator and the data bit as most significant bit. 
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Fig. 13. Pseudorandom code generator 
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Fig. 14. Pseudorandom code generator signals: a) chip frequency, b) pseudorandom code 5 bits 
width, c) 4 most significant bits of pseudorandom code 5 bits width, d) data joined with 4 most 
significant bits, e) the stage previous to “11111”, f) square signal which marks the code length 
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5.3 Frequency hopping spread spectrum signal generation 

For each group of five bits (signal d in Fig. 14) a sampled sinusoidal signal is generated 
according to Table 1. 
 

Code 
Frequency 

(MHz) 
Code 

Frequency 

(MHz) 

00000 24.384 10000 48.960 

00001 25.920 10001 50.496 

00010 27.456 10010 52.032 

00011 28.992 10011 53.568 

00100 30.528 10100 55.104 

00101 32.064 10101 56.640 

00110 33.600 10110 58.176 

00111 35.136 10111 59.712 

01000 36.672 11000 61.248 

01001 38.208 11001 62.784 

01010 39.744 11010 64.320 

01011 41.280 11011 65.856 

01100 42.816 11100 67.392 

01101 44.352 11101 68.928 

01110 45.888 11110 70.464 

01111 47.424 11111 72.000 

Table 1. Transmitted frequencies for the FHSS signal 

In Fig. 15, the DDS generating the FHSS signal is shown. The DDS clock is the system clock 
(180 MHz). Therefore, a pure sinusoidal signal with an external filter can be synthesized 
until a bit less than 90 MHz. 
 

DDS_FHSS

FHSS

2

 DATA_DDS

1

DDS Compiler 2.1 

we

data

sine

Constant 1

1

Constant

0.13543701171875

CMult

x 0.00853

AddSub

a

b

a + b DATA_CODE _16 _STATE

1

Fix _6_5

UFix _5_0

Fix _29_29

UFix _16_16

UFix _21_16

Bool

 

Fig. 15. Direct Digital Synthesizer generating the FHSS signal 

The input data for the Xilinx DDS block is the synthesized frequency divided by the DDS 
clock. The equation (2) shows the meaning of this relation. Consequently, the DDS block 
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fixes the number of N bits according to the rest of the DDS parameters: spurious free 
dynamic range, resolution, implementation mode, etc. 

 data=fout/fDDS_CLK=Word/2N (2) 

Fig. 16 shows the dialog windows of the DDS block, where the designer can fix its 

parameters. This DDS acts like a frequency modulator. 

 

 

Fig. 16. Direct Digital Synthesizer block dialog windows for FHSS signal 

The five bits input signal is transformed to the format of the input DDS block. The last 
operation is an unsigned fixed point integer to unsigned fixed point decimal conversion. In 
Fig. 17, five chip times of FHSS signal are shown. Three frequencies are generated by each 
data bit, therefore this is a Fast Frequency Hopping Spread Spectrum modulation. 
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Fig. 17. Signals in Direct Digital Synthesizer generating the FHSS signal: a) five bits DDS 

input, b) input for Xilinx DDS block, c) FHSS signal 

5.4 Synchronization signal generation and final adder 

In the pseudorandom code generator, a square signal is generated with a 50% duty cycle 
(signal f in Fig. 14). This square signal has a semi-period with the same duration as the 
pseudorandom code length. The square signal is the DDS input (Fig. 18), it modulates in 
phase to a 9 MHz carrier (Fig. 19). The phase modulated signal carries information about the 

a) 
 
 
 
 
 
b) 
 
 
 
 
c) 
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beginning of the pseudorandom code; and about its chip frequency, because its carrier is a 
multiple of 1.5 MHz. 
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Fig. 18. Direct Digital Synthesizer for synchronization generation 
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Fig. 19. Signals in Direct Digital Synthesizer that generates the synchronization signal: a) 

square input signal, b) synchronization signal 

The Fig. 20 shows the dialog window of the DDS block. This Direct Digital Synthesizer acts 
like a phase modulator. In both Xilinx DDS blocks, the latency configuration is fixed to 1 for 
keeping the DDS delays to the minimum same value, this parameter specifies the delay as 
number of clock cycles. 
 

 

Fig. 20. Direct Digital Synthesizer block dialog windows for synchronization signal 

 
a) 
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Finally, the FHSS and the synchronization signals are added with an AddSub block, this 
new signal is the transmitter output (Fig. 21). 
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Fig. 21. Inputs and output of final adder: a) FHSS signal, b) synchronization signal, c) the 
above signals added together 

6. The receiver 

The receiver block diagram is shown in Fig. 22. The signal received from the transmitter 
enters in the splitting filter, FHSS and synchronization signals can be separated because they 
are multiplexed in frequency. The filtered synchronization signal is the input of the 
synchronization recovery, where the code is obtained in the receiver. The code recovered 
synchronizes the local oscillators. Finally, the local oscillators outputs and the FHSS filtered 
are introduced to the double branch data demodulator. 
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Fig. 22. Block diagram of FHSS receiver designed with System Generator 

6.1 Splitting filters 

The splitting filters block diagram and signals are drawn in Fig. 23 and 24 respectively. A 
Finite Impulse Response (FIR) high pass filter recovers the FHSS signal. It was designed 
using the Filter Design and Analysis Tool (Fig. 25), the filter’s coefficients are used by Xilinx 
FIR Compiler block for being synthesized. In the same way, a band pass filter is designed to 
obtain the synchronization signal. 
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Fig. 23. Splitting filters block diagram 

 

1.95 2 2.05 2.1 2.15 2.2 2.25 2.3

x 10
-5

-2

-1

0

1

2

1.95 2 2.05 2.1 2.15 2.2 2.25 2.3

x 10
-5

-1

-0.5

0

0.5

1

1.95 2 2.05 2.1 2.15 2.2 2.25 2.3

x 10
-5

-1

-0.5

0

0.5

1

 

Fig. 24. Splitting filters signals: a) input, b) FHSS filtered, c) synchronization filtered 

 

 

Fig. 25. Filter Design and Analysis Tool dialog window 
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6.2 Synchronization recovery 

The input of this system is the synchronization filtered, in its output gets the most 
significant four bits of the pseudorandom code (Fig. 26). It is formed (Fig. 27) by a 9 MHz 
recover, a synchronous demodulator, a load and enable generators, and a Linear Feedback 
Shift Register code generator. 
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Fig. 26. Synchronization recovery signals: a) synchronization filtered, b) code recovered 
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Fig. 27. Synchronization recovery block diagram 

6.2.1 Carrier recover (9 MHz) 

This system recovers the carrier of the synchronization signal (Fig. 28). Initially the phase-
modulated signal is squared and filtered to get double the carrier frequency with an 18 MHz 
band pass filter (Fig. 29); the sample frequency is 180 MHz. The 18 MHz signal is squared by 
a comparator and a pulse is generated with each rising edge. Finally, an accumulator 
generates a 9 MHz squared signal with 50% duty cycle. 
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Fig. 28. Carrier recovery of 9 MHz block diagram 

6.2.2 Synchronous demodulator 

The block in Fig. 30 is a phase demodulator of the synchronization signal. The output 
indicates the length of the code with two consecutive edges of the signal (Fig. 31). The 
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unipolar square 9 MHz carrier is converted to bipolar; in this way, the multiplier output 
assumes non-zero values in each semicycle. The delay block for the carrier ensures the 
synchronous demodulation. The output of the low pass filter is introduced to a comparator 
to get the length signal demodulated. 
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Fig. 29. Carrier recovery signals: a) synchronization filtered input, b) squared signal, c) 18 
MHz filtered, d) 18 MHz square wave, e) pulse with rising edge, f) 9 MHz square wave 
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Fig. 30. Synchronous demodulator block diagram 
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Fig. 31. Synchronous demodulator signals: a) synchronization input, b) 9 MHz multiplier 
input, c) multiplier output, d) filter output, e) length demodulated 
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6.2.3 Load generator 

The circuit in Fig. 32 produces a pulse with the rising or falling edge at the input (Fig. 33). 

The output signal loads the initial value “11111” in the Linear Feedback Shift Register of the 

code generator in the receiver. 
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Fig. 32. Load generator 
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Fig. 33. Load generator signals: a) input, b) delayed input, c) output 

6.2.4 Enable generator 

The input of this system (Fig. 34) is the 9 MHz square carrier and generates a 1.5 MHz 

enable signal. A pulse is obtained with the rising edge at the input (Fig. 35). This signal is 

used as enable signal in a six states counter; a comparator checks when the counter output is 

zero. Finally, a pulse is generated with each rising edge of the comparator output. The 

output signal has the chip frequency, it will be used as input in a Linear Feedback Shift 

Register to recover the pseudorandom code. 
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Fig. 34. Enable generator block diagram 
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Fig. 35. Enable generator signals: a) 9 MHz input, b) internal pulse with the input rising 
edge, c) counter output, d) zero value in the counter output, e) enable generator output 

6.2.5 Linear feedback shift register code generator 

This system is a LFSR similar to the code generator in the transmitter (Fig. 36); with the 
exceptions of the load signal to initialize the “11111” value and the enable signal to generate 
the 1.5 MHz output rate. A delay block synchronizes the load and enable signal. The LFSR 
inputs and the value of the code recovered are shown in Fig. 37. 
 

LFSR CODE GENERATOR

CODE _RECOVERED

1

Slice

[a:b]

LFSR

din

load

en

dout

Delay

z
-5

Constant

31

ENABLE

2

LOAD

1

UFix _5_0

UFix _5_0 UFix _4_0Bool

Bool Bool

 

Fig. 36. Linear Feedback Shift Register code generator block diagram 
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Fig. 37. Linear Feedback Shift Register code generator signals: a) LFSR load input, b) LFSR 

enable input, c) code recovered 
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6.3 Local oscillators 

The code recovered is the local oscillators input (Fig. 38). The two oscillators were designed 
using two Direct Digital Synthesizer blocks, and the four bits input code must be converted 
to the input format of the DDS block. The frequency of the oscillator F_0 output (Fig. 39) is 
the transmitted frequency if the data in the transmitter is “0” minus 10.7 MHz; in other 
words, the left side of Table 1 minus 10.7 MHz. Consequently the value of the intermediate 
frequency in the receiver is 10.7 MHz. Similarly, the frequency of the oscillator F_1 output is 
the transmitted frequency if the data in the transmitter is “1” minus 10.7 MHz; in the same 
way, the right side of Table 1 minus 10.7 MHz. 
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Fig. 38. Local oscillators block diagram 
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Fig. 39. Oscillator F_0 block diagram 
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Fig. 40. Local oscillators signals: a) local oscillators input, b) oscillator F_0 output, c) 
oscillator F_1 output 
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6.4 Double branch demodulator 

This demodulator is formed by two similar envelope detectors (Fig. 41). The inputs are the 
FHSS filtered signal and the local oscillators outputs. The FHSS filtered signal is delayed to 
keep the synchronization with the local oscillators frequencies. The top branch gets the 
waveform of the data and the bottom branch the inverter data. Lastly, the two outputs are 
compared and final output is the binary demodulated data. 
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Fig. 41. Double branch demodulator block diagram 

The Fig. 42 is the top branch block diagram. The mixer of the branch is the first multiplier 
and the intermediate frequency band pass filter. The second multiplier and the low pass 
filter is the envelope detector. The Fig. 43 shows the signals in the demodulator. 
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Fig. 42. Top branch demodulator block diagram 

7. Channel simulation 

Once the design of the transceiver has been finished, the performances can be tested 
inserting a channel between the transmitter and the receiver. For this purpose, an Additive 
White Gaussian Noise (AWGN) Simulink channel was chosen (Fig. 44). In this channel, the 
signal-to-noise power ratio is fixed by the designer. The Bit Error Rate (BER) was measured 
with the Error Rate Calculation block, where the delay between the data must be specified. 
Besides, the instant of synchronization in the receiver (20 microseconds) is indicated to start 
the bit error counter. This block generates three values: the first is the Bit Error Rate, the 
second is the number of errors, and the third is the number of bits tested. Finally, the BER is 
represented versus the signal-to-noise power ratio (Fig. 45). 
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Fig. 43. Double branch demodulator signals: a) intermediate frequency filter output in the 
top branch, b) squared signal in the top branch, c) low pass filter output in the top branch, d) 
intermediate frequency filter output in the bottom branch, e) squared signal in the bottom 
branch, f) low pass filter output in the bottom branch, g) demodulated output 
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Fig. 44. Error rate calculation in presence of Additive White Gaussian Noise 
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Fig. 45. Bit Error Rate represented versus the signal-to-noise power ratio (decibels) 
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8. Simulation and compilation with ISE 

After the system has been simulated with Simulink, it can be compiled with System 
Generator. The chosen device is a Virtex 4 FPGA, and the hardware description language is 
Verilog. A project is then generated for Integrated System Environment, which includes the 
files for the structural description of the system. The syntax of the Verilog files can be 
checked, and the synthesis and behavioral simulation of the system can be executed (Fig. 
46). Thereafter, the implementation of the design allows the timing simulation of the 
transceiver (Fig. 47). Lastly, the programming file is generated for the chosen FPGA. 
 

 

Fig. 46. A long behavioral simulation of the FHSS transceiver using ISE (40 microseconds) 

 

 

Fig. 47. Timing simulation of the FHSS transceiver using ISE (80 nanoseconds) 

The Integrated System Environment software provides a power estimator that indicates a 
dissipation of 0.52 watts in the FPGA, and an estimated temperature of 31.4 degrees 
centigrade. The FPGA core is supplied with 1.2 volts and the input-output pins support the 
Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS) volts standard. The 
design uses 491 of the 521 FPGA multipliers. The occupation rate of input-output pins in the 
FPGA is about 12.3%. However, this occupation rate can be reduced until 3.3% if internal 
signals are not checked. 

9. Conclusions and future work 

With this design methodology the typical advantageous features of using programmable 
digital devices are reached. Repeating a design consists in reprogramming the FPGA in the 
chosen board. The design and simulation times are decreased, consequently the time to 
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market is minimizing. The used tool permits great flexibility; in others words, the design 
parameters can be changed and new features can be checked within several minutes. The 
flexibility allows to change the Direct Digital Synthesizers and filters parameters and to 
check its performances. The Simulink simulations are easy to run, and the signals are shown 
in floating point format which make easier its analysis. These simulations are possible even 
before the compilation of the System Generator blocks to obtain the hardware description 
language files. With the System Generator it is possible to simulate the full transceiver, the 
transmitter and the receiver can be connected through a channel. Moreover, it is possible to 
simulate the transmission in presence of interference, distortion, multipath and other spread 
spectrum signals using different codes. 
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