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1. Introduction  

The chapter goal is focused to introduce the concept of fractional delay filters (FDF), as well 
as a concise description of most of the existing design techniques. For this purpose, several 
illustrative examples are presented, where each design method is implemented by MATLAB 
programs.  
A fractional delay filter is a filter of digital type having as main function to delay the 
processed input signal a fractional of the sampling period time. There are several 
applications where such signal delay value is required, examples of such systems are: timing 
adjustment in all-digital receivers (symbol synchronization), conversion between arbitrary 
sampling frequencies, echo cancellation, speech coding and synthesis, musical instruments 
modelling etc. (Laakson et al., 1996).  
In order to achieve the fractional delay filter function, two main frequency-domain 
specifications must be met by the filter. The filter magnitude frequency response must have 
an all-pass behaviour in a wide frequency range, as well as its phase frequency response 
must be linear with a fixed fractional slope through the bandwidth.  
Several FIR design methods have been reported during the last two decades. There are two 
main design approaches: time-domain and frequency-domain design methods. In first one, 
the fractional delay filter coefficients are easily obtained through classical mathematical 
interpolation formulas, but there is a small flexibility to meet frequency-domain 
specifications. On the other hand, the frequency-domain methods are based on frequency 
optimization process, and a more frequency specification control is available. One important 
result of frequency-domain methods is a highly efficient implementation structure called 
Farrow structure, which allows online fractional value update. 
The chapter is organized as follows. Next section gives the formal definition of fractional 
delay filter. In the third section, some design methods are briefly described. Two efficient 
implementation structures for wideband fractional delay filter, as well as description of 
recently reported design methods for such structures, are illustrated in fourth section. 
MATLAB designed examples and concluding remarks are presented in fifth and sixth 
sections, respectively.  

2. Fractional delay filter definition 

The continuous-time output signal ya(t) of a general signal delay system is defined by:  

    a ly t x t t  , (1) 
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where x(t) is the continuous-time input signal and tl the obtained time delay value.  
In a discrete-time system, the input-output relationship of a signal delay system is expressed 
as:  

    y lT x nT DT  , (2) 

where the delay value is given by DT, y(lT) and x(nT) are the discrete-time versions of 
output and input signals, respectively, and T is the sampling period time.  
A signal delay value equal to a multiple of the sampling period, D as an integer N, can be 
easily implemented in a discrete-time system by memory elements storing the signal value 
for a time of NT: 

    y lT x nT NT  . (3) 

In this case, the signal delay value is limited to be only N time the sampling period, tl=NT. 
For instance in telephone quality signals, with a sampling frequency of 8 KHz, only delays 

values multiple of 125seconds are allowed.  
Let us introduce the FDF function using time-domain signals sketched in Fig 1. The FDF 
output y(lT), squared samples, is obtained a delay time tl after input x(nl), with a delay value 

lT given as a fraction of the sampling period time, 0<l. As shown in Fig. 1, the fractional 

delay value l may be variable; this way, it can be changed at any desired time.  
The fundamental design problem of a FDF is to obtain the FDF unit impulse response 

hFD(n,), in such a way that the obtained output value y(lT) = ya(DT) be as close as possible 

to ya(tl) for 0<l  The simplified block diagram for a FDF is shown in Fig. 2, which output 
for a no causal FIR FDF filter is given by the discrete-time convolution: 

      
/2 1

/2

,
FD

FD

N

l FD l
k N

y lT x n k h k 



  , (4) 

where NFD is the even length of the FDF. The system function H(z) of the  FDF can be 
expressed as: 

   DH z z , (5) 

 

Fig. 1. FDF time-domain behaviour. 
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Fig. 2. Simplified block diagram for a FDF. 

where the delay value is given as: D = Dfix+l, Dfix is a fixed delay value and l  is the 
desired fractional delay value. As a consequence, the ideal frequency response of a FDF 

Hid(,l) is: 

    
, fix lj D

id lH e
    

 . (6) 

Hence the ideal FDF frequency response has an all-band unity magnitude response: 

  , 1,id lH      , (7) 

and a linear frequency phase response with a constant phase delay given, respectively, by: 

  ,id l D     , (8) 

  ,pid l D    . (9) 

The main goal of all existing FDF design methods, based on a frequency design approach, is 
to obtain the FDF filter coefficients through approximating this ideal frequency 
performance. 
Applying inverse discrete Fourier transform to the ideal FDF frequency response, the ideal 

FDF filter unit impulse response hid(n,) is obtained as: 

  
 

 
sin

, sin ( )id

n D
h n c n D

n D






    


. (10) 

Given a desired factional delay value, the FDF coefficients can be easily obtained with this 
infinite length delayed sinc function. Due to this infinite length, it is evident that an FIR FDF 
will be always an approximation to the ideal case. 
As an illustrative example, the ideal FDF unit impulse responses for two delay values D= 3.0 

(Dfix=3.0 and = 0) and D=3.65 (Dfix=3.0 and = 0.65) are shown in Fig. 3 and 4, 
respectively. The unit impulse responses were obtained using MATLAB function sinc. The 
FDF unit impulse responses are shown as solid lines, and the delayed sinc function as dot 
line. In the first case, only one three-sample delay is needed, which can be easily 
implemented with memory components as described above. However, the FDF unit 
impulse response for the second case has an infinite number of nonzero coefficients (IIR) 
and it is a no causal sequence, which makes it impractical for implementing in real-time 
applications.  
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Fig. 3. Ideal FDF unit impulse response for D=3.0. 
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Fig. 4. Ideal FDF unit impulse response for D=3.65. 

3. FDF Design methods 

The existing design methods for FIR FDF use a large range of strategies to approximate as 

close as possible the ideal FDF unit impulse response hid(n,). It is possible to highlight three 
main strategies:  

 Magnitude frequency response approximation: The FDF unit impulse response is obtained 
such that its frequency magnitude response is as close as possible to the ideal FDF one, 
accordingly to some defined error criterion.  
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 Interpolation design method: The design approach is based on computing FDF coefficients 
through classical mathematical interpolation methods, such as Lagrange or B-spline. 
The design is a completely time-domain approach. 

 Hybrid analogue-digital model approach: The FDF design is accomplished through the use 
of an analogue-digital model. The design methods using this strategy are based on a 

frequency-domain approach. 
A concise description of each one of these strategies is presented in the following. 

3.1 Magnitude frequency response approximation 
The design method goal is to obtain the FDF unit impulse response hFD(n,) based on 
comparing its magnitude frequency response with the ideal one. The frequency response of 
the designed FDF with even-length NFD is given by: 

    
/2

/2 1

, ,
FD

FD

N
j k

FD FD
k N

H h k e    

 

  . (11) 

One of the criterions used for the magnitude frequency response comparison is the least 
squares magnitude error defined as: 

       2

2

0

1
, ,

p

DF ide H H d



     


  . (12) 

The error function e2() is minimized by truncating the ideal unit impulse response to NFD 

samples, which can be interpreted as applying a delayed M-length window w(n) to the ideal 

IIR FDF unit impulse response: 

      , ,FD idh n h n D w n D    , (13) 

where (n) is equal to unity in the interval 0≤n≤NFD-1 and zero otherwise. 
The windowing process on the ideal unit impulse response causes not-desired effects on the 
FDF frequency response, in particular the Gibbs phenomenon for rectangular window 
(Proakis & Manolakis, 1995).  
In general, the performance of a FDF obtained by truncating the sinc function is usually not 

acceptable in practice. As a design example, the FDF frequency magnitude and phase 
responses for D=3.65, using a rectangular window with NFD=50, are shown in Fig 5. We can 

see that the obtained FDF bandwidth is less than 0.9 and although the IIR sinc function has 
been truncated up to 50 taps, neither its frequency magnitude nor its phase response are 

constant.  

The windowed unit impulse response hFD(n,) has a low-pass frequency response, in this 

way it can be modified to approximate only a desired pass-band interval (0,) as follows: 

  
 sin 0 1

,

0

FD
FD

c n D for n N
h n

otherwise

 



       




. (14) 
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Fig. 5. FDF frequency response for D=3.65 with rectangular window, NFD=50. 

The magnitude and phase responses of a FDF with NFD= 8 and =0.5 are shown in Fig. 6, 
which were obtained using MATLAB. The phase delay range is from D=3.0 to 3.5 samples 
with an increment of 0.1. More constant phase delay responses and narrower bandwidth is 
achieved. 
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Fig. 6. FDF frequency responses using windowing method for D=3.0 to 3.5 with FD= 8 and 

=0.5. 

In principle, window-based design is fast and easy. However, in practical applications it is 
difficult to meet a desired magnitude and phase specifications by adjusting window 
parameters. In order to meet a variable fractional delay specification, a real-time coefficient 
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update method is required. This can be achieved storing the window values in memory and 
computing the values of the sinc function on line, but this would require large memory size 
for fine fractional delay resolution (Vesma, 1999). 
The smallest least squares error can be achieved by defining its response only in a desired 
frequency band and by leaving the rest as a “don’t care” band. This can be done using a 
frequency-domain weighting as follows (Laakson et al., 1996):  

         2

3

0

1
, ,

p

DF ide W H H



     


  , (15) 

where p is the desired pass-band frequency and W() represents the weighting frequency 
function, which defines the corresponding weight to each band. In this way, the error is 
defined only in the FDF pass-band, hence the optimization process is applied in this 
particular frequency range.  

In Fig. 7 are shown the FDF frequency responses designed with this method using W()=1, 

FD= 8 and =0.5. We can see a notable improvement in the resulting FDF bandwidth 
compared with the one obtained using the least square method, Fig. 6. 
There is another design method based on the magnitude frequency response approach, 
which computes the FDF coefficients by minimizing the error function: 

      4
0
max , ,

p
FD ide H H

 
    

 
  . (16) 

The solution to this optimization problem is given by the minimax method proposed by 
(Oetken, 1979). The obtained FDF has an equiripple pass-band magnitude response. As an 
illustrative example, the frequency response of an FDF designed through this minimax 

method is shown in Fig. 8, where NFD=20 and p=0.9. 
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Fig. 7. FDF frequency responses using weighted least square method for D=3.0 to 3.5 with 

FD= 8 and =0.5. 
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Fig. 8. FDF Frequency responses using minimax method for D=9.0 to 9.5 with FD= 20 and 

=0.9. 

3.2 Interpolation design approach 
Instead of minimizing an error function, the FDF coefficients are computed from making the 

error function maximally-flat at =0. This means that the derivatives of an error function are 
equal to zero at this frequency point: 

 
 

0

0, 0,1,2,.... 1
n

c
FDn

e
n N









  


, (17) 

the complex error function is defined as: 

      , ,c FD l id le H H      , (18) 

where HFD(,l) is the designed FDF frequency response, and Hid(,l) is the ideal FDF 
frequency response, given by equation (6). The solution of this approximation is the classical 
Lagrange interpolation formula, where the FDF coefficients are computed with the closed 
form equation: 

  
0

0, 1, 2, ....
FDN

L FD
k
k n

D k
h n n N

n k



 

 , (19) 

where NFD is the FDF length and the desired delay / 2FD lD N     . We can note that the 

filter length is the unique design parameter for this method. 
The FDF frequency responses, designed with Lagrange interpolation, with a length of 10 are 

shown in Fig. 9. As expected, a flat magnitude response at low frequencies is presented; a 

narrow bandwidth is also obtained. 
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Fig. 9. FDF Frequency responses using Lagrange interpolation for D=4.0 to 4.5 with  

FD= 10. 

The use of this design method has three main advantages (Laakson et al., 1994): 1) the ease 
to compute the FDF coefficients from one closed form equation, 2) the FDF magnitude 
frequency response at low frequencies is completely flat, 3) a FDF with polynomial-defined 
coefficients allows the use of an efficient implementation structure called Farrow structure, 
which will be described in section 3.3. 
On the other hand, there are some disadvantages to be taken into account when a Lagrange 
interpolation is used in FDF design: 1) the achieved bandwidth is narrow, 2) the design is 
made in time-domain and then any frequency information of the processed signal is not 
taken into account; this is a big problem because the time-domain characteristics of the 
signals are not usually known, and what is known is their frequency band, 3) if the 
polynomial order is NFD; then the FDF length will be NFD, 4) since only one design 
parameter is used, the design control of FDF specifications in frequency-domain is limited. 
The use of Lagrange interpolation for FDF design is proposed in (Ging-Shing & Che-Ho, 
1990, 1992), where closed form equations are presented for coefficients computing of the 
desired FDF filter. A combination of a multirate structure and a Lagrange-designed FDF is 
described in (Murphy et al., 1994), where an improved bandwidth is achieved.  
The interpolation design approach is not limited only to Lagrange interpolation; some 
design methods using spline and parabolic interpolations were reported in (Vesma, 1995) 
and (Erup et al., 1993), respectively. 

3.3 Hybrid analogue-digital model approach 
In this approach, the FDF design methods are based on the hybrid analogue-digital model 
proposed by (Ramstad, 1984), which is shown in Fig. 10.  The fractional delay of the digital 
signal x(n) is made in the analogue domain through a re-sampling process at the desired 
time delay tl. Hence a digital to analogue converter is taken into account in the model, where 
a reconstruction analog filter ha(t) is used. 
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DAC ha(t)
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t

l
=(n

l
+

l
)T

 

Fig. 10. Hybrid analogue-digital model. 

An important result of this modelling is the relationship between the analogue 

reconstruction filer ha(t) and the discrete-time FDF unit impulse response hFD(n,), which is 
given by: 

     ,FD a lh n h n T   , (20) 

where n=-NFD/2,-NFD/2+1,…., NFD/2-1, and T is the signal sampling frequency. The model 
output is obtained by the convolution expression: 

       
1

0

/ 2 / 2
FDN

l FD a l FD
k

y l x n k N h k N T



     . (21) 

This means that for a given desired fractional value, the FDF coefficients can be obtained 
from a designed continuous-time filter. 
The design methods using this approach approximate the reconstruction filter ha(t) in each 
interval of length T by means of a polynomial-based interpolation as follows: 

     
0

M
m

a l m l
m

h n T c n 


   , (22) 

for k=-NFD/2,-NFD/2+1,…., NFD/2-1. The cm(k)’s are the unknown polynomial coefficients 
and M is the polynomials order. 
If equation (22) is substituted in equation (21), the resulted output signal can be expressed 
as: 

    
0

M
m

m l l
m

y l v n 


  , (23) 

where:  

      
1

0

/ 2 / 2
FDN

m l l FD m FD
k

v n x n k N c k N




    , (24) 

are the output samples of the M+1 FIR filters with a system function: 

    
1

0

/ 2
FDN

k
m m FD

k

C z c k N z






  . (25) 
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The implementation of such polynomial-based approach results in the Farrow structure, 
(Farrow, 1988), sketched in Fig. 11. This implementation is a highly efficient structure 
composed of a parallel connection of M+1 fixed filters, having online fractional delay 
value update capability. This structure allows that the FDF design problem be focused to 
obtain each one of the fixed branch filters cm(k) and the FDF structure output is computed 

from the desired fractional delay given online l. 
The coefficients of each branch filter Cm(z) are determined from the polynomial coefficients 
of the reconstruction filter impulse response ha(t). Two mainly polynomial-based 
interpolation filters are used: 1) conventional time-domain design such as Lagrange 
interpolation, 2) frequency-domain design such as minimax and least mean squares 
optimization. 
 

C
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(z) C
M-1

(z) C
1
(z) C

0
(z)

x(n)

y(l)


l

vM(nl) vM-1(nl) v1(nl) v
0
(nl)

 

Fig. 11. Farrow structure. 

As were pointed out previously, Lagrange interpolation has several disadvantages. A better 
polynomial approximation of the reconstruction filter is using a frequency-domain 
approach, which is achieved by optimizing the polynomial coefficients of the impulse 
response ha(t) directly in the frequency-domain. Some of the design methods are based on 

the optimization of the discrete-time filter hFD(n,l)) and others on making the optimization 
of the reconstruction filter ha(t). Once that this filter is obtained, the Farrow structure branch 
filters cm(k) are related to hFD(n,ml) using equations (20) and (22). One of main advantages of 
frequency-domain design methods is that they have at least three design parameters: filter 

length NFD, interpolation order M, and pass-band frequency p.   
There are several methods using the frequency design method (Vesma, 1999). In (Farrow, 
1988) a least-mean-squares optimization is proposed in such a way that the squared error 

between HFD(,l) and the ideal response Hid(,l) is minimized for 0≤≤p and for 0≤l<1. 
The design method reported in (Laakson et al., 1995) is based on optimizing cm(k) to 

minimize the squared error between ha(t) and the hFD(n,l) filters, which is designed through 
the magnitude frequency response approximation approach, see section 3.1. The design 
method introduced in (Vesma et al., 1998) is based on approximating the Farrow structure 
output samples vm(nl) as an mth order differentiator; this is a Taylor series approximation of 

the input signal. In this sense, Cm() approximates in a minimax or L2 sense the ideal 

response of the mth order differentiator, denoted as Dm(), in the desired pass-band 
frequencies. In (Vesma & Saramaki, 1997) the designed FDF phase delay approximates the 

ideal phase delay value l in a minimax sense for 0≤≤p and for 0≤l<1 with the restriction 
that the maximum pass-band amplitude deviation from unity be smaller than the worst-case 

amplitude deviation, occurring when =0.5.  
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4. FDF Implementation structures 

As were described in section 3.3, one of the most important results of the analogue-digital 
model in designing FDF filters is the highly efficient Farrow structure implementation, 
which was deduced from a piecewise approximation of the reconstruction filter through a 
polynomial based interpolation. The interpolation process is made as a frequency-domain 
optimization in most of the existing design methods.  
An important design parameter is the FDF bandwidth. A wideband specification, meaning a 

pass-band frequency of 0.9 or wider, imposes a high polynomial order M as well as high 
branch filters length NFD. The resulting number of products in the Farrow structure is given 
by NFD(M+1)+M, hence in order to reduce the number of arithmetic operations per output 
sample in the Farrow structure, a reduction either in the polynomial order or in the FDF 
length is required.  
Some design approaches for efficient implementation structures have been proposed to 
reduce the number of arithmetic operations in a wideband FDF. A modified Farrow 
structure, reported in (Vesma & Samaraki, 1996), is an extension of the polynomial based 
interpolation method. In (Johansson & Lowerborg, 2003), a frequency optimization 
technique is used a modified Farrow structure achieving a lower arithmetic complexity with 
different branch filters lengths. In (Yli-Kaakinen & Saramaki, 2006a, 2006a, 2007), 
multiplierless techniques were proposed for minimizing the number of arithmetic 
operations in the branch filters of the modified Farrow structure. A combination of a two-
rate factor multirate structure and a time-domain designed FDF (Lagrange) was reported in 
(Murphy et al., 1994). The same approach is reported in (Hermanowicz, 2004), where 
symmetric Farrow structure branch filters are computed in time-domain with a symbolic 
approach. A combination of the two-rate factor multirate structure with a frequency-domain 
optimization process was firstly proposed in (Jovanovic-Docelek & Diaz-Carmona, 2002). In 
subsequence methods (Hermanowicz & Johansson, 2005) and (Johansson & Hermanowicz 
&, 2006), different optimization processes were applied to the same multirate structure. In 
(Hermanowicz & Johansson, 2005), a two stage FDF jointly optimized technique is applied. 
In (Johansson & Hermanowicz, 2006) a complexity reduction is achieved by using an 
approximately linear phase IIR filter instead of a linear phase FIR in the interpolation 
process. 
Most of the recently reported FDF design methods are based on the modified Farrow 
structure as well as on the multirate Farrow structure. Such implementation structures are 
briefly described in the following. 

4.1 Modified Farrow structure 
The modified Farrow structure is obtained by approximating the reconstruction filter with 

the interpolation variable 2l -1 instead of l in equation (22): 

       '

0

2 1
M

m
a l m l

m

h n T c k 


   , (26) 

for k=-NFD/2,-NFD/2+1,…., NFD/2-1. The first four basis polynomials are shown in Fig. 12. 
The symmetry property ha(-t)= ha(t) is achieved by: 

      ' '1 1
m

m mc n c n    , (27) 
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for m= 0, 1, 2,…,M  and n=0, 1,….,NFD/2. Using this condition, the number of unknowns is 
reduced to half. 
The reconstruction filter ha(t) can be now approximated as follows: 

       
/2

'

0 0

, ,
FDN M

a m
n m

h t c n g n m t
 

   , (28) 

where cm(n) are the unknown coefficients and g(n,m,t)’s are basis functions reported in 
(Vesma & Samaraki, 1996). 
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Fig. 12. Basis polynomials for modified Farrow structure for 0≤ m ≤ 3. 

The modified Farrow structure has the following properties: 1) polynomial coefficients cm(n) 

are symmetrical, according to equation (27); 2) The factional value l is substituted by 2l -1, 
the resulting implementation of the modified Farrow structure is shown in Fig. 13; 3) the 
number of products per output sample is reduced from NFD(M+1)+M  to NFD(M+1)/2+M.  
The frequency design method in (Vesma et al., 1998) is based on the following properties of 
the branch digital filters Cm(z):  

 The FIR filter Cm(z), 0≤m≤M, in the original Farrow structure is the mth order Taylor 
approximation to the continuous-time interpolated input signal. 

 In the modified Farrow structure, the FIR filters C’m(z) are linear phase type II filters 
when m is even and type IV when m is odd. 

Each filter Cm(z) approximates in magnitude the function Kmwm, where Km is a constant. The 

ideal frequency response of an mth order differentiator is (j)m, hence the ideal response of 
each Cm(z) filter in the Farrow structure is an mth order differentiator. 
In same way, it is possible to approximate the input signal through Taylor series in a 
modified Farrow structure for each C’m(z), (Vesma et al., 1998). The mth order differential 
approximation to the continuous-time interpolated input signal is done through the branch 
filter C’m(z), with a frequency response given as: 

www.intechopen.com



 
Applications of MATLAB in Science and Engineering 

 

260 

C'
M

(z) C'
M-1

(z) C'
1
(z) C'

0
(z)

x(n)

y(l)
v

M
(n

l
) v

M-1
(n

l
) v

1
(n

l
) v

0
(n

l
)

l-1  

Fig. 13. Modified Farrow structure. 
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 . (29) 

The input design parameters are: the filter length NFD, the polynomial order M, and the 

desired pass-band frequency p. 
The NFD coefficients of the M+1 C’m(z) FIR filters are computed in such a way that the following 

error function is  minimized in a least square sense through the frequency range [0,p]: 

        
/2 1

/ 2 , , ,
FDN

m m FD
n o

e c N n m n D m   




     , (30) 

where: 

 
       

   

, , , , 2 cos 1 / 2 ,
2 !

, , 2 sin 1 / 2 ,

m

m
D m m n n m even

m

m n n m odd


   

  


    

   

 (31) 

Hence the objective function is given as: 

      
/2 1

1
00

/ 2 1 , , ,
p

FDN

m FD
n

E c N m n D m d



   




 
   

  
 . (32) 

From this equation it can be observed that the design of a wide bandwidth FDF requires an 
extensive computing workload. For high fractional delay resolution FDF, high precise 
differentiator approximations are required; this imply high branch filters length, NFD, and 
high polynomial order, M. Hence a FDF structure with high number of arithmetic 
operations per output sample is obtained. 

4.2 Multirate Farrow structure 
A two-rate-factor structure in (Murphy et al., 1994), is proposed for designing FDF in time-
domain. The input signal bandwidth is reduced by increasing to a double sampling 
frequency value. In this way Lagrange interpolation is used in the filter coefficients 
computing, resulting in a wideband FDF. 
The multirate structure, shown in Fig. 14, is composed of three stages. The first one is an 
upsampler and a half-band image suppressor HHB(z) for incrementing twice the input 
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sampling frequency. Second stage is the FDF HDF(z), which is designed in time-domain 
through Lagrange interpolation. Since the signal processing frequency of HDF(z) is twice the 
input sampling frequency, such filter can be designed to meet only half of the required 
bandwidth. Last stage deals with a downsampler for decreasing the sampling frequency to 
its original value. Notice that the fractional delay is doubled because the sampling 
frequency is twice. Such multirate structure can be implemented as the single-sampling-
frequency structure shown in Fig. 15, where H0(z) and H1(z) are the first and second 
polyphase components of the half-band filter HHB(z), respectively. In the same way HFD0(z) 
and HFD1(z) are the polyphase components of the FDF HFD(z) (Murphy et al, 1994).  
The resulting implementation structure for HDF(z) designed as a modified Farrow structure 
and after some structure reductions (Jovanovic-Dolecek & Diaz-Carmona, 2002) is shown in 
Fig. 16. The filters Cm,0(z) and Cm,1(z) are the first and second polyphase components of the 
branch filter Cm(z), respectively. 
 

Y(z)

2 HHB(z) HFD(z) 2

X(z)

2l

 

Fig. 14. FDF Multirate structure. 
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Fig. 15. Single-sampling-frequency structure. 
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Fig. 16. Equivalent single-sampling-frequency structure. 
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The use of the obtained structure in combination with a frequency optimization method for 

computing the branch filters Cm(z) coefficients was exploited in (Jovanovic-Dolecek & Diaz-

Carmona, 2002). The approach is a least mean square approximation of each one of the mth 

differentiator of input signal, which is applied through the half of the desired pass-band. 

The resulting objective function, obtained this way from equation (32), is: 

      
2 /2 1

2
00

/ 2 1 , , ,

p

FDN

m FD
n

E c N m n D m d



   




 
   

  
 . (33) 

The decrease in the optimization frequency range allows an abrupt reduction in the 

coefficient computation time for wideband FDF, and this less severe condition allows a 

resulting structure with smaller length of filters Cm(z). 

The half-band HHB(z) filter plays a key role in the bandwidth and fractional delay resolution 

of the FDF filter. The higher stop-band attenuation of filter HHB(z), the higher resulting 

fractional delay resolution. Similarly, the narrower transition band of HHB(z) provides the  

wider resulting bandwidth.  

In (Ramirez-Conejo, 2010) and (Ramirez-Conejo et al., 2010a), the branch filters coefficients 

cm(n) are obtained approximating each mth differentiator with the use of another frequency 

optimization method. The magnitude and phase frequency response errors are defined, for 

0≤w≤wp and 0≤μl≤1, respectively as: 

     1,mag FDe H    (34) 

       ,pha fix le D
 

 


     (35) 

where HFD() and () are, respectively, the frequency and phase responses of the  

FDF filter to be designed. In the same way, this method can also be extended for 

designing FDF with complex specifications, where the complex error used is given by 

equation (18). 

The coefficients computing of the resulting FDF structure, shown in Fig. 16, is done through 

frequency optimization for global magnitude approximation to the ideal frequency response 

in a minimax sense. The objective function is defined as: 

  
0 1 0
max max

l p
m me

  


   

 
   

 
. (36) 

The objective function is minimized until a magnitude error specification m is met. In order 

to meet both magnitude and phase errors, the global phase delay error is constrained to 

meet the phase delay restriction: 

  
0 1 0
max max

l p
p p pe

  
 

   

 
   

 
, (37) 
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where p is the FDF phase delay error specification. The minimax optimization can de 
performed using the function fminmax available in the MATLAB Optimization Toolbox. 
As is well known, the initial solution plays a key role in a minimax optimization process, 
(Johansson & Lowenborg, 2003), the proposed initial solution is the individual branch filters 
approximations to the mth differentiator in a least mean squares sense, accordingly to 
(Jovanovic-Delecek & Diaz-Carmona, 2002): 

  
2

2

0

p

m mE e d



     . (38) 

The initial half-band filter HHB(z) to the frequency optimization process can be designed as a 
Doph-Chebyshev window or as an equirriple filter. The final hafband coefficients are 
obtained as a result of the optimization. 
The fact of using the proposed optimization process allows the design of a wideband FDF 
structure with small arithmetic complexity. Examples of such designing are presented in 
section 5. 
An implementation of this FDF design method is reported in (Ramirez-Conejo et al., 2010b), 
where the resulting structure, as one shown in Fig. 16, is implemented in a reconfigurable 
hardware platform. 

5. FDF Design examples 

The results obtained with FDF design methods described in (Diaz-Carmona et al., 2010) and 
(Ramirez-Conejo et al., 2010) are shown through three design examples, that were 
implemented in MATLAB.  
Example 1:  

The design example is based on the method described in (Diaz-Carmona et al., 2010). The 

desired FDF bandwidth is 0.9, and a fractional delay resolution of 1/10000. 
A half-band filter HHB(z) with 241 coefficients was used, which was designed with a 
Dolph-Chebyshev window, with a stop-band attenuation of 140 dBs. The design 
parameters are: M=12 and NFD=10 with a resulting structure arithmetic of 202 products 
per output sample. 

The frequency optimization is applied up to only p=0.45, causing a notably computing 
workload reduction, compared with an optimization on the whole desired bandwidth 
(Vesma et al., 1998). As a matter of comparison, the MATLAB computing time in a PC 
running at 2GHz for the optimization on half of the desired pass-band is 1.94 seconds and 
110 seconds for the optimization on the whole pass-band. The first seven differentiator 
approximations for both cases are shown in Fig. 17 and Fig. 18. 

The frequency responses of the resulted FDF from =0.008 to 0.01 samples for the half pass-
band and for the whole pass-band optimization process, are shown in Fig. 19 and Fig. 20, 
respectively. 
The use of the optimization process (Vesma et al., 1998) with design parameters of M=12 
and NFD=104 results in a total number of 688 products per output sample. Accordingly to 
the described example in (Zhao & Yu, 2006), using a weighted least squares design method, 

an implementation structure with NFD=67 and M=7 is required to meet p=0.9, which 
results in arithmetic complexity of 543 products per output sample.  
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Fig. 17. Frequency responses of the first seven ideal differentiators (dotted line) and the 

obtained approximations (solid line) in 0≤≤0.45 with NFD=10 and M=12. 
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Fig. 18. First seven differentiator ideal frequency responses (dotted line) and obtained 

approximations (solid line) in 0≤≤0.9 with NFD=104 and M=12. 
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Fig. 19. FDF frequency responses using half band frequency optimization method for 

l=0.0080 to 0.0100 with FD= 10 and M=12. 
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Fig. 20. FDF frequency responses, using all-bandwidth frequency optimization method for 

l=0.0080 to 0.0100 with NFD=104 and M=12. 

In order to compare the frequency-domain approximation achieved by the described 

method with existing design methods results, the frequency-domain absolute error e(,), 
the maximum absolute error emax, and the root mean square error erms are defined, like in 
(Zhao & Yu, 2006), by: 

      , , ,FD ide H H       , (39) 
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   max max , , 0 , 0 1pe e          , (40) 
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 
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  . (41) 

The maximum absolute magnitude error and the root mean square error obtained are 
shown in Table 1, reported in (Diaz-Carmona et al., 2010), as well as the results reported by 
some design methods. 
 

Method emax(dBs) erms 

(Tarczynski et al., 1997) -100.0088 2.9107x10-6 

(Wu-Sheng, & Tian-Bo, 1999) -100.7215 2.7706x10-6 

(Tian-Bo, 2001) -99.9208 4.931x10-4 

(Zhao & Yu, 2006) -99.3669 2.8119x10-6 

(Vesma et al., 1998) -93.69 4.81x10-4 

(Diaz-Carmona et al., 2010) -86.17 2.78x10-4 

Table 1. Magnitude frequency response error comparison. 

Example 2:  
The FDF is designed using the explained minimax optimization approach applied on the 
single-sampling-frequency structure, Fig. 16, according to (Ramirez et al., 2010a). The FDF 

specifications are: p0.9m = 0.01 and p =0.001, the same ones as in the design example 
of (Yli-Kaakinen & Saramaki, 2006a). The given criterion is met with NFD = 7 and M = 4 and 
a half-band filter length of 55. The overall structure requires Prod = 32 multipliers, Add = 47 

adders, resulting in a m = 0.0094448 and p = 0.00096649. The magnitude and phase delay 

responses obtained for l= 0 to 0.5 with 0.1 delay increment are depicted in Fig. 21. The 
results obtained, and compared with those reported by other design methods, are shown in 
Table 2 . The design described requires less multipliers and adders than (Vesma & Saramaki, 
1997), (Johansson & Lowenborg, 2003), the same number of multipliers and nine less adders 
than (Yli-Kaakinen & Saramaki, 2006a), one more multiplier and three less adders than (Yli-
Kaakinen & Saramaki, 2006b), and two more multipliers than (Yli-Kaakinen, & Saramaki, 
2007). 
 

Method 
Arithmetic complexity 

NFD M Prod Add m p 

(Vesma & Saramaki, 1997) 26 4 69 91 0.006571 0.0006571 

(Johansson, & Lowenborg, 2003) 28 5 57 72 0.005608 0.0005608 

(Yli-Kaakinen & Saramaki, 2006a) 28 4 32 56 0.009069 0.0009069 

(Yli-Kaakinen & Saramaki, 2006b) 28 4 31 50 0.009742 0.0009742 

(Yli-Kaakinen & Saramaki, 2007) 28 4 30 - 0.009501 0.0009501 

(Ramirez-Conejo et al.,2010) 7 4 32 47 0.0094448 0.0009664 

- Not reported 

Table 2. Arithmetic complexity results for example 2. 

www.intechopen.com



 
Fractional Delay Digital Filters 

 

267 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.99

1

1.01

 /

A
m

p
li

tu
d

e

Magnitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

14

14.1

14.2

14.3

14.4

14.5

/

S
a

m
p

le
s

Phase Response

 

Fig. 21. FDF frequency responses, using minimax optimization approach in example 2. 
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Fig. 22. FDF frequency response errors, using minimax optimization approach in example 2. 

Example 3:  
This example shows that the same minimax optimization approach can be extended for 
approximating a global complex error. For this purpose, the filter design example described 

in (Johansson & Lowenborg 2003) is used, which specifications are p and maximum 

global complex error of c= 0.0042. Such specifications are met with NFD = 7 and M = 4 and 
a half-band filter length of 69. The overall structure requires Prod = 35 multipliers with a 

resulting maximum complex error c = 0.0036195. The results obtained are compared in 
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Table 3 with the reported ones in existing methods. The described method requires less 
multipliers than (Johansson & Lowenborg 2003), (Hermanowicz, 2004) and case A of 
(Hermanowicz & Johansson, 2005). Reported multipliers of (Johansson & Hermanowicz, 
2006) and case B of (Hermanowicz & Johansson, 2005) are less than the obtained with the 
presented design method. It should be pointed out that in (Johansson & Hermanowicz, 
2006) an IIR half-band filter is used and in case B of (Hermanowicz & Johansson, 2005) and 
(Johansson & Hermanowicz, 2006) a switching technique between two multirate structures 
must be implemented. The resulted complex error magnitude is shown in Fig. 23 for 
fractional delay values from D =17.5 to 18.0 with 0.1 increment, magnitude response of the 
designed FDF is shown in Fig. 24 and errors of magnitude and phase frequency responses 
are presented in Fig 25. 
 

Method 
Arithmetic complexity 

NFD M Prod 

(Johansson & Lowenborg 2003) 39 6 73 

(Johansson & Lowenborg 2003)a 31 5 50 

(Hermanowicz, 2004) 11 6 60(54) 

(Hermanowicz & Johansson, 2005) 7 5 36 

(Hermanowicz & Johansson, 2005)b 7 3 26 

(Johansson & Hermanowicz, 2006) - 6 32 

(Johansson & Hermanowicz, 2006)b - 3 22 

(Ramirez-Conejo et al., 2010) 7 4 35 

a. Minimax design with subfilters jointly optimized. 

Table 3. Arithmetic complexity results for example 3. 
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Fig. 23. FDF frequency complex error, using minimax optimization approach in example 3. 
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Fig. 24. FDF frequency response using minimax optimization approach in example 3. 
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Fig. 25. FDF frequency response errors using minimax optimization approach in example 3. 

6. Conclusion 

The concept of fractional delay filter is introduced, as well as a general description of most 
of the existing design methods for FIR fractional delay filters is presented. Accordingly to 
the explained concepts and to the results of recently reported design methods, one of the 
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most challenging approaches for designing fractional delay filters is the use of frequency-
domain optimization  methods. The use of MATLAB as a design and simulation platform is 
a very useful tool to achieve a fractional delay filter that meets best the required frequency 
specifications dictated by a particular application. 
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