
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

14

Design Methodology with
System Generator in Simulink of a

FHSS Transceiver on FPGA

Santiago T. Pérez1, Carlos M. Travieso1,

Jesús B. Alonso1 and José L. Vásquez2
1Signals and Communications Department,

University of Las Palmas de Gran Canaria
2Department of Computer Science, University of Costa Rica

1Spain
2Costa Rica

1. Introduction

This study aims to describe a design method for Field Programmable Gate Array (FPGA)

(Maxfield, 2004) applied, in particular, to the design of a Frequency Hopping Spread

Spectrum (FHSS) transceiver (Simon et al., 1994). Simulink (MathWorks, 2011) is a tool

integrated in Matlab, which allows the design of systems using block diagrams in a fast and

flexible way. Xilinx is one of the most important FPGA manufacturers and provides System

Generator (Xilinx, 2011), it is a design environment over Simulink for FPGA based on the

method described. The design is based on a previous FHSS transceiver designed for indoor

wireless optical communications made with discrete components (Pérez et al., 2003). One of

the improvements in the proposed system is the physical integration.

2. The physical device

Initially, there were several alternatives for the system hardware. In principle, an

Application Specific Integrated Circuit (ASIC) can be used (Maxfield, 2004), but to configure

these devices must be sent to the manufacturer, which increases development time and

makes more expensive the prototype. This technology achieves good physical performances:

low area, low power consumption and minimal delays.

At the other extreme Digital Signal Processor (DSP) can be used which are very cheap

(Maxfield, 2004). The DSPs do not have the best physical performances; normally they

occupy maximum area, have high power consumption and maximum delay. In fact, when

the volume of calculus is high, easily they do not have real time response. This is because

the architecture is rigid, in both data and operations formats.

In the middle are FPGA, which have a reasonable cost for the design of prototypes; in
general an intermediate cost to the two previous cases. The FPGA have significant physical
benefits, without reaching the performances of ASIC. FPGAs have benefits outweigh the

www.intechopen.com

Applications of MATLAB in Science and Engineering

294

DSP because the FPGA final architecture can be configured in a fully flexible way, in both
data and operations size.
It must be emphasized that FPGA are integrated circuits reprogrammable by the designer
and can be used for different projects, or in a project during its different phases. The FPGAs
are also available in the market on printed circuit boards, with power and programming
connectors, auxiliary memories and input-output pins; this avoid to design and construct
the printed circuit board, and makes it ideal for prototyping design.

3. Design methodology

A transceiver can be designed using discrete electronic components. In general, the overall
design is not flexible and highly dependent on technology and available devices, has long
design time, occupies large area, has high power consumption and high delays and low
maximum operating frequency.
In general, the trend is to integrate the design in a digital integrated circuit and place around
the necessary external components; this eliminates the previous inconveniences. It must be
emphasized that these designs can be easily portable between devices, even from different
manufacturers. This portability is possible because the design can be described with a
standard hardware description language (HDL).
In digital systems, when floating point arithmetic is used, the range and precision can be
adjusted with the number of bits of exponent and mantissa, it is then possible to obtain a
wide range and high precision in this type of representation. However, floating point
operations require many hardware resources and long time execution (Hauck & DeHon,
2008). On the other hand, the fixed point arithmetic requires fewer hardware resources, but
the range and precision can be improved only by increasing the number of bits. If the
number of bits is constant, to increase the range causes a decrease in the precision. It is
possible to use fixed point arithmetic in most applications when the range of signals is
known or can be determined by statistical methods. In fixed point arithmetic the 2's
complement representation is used because its arithmetic rules are simpler than the 1's
complement representation.
Ordinarily the systems can be designed using a standard hardware description language:
VHDL (Very High Speed Integrated Circuit Hardware Description Language) (Pedroni,
2004) or Verilog (Palnitkar, 2003). Manual coded of complex systems using one of these
languages is little flexible and has a great design time. To solve these problems several
design programs have been developed. One of them is the System Generator from Xilinx,
which is installed in Simulink.

3.1 System generator

When System Generator is installed some Blocksets (Fig. 1) are included in Simulink of
Matlab. Each block is configured after opening its dialog window, this permits fast and
flexible designs. Basically, System Generator allows minimizing the time spent by the
designer for the description and simulation of the circuit. On the other hand, the design is
flexible; it is possible to change the design parameters and check quickly the effect on the
performances and the architecture of the system. The functional simulation is possible even
before the compilation of the model designed. The compilation generates the files of the
structural description of the system in a standard hardware description language for the
Integrated System Environment (ISE) for Xilinx FPGAs.

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

295

Fig. 1. System Generator Blocksets in Simulink

The FPGA boundary in the Simulink model is defined by Gateway In and Gateway Out
blocks. The Gateway In block converts the Simulink floating point input to a fixed point
format, saturation and rounding modes can be defined by the designer. The Gateway Out
block converts the FPGA fixed point format to Simulink double numerical precision floating
point format.
In the System Generator the designer does not perceive the signals as bits; instead, the bits
are grouped in signed or unsigned fixed point format. The operators force signals to change
automatically to the appropriate format in the outputs. A block is not a hardware circuit
necessarily; it relates with others blocks to generate the appropriate hardware. The designer
can include blocks described in a hardware description language, finite state machine flow
diagram, Matlab files, etc. The System Generator simulations are bit and cycle accurate, this
means results seen in a simulation exactly match the results that are seen in hardware. The
Simulink signals are shown as floating point values, which makes easier to interpret them.
The System Generator simulations are faster than traditional hardware description language
simulators, and the results are easier for analyzing. Otherwise, the VHDL and Verilog code
are not portable to other FPGA manufacturers. The reason is that System Generator uses
Xilinx primitives which take advantages of the device characteristics.
System Generator can be used for algorithm exploration or design prototyping, for
estimating the hardware cost and performance of the design. Other possibility is using

www.intechopen.com

Applications of MATLAB in Science and Engineering

296

System Generator for designing a portion of a big system and joining with the rest of the
design. Finally, System Generator can implement a complete design in a hardware
description language. Designs in System Generator are discrete time systems; the signals
and blocks generate automatically the sample rate. However, a few blocks set the sample
rate implicitly or explicitly. System Generator supports multirate circuits and some blocks
can be used for changing the sample rate.
Often an executable specification file is created using the standard Simulink Blocksets (see
Fig. 2). The specification file can be designed using floating point numerical precision and
not hardware detail. Once the functionality and basic dataflow have been defined, System
Generator can be used to specify the hardware implementation details for the Xilinx devices.
System Generator uses the Xilinx DSP Blockset from Simulink and will automatically invoke
Xilinx Core Generator to generate highly optimized netlists for the building blocks. System
Generator can execute all the downstream implementation tools to get a bitstream file for
programming the FPGA device. An optional testbench can be created using test vectors
extracted from the Simulink environment for using with Integrated System Environment
simulators.

Fig. 2. System Generator design flow (download from www.xilinx.com)

Every system designed with System Generator must contain a System Generator block (Fig.
3); this block specifies how simulation and code generator can be used. Firstly, the type of
compilation in the System Generator block can be specified to obtain: HDL netlist, Bitstream
for programming, etc. Secondly, the FPGA type can be chosen. The target directory defines
where the compilation writes the files of Integrated System Environment project. The
synthesis tool specifies which tool is chosen for synthesizing the circuit: Synplify, Synplify
Pro or Xilinx Synthesis Tool (XST). In the hardware description language the designer can
choose between VHDL and Verilog. Finally, clock options defines the period of the clock, its
input pin location, the mode of multirate implementation and the Simulink system period,
which is the greatest common divisor of the sample periods that appear in the system. In the
block icon display, the type of information to be displayed is specified.

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

297

System

Generator

Fig. 3. System Generator block and its dialog window

3.2 Integrated system environment

In Xilinx Integrated System Environment it is possible to compile the hardware description
language files, and simulate the system behavioral or timing analysis. Also the occupancy
rate, power consumption and operating temperature of the FPGA are obtained. Afterwards
the program file can be generated for the chosen device; this file can be downloaded from
the computer to the board where the FPGA is included. Finally, the performance of the
design system must be checked with electronic measure equipment.
When the designer clicks on Generate in dialog window of System Generator block, the
structural description files in a hardware description language are obtained, and a project is
created for Integrated System Environment. Now it is possible to check the syntax of the
hardware description language files (Fig. 4). The first step in the compilation process is
synthesizing the system. The synthesis tool used is Xilinx Synthesis Tool, it is an application
that synthesizes hardware description language designs to create Xilinx specific netlist files
called NGC (Native Generic Circuit) files. The NGC file is a netlist that contains both logical
design data and constraints. The NGC file takes the place of both Electronic Data
Interchange Format (EDIF) and Netlist Constraints File (NCF) files. In synthesis options
optimization goal for area or speed can be fixed; by default, this property is set to speed
optimization. Similarly, optimization effort can be established as normal or high effort; in
the last case additional optimizations are performed to get best result for the target FPGA
device. Synthesis report can be analyzed by the designer; moreover, the designer can view
Register Transfer Level (RTL) schematic or technology schematic. After synthesizing the
system, the design is implemented in four stages: translate, map, place and route. The
translation process merges all the input netlists and design constraint information and
outputs a Xilinx Native Generic Database (NGD) file. Then the output NGD file can be
mapped to the targeted FPGA device family. The map process takes the NGD file, runs a
design rule checker and maps the logic design to a Xilinx FPGA device. The result appears

www.intechopen.com

Applications of MATLAB in Science and Engineering

298

in a Native Circuit Design (NCD) file, which is used for placing and routing. The place and
route process takes a NCD file and produces a new NCD file to be used by the
programming file generator. The generator programming file process runs the Xilinx
bitstream generation program BitGen to produce a bit file for Xilinx device configuration.
Finally, the configuration target device process uses the bit file to configure the FPGA target
device. Behavioral simulations are possible in the design before synthesis with the simulate
behavioral model process. This first pass simulation is typically performed to verify the
Register Transfer Level or behavioral code and to confirm the designed function. Otherwise,
after the design is placed and routed on the chip, timing simulations are possible. This
process uses the post place and route simulation model and a Standard Delay Format (SDF)
file. The SDF file contains true timing delay information of the design.

Fig. 4. Overview of design flow of Integrated System Environment (download from
www.xilinx.com)

4. The transceiver

This chapter is based on a previous FHSS transceiver (Fig. 5) for wireless optical
communications. The FHSS and analog synchronization signals were emitted by two
separated Light Emitting Diodes (LED) to avoid adding them with discrete analog circuits.

Fig. 5. Block diagram with FHSS transceiver designed previously

Demodulated

data

Transmitter

Binary

data

Analog synchronization signal

FHSS

Receiver

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

299

The core of the transmitter was a discrete Direct Digital Synthesizer (DDS) AD9851 from
Analog Devices (Analog Devices, 2011). The discrete DDS (Fig. 6) is a digital system
excepting the final Digital to Analog Converter; its output signal is a sinusoidal sampled
signal at 180 MHz. The emitted FHSS signal was smoothed by the 100 MHz bandwidth of
the optical emitter. In the DDS used, the output frequency is fixed by the expression (1),
where fDDS_CLK is the frequency of the DDS clock (180 MHz), N is the number of bits of the
tuning word (32 bits) and Word is the decimal value of 32 bit frequency tuning word.

 fout=(Word·fDDS_CLK)/2N (1)

Fig. 6. Block diagram of discrete DDS AD9851 from Analog Devices (download from
www.analog.com)

In the demodulator of the receiver, two similar discrete DDS were used as local oscillators.
In the new design, the full transceiver with the previous methodology is described. The
modulator matches with the transmitter designed previously, excepting the optical emitters
and the output Digital to Analog Converter of the discrete DDS. In the same way, the two
DDS in the demodulator were integrated in the FPGA. In the previous design, discrete
analog filters were used. In the new design, these filters were integrated in the FPGA as
digital filters. The new design methodology is improved by DDS block and filter design
capabilities in System Generator. The Fig. 7 shows the new FHSS transceiver. In Fig. 8, the
data in the transmitter and the demodulated data are shown. After the synchronization is
reached in the receiver, the demodulation is executed perfectly.

FHSS TRANSCEIVER

Terminator

Scope

FHSS TRANSMITTER

EXTERNAL_DATA

DATA_CONTROL

FHSS _SYNCHRONIZATION

FB

DATA

FHSS RECEIVER

RX_IN DEMODULATED_DATA

Constant 1

0

Constant

0

System

Generator

Bool

double

Fix_7_5
double

double

double

Fig. 7. Frequency Hopping Spread Spectrum transceiver

www.intechopen.com

Applications of MATLAB in Science and Engineering

300

0 1 2 3 4 5 6 7 8 9

x 10
-5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

x 10
-5

0

0.2

0.4

0.6

0.8

1

Fig. 8. Data signals in the transceiver: a) transmitted data, b) demodulated data

If Port Data Type is enabled in Simulink, after the system simulation the data types are
shown in every point of the design. It can be: Bool (boolean); double, Simulink floating point
format; UFix_m_n, unsigned m bits two’s complement fixed point format with n fractional
bits; Fix_m_n, signed m bits two’s complement fixed point format with n fractional bits.
Otherwise, the signals can be analyzed in different ways using Simulink Sinks blockset.
First, the Scope block can be used; this was the method used for adjusting the transceiver, it
is quick but not convenient for capturing signals. Secondly, signals can be captured with the
To Workspace block, but these signals are only stored temporarily in Matlab. Finally, To File
block keeps the captured signals in a mat file permanently; for this reason To File block was
used to capture and present simulations of this design.

5. The transmitter

The block diagram of the designed transmitter is drawn in Fig. 9. It is composed of an
internal data generator, a pseudorandom code generator, and two DDS, used to generate the
FHSS and synchronization signals. An external clock of 180 MHz is needed for the system.
In this transmitter it is possible to choose between internal or external binary data.

FHSS_TRANNSMITTER

DATA

3

FB

2

FHSS_SYNCHRONIZATION

1

S_31 _BEFORE

 Out

SYNCHRONIZATION

 Out

SINC_DATA_PN

 Out

Mux

sel

d0

d1

LENGTH

 Out

F_CHIP

 Out

FHSS_SYNCHRONIZATION

 Out

FHSS

 Out

FB

 Out

EXTERNAL _DATA

 In

DDS_SYNCHRONIZATION

LENGTH SYNCHRONIZATION

DDS_FHSS

 DATA_CODE_16_STATE

 DATA_DDS

FHSS

DATA_PN

 Out

DATA_GENERATOR

FB

SINC _DATA_PN

DATA_PN

DATA_CONTROL

 In

DATA

 Out

CODE _GENERATOR

DATA

F_CHIP

CODE_31_STATE

CODE_16_STATE

 DATA_CODE_16_STATE

S_31_BEFORE

LENGTH

CODE_31_STATE

 Out

CODE_16_STATE

 Out

AddSub

a

b

a + b

 DATA_DDS

 Out

 DATA_CODE _16 _STATE

 Out

DATA_CONTROL

2

EXTERNAL _DATA

1

Bool

Bool

Bool

UFix_5_0

UFix_4_0

UFix_5_0

Bool

UFix_1_0

Fix _29_29

Fix _6_5

Fix _6_5

double

double

double

Bool

Bool

Bool Bool

Fix_7_5 Fix _7_5

Fig. 9. Block diagram of FHSS transmitter designed with System Generator

a)

b)

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

301

5.1 Pseudorandom data generator

Application of the internal data generator (Fig. 10) avoids using an external data source; it was
designed using a Linear Feedback Shift Register (LFSR) block as pseudorandom generator of
15 bits long at 500 kilobits per second. A pulse in the pseudorandom data generator is formed
each time the sequence begins; this provides a high quality periodic signal to synchronize the
oscilloscope. The LFSR block is configured with the dialog windows (Fig. 11). The clock, the
data synchronization pulse and the pseudorandom data are shown in Fig. 12.

DATA_GENERATOR

DATA_PN

3

SINC_DATA_PN

2

FB

1

Slice 1

[a:b]

Relational 1

a

b

a>=b

z
-0

Relational

a

b

a=b

z-0

LFSR_DATA_GENERATOR

dout

FB_i

CEProbe
Counter 1

load

din

out

Constant 3

180

Constant 2

15

Constant 1

360
Bool

Bool

UFix _8_0

UFix _9_0

UFix _9_0

Bool

UFix _4_0

BoolUFix _4_0

Fig. 10. Internal pseudorandom data generator

Fig. 11. Linear Feedback Shift Register dialog windows

0 1 2 3 4 5 6 7

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 12. Pseudorandom data generator signals: a) clock at bit rate, b) the data
synchronization pulse, c) the pseudorandom binary data

a)

b)

c)

www.intechopen.com

Applications of MATLAB in Science and Engineering

302

5.2 Pseudorandom code generator

The pseudorandom code generator and its Simulink simulation signals are shown in Figures
13 and 14. The code rate is called chip frequency; its value is 1.5 Megachips per second.
Consequently, three codes are generated by each data bit. The code generator is based on a
Linear Feedback Shift Register of 31 states. In the pseudorandom code generator, a pulse is
generated each time the sequence begins. A five bits word is obtained with the four most
significant bits of the pseudorandom code generator and the data bit as most significant bit.

CODE_GENERATOR

LENGTH

6

S_31 _BEFORE

5

 DATA_CODE _16 _STATE

4

CODE _16 _STATE

3

CODE _31 _STATE

2

F_CHIP

1

Slice

[a:b]

Relational 1

a

b

a>=b

z-0

Relational

a

b

a=b

z
-0

LFSR_CODE _GENERATOR

dout

F_CHIP _i

CEProbe

Counter 1

load

din

out

Convert

cast

Constant 3

60

Constant 2

15

Constant 1

120

Concat

hi

lo

Accumulator

b q

DATA

1

Bool

Bool
UFix _6_0

UFix _7_0

UFix _7_0

UFix _1_0 UFix _1_0

Bool

UFix _5_0

UFix _5_0

UFix _4_0

UFix_5_0

Bool

Fig. 13. Pseudorandom code generator

0 1 2 3 4 5 6 7

x 10
-5

0

0.5

1

0 1 2 3 4 5 6 7

x 10
-5

0

20

0 1 2 3 4 5 6 7

x 10
-5

0

10

0 1 2 3 4 5 6 7

x 10
-5

0

20

0 1 2 3 4 5 6 7

x 10
-5

0

0.5

1

0 1 2 3 4 5 6 7

x 10
-5

0

0.5

1

Fig. 14. Pseudorandom code generator signals: a) chip frequency, b) pseudorandom code 5 bits
width, c) 4 most significant bits of pseudorandom code 5 bits width, d) data joined with 4 most
significant bits, e) the stage previous to “11111”, f) square signal which marks the code length

a)

b)

c)

d)

e)

f)

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

303

5.3 Frequency hopping spread spectrum signal generation

For each group of five bits (signal d in Fig. 14) a sampled sinusoidal signal is generated
according to Table 1.

Code
Frequency

(MHz)
Code

Frequency

(MHz)

00000 24.384 10000 48.960

00001 25.920 10001 50.496

00010 27.456 10010 52.032

00011 28.992 10011 53.568

00100 30.528 10100 55.104

00101 32.064 10101 56.640

00110 33.600 10110 58.176

00111 35.136 10111 59.712

01000 36.672 11000 61.248

01001 38.208 11001 62.784

01010 39.744 11010 64.320

01011 41.280 11011 65.856

01100 42.816 11100 67.392

01101 44.352 11101 68.928

01110 45.888 11110 70.464

01111 47.424 11111 72.000

Table 1. Transmitted frequencies for the FHSS signal

In Fig. 15, the DDS generating the FHSS signal is shown. The DDS clock is the system clock
(180 MHz). Therefore, a pure sinusoidal signal with an external filter can be synthesized
until a bit less than 90 MHz.

DDS_FHSS

FHSS

2

 DATA_DDS

1

DDS Compiler 2.1

we

data

sine

Constant 1

1

Constant

0.13543701171875

CMult

x 0.00853

AddSub

a

b

a + b DATA_CODE _16 _STATE

1

Fix _6_5

UFix _5_0

Fix _29_29

UFix _16_16

UFix _21_16

Bool

Fig. 15. Direct Digital Synthesizer generating the FHSS signal

The input data for the Xilinx DDS block is the synthesized frequency divided by the DDS
clock. The equation (2) shows the meaning of this relation. Consequently, the DDS block

www.intechopen.com

Applications of MATLAB in Science and Engineering

304

fixes the number of N bits according to the rest of the DDS parameters: spurious free
dynamic range, resolution, implementation mode, etc.

 data=fout/fDDS_CLK=Word/2N (2)

Fig. 16 shows the dialog windows of the DDS block, where the designer can fix its

parameters. This DDS acts like a frequency modulator.

Fig. 16. Direct Digital Synthesizer block dialog windows for FHSS signal

The five bits input signal is transformed to the format of the input DDS block. The last
operation is an unsigned fixed point integer to unsigned fixed point decimal conversion. In
Fig. 17, five chip times of FHSS signal are shown. Three frequencies are generated by each
data bit, therefore this is a Fast Frequency Hopping Spread Spectrum modulation.

6.75 6.8 6.85 6.9 6.95 7 7.05

x 10
-5

0

10

20

30

6.75 6.8 6.85 6.9 6.95 7 7.05

x 10
-5

0

0.1

0.2

0.3

0.4

6.75 6.8 6.85 6.9 6.95 7 7.05

x 10
-5

-1

-0.5

0

0.5

1

Fig. 17. Signals in Direct Digital Synthesizer generating the FHSS signal: a) five bits DDS

input, b) input for Xilinx DDS block, c) FHSS signal

5.4 Synchronization signal generation and final adder

In the pseudorandom code generator, a square signal is generated with a 50% duty cycle
(signal f in Fig. 14). This square signal has a semi-period with the same duration as the
pseudorandom code length. The square signal is the DDS input (Fig. 18), it modulates in
phase to a 9 MHz carrier (Fig. 19). The phase modulated signal carries information about the

a)

b)

c)

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

305

beginning of the pseudorandom code; and about its chip frequency, because its carrier is a
multiple of 1.5 MHz.

DDS_SYNCHRONIZATION

SYNCHRONIZATION

1

DDS Compiler 2.1

we

data

sine

Convert 1

cast

Constant 3

1

CMult

x 0.5

LENGTH

1
UFix _1_0 UFix _17_16

Fix_6_5

Bool

Fix _29_29

Fig. 18. Direct Digital Synthesizer for synchronization generation

2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.1 2.11 2.12

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.1 2.11 2.12

x 10
-5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

4.09 4.1 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

4.09 4.1 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19

x 10
-5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 19. Signals in Direct Digital Synthesizer that generates the synchronization signal: a)

square input signal, b) synchronization signal

The Fig. 20 shows the dialog window of the DDS block. This Direct Digital Synthesizer acts
like a phase modulator. In both Xilinx DDS blocks, the latency configuration is fixed to 1 for
keeping the DDS delays to the minimum same value, this parameter specifies the delay as
number of clock cycles.

Fig. 20. Direct Digital Synthesizer block dialog windows for synchronization signal

a)

b)

www.intechopen.com

Applications of MATLAB in Science and Engineering

306

Finally, the FHSS and the synchronization signals are added with an AddSub block, this
new signal is the transmitter output (Fig. 21).

1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

x 10
-5

-1

-0.5

0

0.5

1

1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

x 10
-5

-1

-0.5

0

0.5

1

1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

x 10
-5

-2

-1

0

1

2

Fig. 21. Inputs and output of final adder: a) FHSS signal, b) synchronization signal, c) the
above signals added together

6. The receiver

The receiver block diagram is shown in Fig. 22. The signal received from the transmitter
enters in the splitting filter, FHSS and synchronization signals can be separated because they
are multiplexed in frequency. The filtered synchronization signal is the input of the
synchronization recovery, where the code is obtained in the receiver. The code recovered
synchronizes the local oscillators. Finally, the local oscillators outputs and the FHSS filtered
are introduced to the double branch data demodulator.

RX_FHSS
DEMODULATED _DATA

1

SYNCHRONIZATION RECOVERY

SR_IN CODE_RECOVERED

SPLITTING FILTERS

SF_IN

SYNCHRONIZATION _FILTERED

FHSS_FILTERED

RX_IN

 In

LOCAL OSCILLATORS

CODE_IN

F_1

F_0

DOUBLE BRANCH DEMODULATOR

F_1

FHSS _IN

F_0

DEMODULATED_DATA

DEMODULATED _DATA

 Out

DELAY

z
-75

RX_IN

1

Fix_20_17

Fix_6_5

Fix_18_14

Fix_18_14

Fix_6_5

UFix_4_0

Fix_7_5Fix _7_5

Bool

Bool

Fig. 22. Block diagram of FHSS receiver designed with System Generator

6.1 Splitting filters

The splitting filters block diagram and signals are drawn in Fig. 23 and 24 respectively. A
Finite Impulse Response (FIR) high pass filter recovers the FHSS signal. It was designed
using the Filter Design and Analysis Tool (Fig. 25), the filter’s coefficients are used by Xilinx
FIR Compiler block for being synthesized. In the same way, a band pass filter is designed to
obtain the synchronization signal.

a)

b)

c)

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

307

SPLITTING FILTERS

FHSS_FILTERED

2

SYNCHRONIZATION _FILTERED

1

Terminator 4

Terminator 3

Terminator 2

Terminator 1

FIR Compiler 4.0_SYNCHRONIZATION

din

dout

rfd

rdy

FIR Compiler 4.0_FFHSS

din

dout

rfd

rdy

Coefficients _HPF

FDATool

Coefficients _BPF

FDATool

SF_IN

1

Fix_20_17Fix_18_14

Bool

Bool

Bool

Bool

Fix_7_5

Fig. 23. Splitting filters block diagram

1.95 2 2.05 2.1 2.15 2.2 2.25 2.3

x 10
-5

-2

-1

0

1

2

1.95 2 2.05 2.1 2.15 2.2 2.25 2.3

x 10
-5

-1

-0.5

0

0.5

1

1.95 2 2.05 2.1 2.15 2.2 2.25 2.3

x 10
-5

-1

-0.5

0

0.5

1

Fig. 24. Splitting filters signals: a) input, b) FHSS filtered, c) synchronization filtered

Fig. 25. Filter Design and Analysis Tool dialog window

a)

b)

c)

www.intechopen.com

Applications of MATLAB in Science and Engineering

308

6.2 Synchronization recovery

The input of this system is the synchronization filtered, in its output gets the most
significant four bits of the pseudorandom code (Fig. 26). It is formed (Fig. 27) by a 9 MHz
recover, a synchronous demodulator, a load and enable generators, and a Linear Feedback
Shift Register code generator.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-5

0

2

4

6

8

10

12

14

16

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
-5

-1

-0.5

0

0.5

1

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
-5

0

2

4

6

8

10

12

14

16

Fig. 26. Synchronization recovery signals: a) synchronization filtered, b) code recovered

SYNCHRONIZATION RECOVERY

CODE _RECOVERED

1

SYNCHRONOUS DEMODULATOR

SR_IN

9_MHz

LENGTH_DEMODULATED

LOAD GENERATOR

LENGTH_DEMODULATED LOAD

LFSR CODE GENERATOR

LOAD

ENABLE

CODE_RECOVERED

ENABLE GENERATOR

9_MHz ENABLE (1.5 MHz)

9 MHz RECOVER

SR_IN 9_MHz

SR_IN

1
Fix_20_17

Bool Bool

Bool

UFix _4_0UFix_1_0

Fig. 27. Synchronization recovery block diagram

6.2.1 Carrier recover (9 MHz)

This system recovers the carrier of the synchronization signal (Fig. 28). Initially the phase-
modulated signal is squared and filtered to get double the carrier frequency with an 18 MHz
band pass filter (Fig. 29); the sample frequency is 180 MHz. The 18 MHz signal is squared by
a comparator and a pulse is generated with each rising edge. Finally, an accumulator
generates a 9 MHz squared signal with 50% duty cycle.

9 MHz RECOVER

9_MHz

1

Terminator 1

Terminator

Relational

a

b

a>b

z
-0

Reinterpret

reinterpret

Mult

a

b
(ab)z

-0

FIR Compiler 4.0_18 MHz

din

dout

rfd

rdy

FDATool _BPF

FDATool

Expression

a

b

a & ~b

Delay

z-1Constant

0
Accumulator

b q

SR_IN

1
Fix _20_17

Fix_26_24 Bool

Bool

Fix_40_37

Bool

UFix _1_0

Bool

Bool UFix _1_0UFix _1_0

Fig. 28. Carrier recovery of 9 MHz block diagram

6.2.2 Synchronous demodulator

The block in Fig. 30 is a phase demodulator of the synchronization signal. The output
indicates the length of the code with two consecutive edges of the signal (Fig. 31). The

a)

b)

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

309

unipolar square 9 MHz carrier is converted to bipolar; in this way, the multiplier output
assumes non-zero values in each semicycle. The delay block for the carrier ensures the
synchronous demodulation. The output of the low pass filter is introduced to a comparator
to get the length signal demodulated.

2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2

x 10
-5

-1

0

1

2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2

x 10
-5

0

0.5

1

2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2

x 10
-5

-0.4

-0.2

0

0.2

2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2

x 10
-5

0

0.5

1

2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2

x 10
-5

0

0.5

1

2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2

x 10
-5

0

0.5

1

Fig. 29. Carrier recovery signals: a) synchronization filtered input, b) squared signal, c) 18
MHz filtered, d) 18 MHz square wave, e) pulse with rising edge, f) 9 MHz square wave

SYNCHRONOUS DEMODULATOR

LENGTH _DEMODULATED

1

Terminator 51

Terminator

Relational 1

a

b

a>b

z
-0

Mult 1

a

b
(ab)z- 0

FIR Compiler 4.0_LOW_PASS_FILTER

din

dout

rfd

rdy

FDATool _LPF

FDATool

Delay

z-4

Constant 2

0

Constant 1

-1

CMult

x 2

AddSub

a

b

a + b9_MHz

2

SR_IN

1

Fix_22_17 Bool

Bool

Fix_36_31

UFix_1_0

Fix_20_17

Bool

Fix _2_0

UFix_3_0

Fix_2_0

UFix _1_0

Fix _2_0

Fig. 30. Synchronous demodulator block diagram

2.5 3 3.5 4 4.5

x 10
-5

-1

-0.5

0

0.5

1

2.5 3 3.5 4 4.5

x 10
-5

-1

-0.5

0

0.5

1

2.5 3 3.5 4 4.5

x 10
-5

-1

-0.5

0

0.5

1

2.5 3 3.5 4 4.5

x 10
-5

-0.5

0

0.5

2.5 3 3.5 4 4.5

x 10
-5

0

0.5

1

2.05 2.1 2.15 2.2 2.25

x 10
-5

-1

-0.5

0

0.5

1

2.05 2.1 2.15 2.2 2.25

x 10
-5

-1

-0.5

0

0.5

1

2.05 2.1 2.15 2.2 2.25

x 10
-5

-1

-0.5

0

0.5

1

2.05 2.1 2.15 2.2 2.25

x 10
-5

-0.5

0

0.5

2.05 2.1 2.15 2.2 2.25

x 10
-5

0

0.5

1

Fig. 31. Synchronous demodulator signals: a) synchronization input, b) 9 MHz multiplier
input, c) multiplier output, d) filter output, e) length demodulated

a)

b)

c)

d)

e)

a)

b)

c)

d)

e)

f)

www.intechopen.com

Applications of MATLAB in Science and Engineering

310

6.2.3 Load generator

The circuit in Fig. 32 produces a pulse with the rising or falling edge at the input (Fig. 33).

The output signal loads the initial value “11111” in the Linear Feedback Shift Register of the

code generator in the receiver.

LOAD GENERATOR

LOAD

1

Expression

a

b

(a & ~b) | (~a & b)

Delay

z
-1

LENGTH _DEMODULATED

1

Bool

Bool

Bool

Fig. 32. Load generator

2.14 2.145 2.15 2.155

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

2.14 2.145 2.15 2.155

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

2.14 2.145 2.15 2.155

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

4.208 4.21 4.212 4.214 4.216 4.218 4.22 4.222

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

4.208 4.21 4.212 4.214 4.216 4.218 4.22 4.222

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

4.208 4.21 4.212 4.214 4.216 4.218 4.22 4.222

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 33. Load generator signals: a) input, b) delayed input, c) output

6.2.4 Enable generator

The input of this system (Fig. 34) is the 9 MHz square carrier and generates a 1.5 MHz

enable signal. A pulse is obtained with the rising edge at the input (Fig. 35). This signal is

used as enable signal in a six states counter; a comparator checks when the counter output is

zero. Finally, a pulse is generated with each rising edge of the comparator output. The

output signal has the chip frequency, it will be used as input in a Linear Feedback Shift

Register to recover the pseudorandom code.

ENABLE GENERATOR

ENABLE (1.5 MHz)

1

Relational 2

a

b

a=b

z
-0

Expression1

a

b

a & ~b

Expression

a

b

a & ~b
Delay 1

z
-1

Delay

z
-1

Counter

en out

Convert 2

cast

Constant 3

0

9_MHz

1

UFix _1_0

UFix _1_0

UFix_3_0

UFix_1_0

Bool

Bool

UFix _1_0

Bool

Bool

Fig. 34. Enable generator block diagram

a)

b)

c)

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

311

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

x 10
-5

0

0.5

1

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

x 10
-5

0

0.5

1

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

x 10
-5

0

2

4

6

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

x 10
-5

0

0.5

1

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

x 10
-5

0

0.5

1

Fig. 35. Enable generator signals: a) 9 MHz input, b) internal pulse with the input rising
edge, c) counter output, d) zero value in the counter output, e) enable generator output

6.2.5 Linear feedback shift register code generator

This system is a LFSR similar to the code generator in the transmitter (Fig. 36); with the
exceptions of the load signal to initialize the “11111” value and the enable signal to generate
the 1.5 MHz output rate. A delay block synchronizes the load and enable signal. The LFSR
inputs and the value of the code recovered are shown in Fig. 37.

LFSR CODE GENERATOR

CODE _RECOVERED

1

Slice

[a:b]

LFSR

din

load

en

dout

Delay

z
-5

Constant

31

ENABLE

2

LOAD

1

UFix _5_0

UFix _5_0 UFix _4_0Bool

Bool Bool

Fig. 36. Linear Feedback Shift Register code generator block diagram

0 1 2 3 4 5 6 7

x 10
-5

0

0.5

1

0 1 2 3 4 5 6 7

x 10
-5

0

0.5

1

0 1 2 3 4 5 6 7

x 10
-5

0

5

10

15

Fig. 37. Linear Feedback Shift Register code generator signals: a) LFSR load input, b) LFSR

enable input, c) code recovered

a)

b)

c)

a)

b)

c)

d)

e)

www.intechopen.com

Applications of MATLAB in Science and Engineering

312

6.3 Local oscillators

The code recovered is the local oscillators input (Fig. 38). The two oscillators were designed
using two Direct Digital Synthesizer blocks, and the four bits input code must be converted
to the input format of the DDS block. The frequency of the oscillator F_0 output (Fig. 39) is
the transmitted frequency if the data in the transmitter is “0” minus 10.7 MHz; in other
words, the left side of Table 1 minus 10.7 MHz. Consequently the value of the intermediate
frequency in the receiver is 10.7 MHz. Similarly, the frequency of the oscillator F_1 output is
the transmitted frequency if the data in the transmitter is “1” minus 10.7 MHz; in the same
way, the right side of Table 1 minus 10.7 MHz.

LOCAL OSCILLATORS

F_0

2

F_1

1

OSCILLATOR _F_1

In2 F_1

OSCILLATOR _F_0

In2 F_0

CODE_IN

1
UFix _4_0

Fix_6_5

Fix_6_5

Fig. 38. Local oscillators block diagram

OSCILLATOR _F_0

F_0

1

DDS Compiler 2.1

we

data

sine

Constant 2

1

Constant 1

0.076019287109375

CMult

x 0.00853

AddSub

a

b

a + bIn2

1
UFix _4_0

Fix_29_29

UFix _16_16

UFix_20_16

Bool

Fix _6_5

Fig. 39. Oscillator F_0 block diagram

2.7 2.75 2.8 2.85 2.9 2.95

x 10
-5

0

5

10

15

2.7 2.75 2.8 2.85 2.9 2.95

x 10
-5

-1

-0.5

0

0.5

1

2.7 2.75 2.8 2.85 2.9 2.95

x 10
-5

-1

-0.5

0

0.5

1

Fig. 40. Local oscillators signals: a) local oscillators input, b) oscillator F_0 output, c)
oscillator F_1 output

a)

b)

c)

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

313

6.4 Double branch demodulator

This demodulator is formed by two similar envelope detectors (Fig. 41). The inputs are the
FHSS filtered signal and the local oscillators outputs. The FHSS filtered signal is delayed to
keep the synchronization with the local oscillators frequencies. The top branch gets the
waveform of the data and the bottom branch the inverter data. Lastly, the two outputs are
compared and final output is the binary demodulated data.

DOUBLE BRANCH DEMODULATOR

DEMODULATED _DATA

1

Relational

a

b

a>b

z-0

DATA_N_DEMODULATOR

F_0

FHSS_IN

DATA_N

DATA_DEMODULATOR

F_1

FHSS_IN

DATA

F_0

3

FHSS_IN

2

F_1

1

Bool

Fix_6_5

Fix_6_5

Fix_18_14

Fix_41_38

Fix_41_38

Fig. 41. Double branch demodulator block diagram

The Fig. 42 is the top branch block diagram. The mixer of the branch is the first multiplier
and the intermediate frequency band pass filter. The second multiplier and the low pass
filter is the envelope detector. The Fig. 43 shows the signals in the demodulator.

DATA_DEMODULATOR

DATA

1

Terminator 4

Terminator 3

Terminator 2

Terminator 1

Mult 1

a

b
(ab)z- 0

Mult

a

b
(ab)z

-0

FIR Compiler 4.0_LOW_PASS_FILTER

din

dout

rfd

rdy

FIR Compiler 4.0_IF_10 .7 MHz

din

dout

rfd

rdy

FDATool _LPF

FDATool

FDATool _IF

FDATool

FHSS_IN

2

F_1

1

Fix_24_19 Bool

Bool

Fix_37_31

Bool

Bool

Fix _26_24
Fix _41_38Fix_6_5

Fix_18_14

Fig. 42. Top branch demodulator block diagram

7. Channel simulation

Once the design of the transceiver has been finished, the performances can be tested
inserting a channel between the transmitter and the receiver. For this purpose, an Additive
White Gaussian Noise (AWGN) Simulink channel was chosen (Fig. 44). In this channel, the
signal-to-noise power ratio is fixed by the designer. The Bit Error Rate (BER) was measured
with the Error Rate Calculation block, where the delay between the data must be specified.
Besides, the instant of synchronization in the receiver (20 microseconds) is indicated to start
the bit error counter. This block generates three values: the first is the Bit Error Rate, the
second is the number of errors, and the third is the number of bits tested. Finally, the BER is
represented versus the signal-to-noise power ratio (Fig. 45).

www.intechopen.com

Applications of MATLAB in Science and Engineering

314

4 4.2 4.4 4.6 4.8 5

x 10
-5

-0.5

0

0.5

4 4.2 4.4 4.6 4.8 5

x 10
-5

0

0.2

4 4.2 4.4 4.6 4.8 5

x 10
-5

0

0.05

0.1

4 4.2 4.4 4.6 4.8 5

x 10
-5

-0.5

0

0.5

4 4.2 4.4 4.6 4.8 5

x 10
-5

0

0.2

4 4.2 4.4 4.6 4.8 5

x 10
-5

0

0.05

0.1

4 4.2 4.4 4.6 4.8 5

x 10
-5

0

0.5

1

Fig. 43. Double branch demodulator signals: a) intermediate frequency filter output in the
top branch, b) squared signal in the top branch, c) low pass filter output in the top branch, d)
intermediate frequency filter output in the bottom branch, e) squared signal in the bottom
branch, f) low pass filter output in the bottom branch, g) demodulated output

Terminator

Scope

FHSS TRANSMITTER

EXTERNAL_DATA

DATA_CONTROL

FHSS _SYNCHRONIZATION

FB

DATA

FHSS RECEIVER

RX_IN DEMODULATED_DATA

Error Rate

Calculation

 Error Rate

 Calculation

Tx

Rx

Display

0

0

121

Constant 1

0

Constant

0

AWGN

Channel

AWGN

System

Generator

Bool

double

double
double

double

double

double

double

Fig. 44. Error rate calculation in presence of Additive White Gaussian Noise

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 45. Bit Error Rate represented versus the signal-to-noise power ratio (decibels)

Signal to noise
relation (dB)

Bit
Error
Rate

a)

b)

c)

d)

e)

f)

g)

www.intechopen.com

Design Methodology with System Generator in Simulink of a FHSS Transceiver on FPGA

315

8. Simulation and compilation with ISE

After the system has been simulated with Simulink, it can be compiled with System
Generator. The chosen device is a Virtex 4 FPGA, and the hardware description language is
Verilog. A project is then generated for Integrated System Environment, which includes the
files for the structural description of the system. The syntax of the Verilog files can be
checked, and the synthesis and behavioral simulation of the system can be executed (Fig.
46). Thereafter, the implementation of the design allows the timing simulation of the
transceiver (Fig. 47). Lastly, the programming file is generated for the chosen FPGA.

Fig. 46. A long behavioral simulation of the FHSS transceiver using ISE (40 microseconds)

Fig. 47. Timing simulation of the FHSS transceiver using ISE (80 nanoseconds)

The Integrated System Environment software provides a power estimator that indicates a
dissipation of 0.52 watts in the FPGA, and an estimated temperature of 31.4 degrees
centigrade. The FPGA core is supplied with 1.2 volts and the input-output pins support the
Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS) volts standard. The
design uses 491 of the 521 FPGA multipliers. The occupation rate of input-output pins in the
FPGA is about 12.3%. However, this occupation rate can be reduced until 3.3% if internal
signals are not checked.

9. Conclusions and future work

With this design methodology the typical advantageous features of using programmable
digital devices are reached. Repeating a design consists in reprogramming the FPGA in the
chosen board. The design and simulation times are decreased, consequently the time to

www.intechopen.com

Applications of MATLAB in Science and Engineering

316

market is minimizing. The used tool permits great flexibility; in others words, the design
parameters can be changed and new features can be checked within several minutes. The
flexibility allows to change the Direct Digital Synthesizers and filters parameters and to
check its performances. The Simulink simulations are easy to run, and the signals are shown
in floating point format which make easier its analysis. These simulations are possible even
before the compilation of the System Generator blocks to obtain the hardware description
language files. With the System Generator it is possible to simulate the full transceiver, the
transmitter and the receiver can be connected through a channel. Moreover, it is possible to
simulate the transmission in presence of interference, distortion, multipath and other spread
spectrum signals using different codes.

10. References

Analog Devices (2011). AD9851 DDS. URL: www.analog.com/static/imported-
files/data_sheets/AD9851.pdf, active on April 2011

Hauck, S. & DeHon, A. (2008). Reconfigurable Computing, Elsevier, ISBN 978-0-12-370522-8,
USA

MathWorks. (2011). Simulink. URL: www.mathworks.com/products/simulink, active on
April 2011

Maxfield, C. (2004). The Design Warrior's Guide to FPGAs, Elseiver, ISBN 0750676043, New
York, USA

Palnitkar, S. (2003).Verilog HDL. Prentice Hall, ISBN 9780130449115, USA
Pedroni, V. (2004). Circuit Design with VHDL, The MIT Press, ISBN 0-262-16224-5, USA
Pérez, S.; Rabadán, J.; Delgado, F.; Velázquez, J & Pérez, R. (2003). Design of a synchronous

Fast Frequency Hopping Spread Spectrum transceiver for indoor Wireless Optical
Communications based on Programmable Logic Devices and Direct Digital
Synthesizers, Proceedings of XVIII Conference on Design of Circuits and Integrated
Systems, pp. 737-742, ISBN 84-87087-40-X, Ciudad Real, Spain, November, 2003.

Simon, M.; Omura, J.; Scholtz, R. & Levitt, B. (1994). Spread Spectrum Communications
Handbook, McGraw-Hill Professional, ISBN 0071382151, USA

Xilinx (2011). System Generator. URL: www.xilinx.com/tools/sysgen.htm, active on April
2011

www.intechopen.com

Applications of MATLAB in Science and Engineering

Edited by Prof. Tadeusz Michalowski

ISBN 978-953-307-708-6

Hard cover, 510 pages

Publisher InTech

Published online 09, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These

areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological

(molecular biology) and medical sciences, communication and control systems, digital signal, image and video

processing, system modeling and simulation. Many interesting problems have been included throughout the

book, and its contents will be beneficial for students and professionals in wide areas of interest.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Santiago T. Pe ́rez, Carlos M. Travieso, Jesu ́s B. Alonso and Jose ́ L. Va ́squez (2011). Design Methodology

with System Generator in Simulink of a FHSS Transceiver on FPGA, Applications of MATLAB in Science and

Engineering, Prof. Tadeusz Michalowski (Ed.), ISBN: 978-953-307-708-6, InTech, Available from:

http://www.intechopen.com/books/applications-of-matlab-in-science-and-engineering/design-methodology-

with-system-generator-in-simulink-of-a-fhss-transceiver-on-fpga

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

