
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Near-Optimal Nonlinear Forwarding Strategy for
Two-Hop MIMO Relaying

Majid Nasiri Khormuji and Mikael Skoglund
Royal Institute of Technology (KTH)

Sweden

1. Introduction

Relaying (1–3) has been considered as a paradigm for improving the quality of service (i.e.,
bit-error-rate, data rate and coverage) in wireless networks. In this work, we study a two-hop
relay channel in which each node can have multiple antennas. It is well-known that utilizing
multiple-input multiple-output (MIMO) links can significantly improve the transmission rate
(see e.g. (4; 5) and references therein). Thus, one can expect a combination of a MIMO gain and
a relaying gain in a MIMO relay link. We focus on one-shot transmission, where the channel is
used once for the transmission of one symbol representing a message. This is often referred to
as uncoded transmission. The main motivation for such a scenario is in considering applications
requiring either low-delays or limited processing complexity.
The capacity of the MIMO relay channel is studied in (6). The work in (9) establishes the
optimal linear relaying scheme when perfect CSI is available at the nodes. The work in (7; 8)
investigates linear relay processing for the MIMO relay channel. In this paper, in contrast
to (6–9), we study an uncoded system, and we propose a nonlinear relaying scheme which is
superior to linear relaying and performs close to the theoretical bound. Our proposed scheme
is based on constellation permutation (10; 11) at the relay over different streams obtained by
channel orthogonalization.
We investigate a two-hop MIMO fading Gaussian relay channel consisting of a source, a
relay and a destination. We assume that all three nodes have access to perfect channel
state information. We propose a nonlinear relaying scheme that can operate close to the
optimal performance. The proposed scheme is constructed using channel orthogonalization
by employing the singular value decomposition, and permutation mapping. We also
demonstrate that linear relaying can amount to a significant loss in the performance.

1.1 Organization

The remainder of the chapter is organized as follows. Section 2 first introduces the two-hop
relay channel model and then explains the transmission protocol and the assumptions on the
channel state information (CSI) at the nodes and finally formulates an optimization problem.
Section 3 simplifies and reformulates the optimization problem introduced in the preceding
section, by channel orthogonalization using SVD. Section 4 introduces a novel relaying
strategy in which the relay first detects the transmitted message and employs permutation
coding over different streams obtained by channel orthogonalization. This section also

10

www.intechopen.com



2 Will-be-set-by-IN-TECH

x1 x2
f (y1)

y1 y2
H1 H2

z1 z2

w ŵα β

Fig. 1. Gaussian two-hop MIMO relaying.

provides some performance bounds. Section 5 finally provides some simulation results and
concludes the chapter.

2. System model and problem formulation

In this section, we first introduce the two-hop Gaussian vector relay channel in detail and
then formulate the general problem of finding an optimal relaying strategy for the underlying
channel.
We consider Gaussian two-hop communication between a source and a destination, as
illustrated in Fig. 1. The communication is assisted by a relay node located between the source
and the destination. We assume that the relay node has no own information to transmit and
its sole purpose is to forward the information received from the source to the destination. We
additionally assume that all nodes may have different number of antennas. It is assumed that
there is no direct communication between the source and the destination. (This is reasonable
when e.g., the destination is located far away from the source or there is a severe shadow
fading between the source and the destination.) The communication between the source and
the relay takes place in two phases as described in the following.
First–Hop Transmission: During the first phase, the source transmits its information and the
relay listens to the transmitted signal. The received signal vector at the relay, denoted by y1,
is given by

y1 = H1x1 + z1 (1)

where H1 ∈ C[L×M] denotes the channel between the source and the relay, x1 ∈ C[M×1]

denotes the transmitted signal vector from the source and z1 ∈ C[L×1] denotes the additive
circularly symmetric Gaussian noise. The signal vector x1 is the output of the modulator α
which is defined as

α : W �−→ C
M

x1 = α(w)

where w ∈ W � {1, 2, 3, . . . , 2q} denotes a message to be transmitted over the channel.
Some particular choices for defining α are, for example, the 2q-QAM and 2q-PSK modulation
schemes. We assume an average power constraint at the source, such that trE{x1x

†
1} ≤ P1.

Second–Hop Transmission: During the second phase, only the relay transmits and the source
is silent. We assume that the relay uses a forwarding strategy given by the following
deterministic function

f : C
L �−→ C

L

x2 = f (y1)

Since the function f (·) is arbitrary, our model includes linear as well as nonlinear mappings.
We assume an average power constraint at the relay such that trE{x2x

†
2} ≤ P2. The received
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Near-Optimal Nonlinear Forwarding Strategy for Two-Hop MIMO Relaying 3

signal at the destination, denoted by y2, is then given by

y2 = H2x2 + z2 (2)

where H2 ∈ C[N×L] denotes the channel between the relay and the destination, x2 ∈ C[L×1]

denotes the transmitted signal vector from the relay and z2 ∈ C[N×1] denotes the additive
circularly symmetric Gaussian noise. Finally, the destination, upon receiving y2, detects the
transmitted message using the function (demodulator or detector) β defined as

β : C
N �−→ W

ŵ = β(y2)

where ŵ ∈ W denotes the detected message at the destination.
Channel Statistics: We assume that the entries of the channel matrices H1 and H2 are
i.i.d. Rayleigh fading, distributed according to CN (0, 1). The entries of the noise vectors
z1 and z2 are assumed to be independent zero-mean circularly symmetric Gaussian noise.
The covariance matrices of the noise vectors are given by Rz1z1 = E[z1z

†
1 ] = N1IL and

Rz2z2 = E[z2z
†
2 ] = N2IN , where IN and IM denote the identity matrices of size N and

M, respectively. Additionally, we assume that the channels stay unchanged during the
transmission of one block but they vary independently from one block to another.
Channel State Information (CSI): We assume that the source, the relay, and the destination know
H1 and H2 perfectly. The CSI of backward channels at the relay and the destination can be
obtained using training sequences and the CSI of the forward channels at the source and the
relay can be obtained either using reciprocity of the links or feedback. When the channel
matrices are constant or varying slowly, one can obtain accurate CSI at the nodes. Satellite
MIMO link and wireless LAN are two practical examples in which this model is applicable.

2.1 Problem formulation

The goal is to minimize the average message error probability. Thus for a given message set W,
we need to find the triple (α∗, β∗, f ∗) under the average power constraint such that

(α∗, β∗, f ∗) = arg min
α,β, f

Pr{ŵ �= w}. (3)

We desire to find a structured solution to the optimization problem in (3). Imposing structure
on a communication strategy results in loss of performance in general. On the other hand, a
structured strategy however facilitates the design. We first utilize the channel knowledge to
orthogonalize each hop using the SVD and then propose a nonlinear scheme that performs
close to the theoretical bound.

3. Channel orthogonalization via SVD

In the following, we employ the singular value decomposition (SVD) to obtain an equivalent
parallel channel for each hop. We then rewrite the optimization problem given by (3) for the
equivalent channel.
Using the SVD, any channel realizations of H1 and H2 can be written as

H1 = U1D1V
†

1

H2 = U2D2V
†

2
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Fig. 2. Processing using the SVD of the channel matrices.
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ỹ1r

x21

x2t

√
λ21

√
λ2t

z̃21

z̃2t
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Fig. 3. Equivalent parallel channel.

where U1 ∈ C[L×L], V1 ∈ C[M×M], U2 ∈ C[N×N] and V2 ∈ C[L×L] are unitary matrices,

and D1 ∈ R[L×M] and D2 ∈ R[N×L] are non-negative and diagonal matrices. Note that
since U1, V1, U2 and V2 are invertible, linear operations of the form of AG or GA (where
G ∈ {U1,V1,V2,U2} and A is an arbitrary matrix with an appropriate size) impose no loss of
information. Thus we can preprocess the transmitted signal vectors from the source and the
relay and postprocess the received signal vectors at the relay and the destination as illustrated
in Fig. 2. Consequently, the received signal at the relay after the linear postprocessing is given
by

ỹ1 = U †
1 y1

= U †
1 H1V1x1 +U †

1 z1

= U †
1 U1D1V

†
1 V1x1 +U †

1 z1

= D1x1 + z̃1

where the last equality follows from the identities U †
1 U1 = IL and V †

1 V1 = IM and the

definition z̃1 = U †
1 z1. The random vector z̃1 ∼ CN (0, N1IL) since U1 is a unitary matrix. In

a similar fashion, we can obtain

ỹ2 = D2x2 + z̃2

where z̃2 � U †
2 z2 ∼ CN (0, N2IM). See also Fig. 2. Because D1 and D2 are diagonal matrices,

we have

ỹ1i =
√

λ1ix1i + z̃1i, i ∈ {1, 2, . . . , min(M, L)}
ỹ2j =

√

λ2jx2j + z̃2j, j ∈ {1, 2, . . . , min(L, N)}
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Near-Optimal Nonlinear Forwarding Strategy for Two-Hop MIMO Relaying 5

where
√

λ1i is the ith entry on the main diagonal of D1 and
√

λ2j is the jth entry on the main

diagonal of D2. The equivalent channel obtained by the SVD operation is shown in Fig. 3.
The function g(·) in Fig. 3 denotes the forwarding strategy at the relay, defined as

g : C
r �−→ C

t

x2 = g(ỹ1)

where r = min(M, L) and t = min(L, N). We consider both linear as well as nonlinear
mappings. One can thus optimize the mapping according to

(α∗, g∗(ỹ1), β∗) = argmin
{α:trE[x1x

†
1 ]≤P1},{g(ỹ1):trE[g(ỹ1)g†(ỹ1)]≤P2},β

Pr{ŵ �= w}. (4)

4. Transmission strategies and performance bounds

4.1 Lower bound on Pe

We next give a simple lower bound on the average message error probability, which we use
as a benchmark to evaluate different transmission strategies in the sequel.

Lemma 1. For the two-hop vector channel shown in Fig. 1, the average message error probability Pe

is lower bounded by
Pe ≥ max{Pe1 , Pe2} (5)

where Pe1 and Pe2 denote the average message error probability of the first- and the second hop,
respectively.

Proof. Consider a two-hop channel where the first hop is noise-free and the second hop is
identical to the original channel in Fig. 1. Denote the average error probability of this new
channel by P̄e. It is easy to see that Pe ≥ P̄e = Pe2 . In a similar manner we can obtain Pe ≥
P̃e = Pe1 , where P̃e denotes the error probability of a two-hop channel with identical first hop
to that in Fig. 1 and a noise-free second hop. This yields (5).

4.2 Linear relaying

One of the fundamental strategies in the literature is linear relaying, commonly known as
amplify-and-forward (AF). Using AF in our setting, the relay function is given by

x2i = gi(ỹ1i) = κiμiỹ1i, i ∈ {1, ..., min{r, t}} (6)

where μi =
√

P2

λ1iE[x1ix
†
1i]+N1

is a power normalization factor and 0 ≤ κi ≤ 1 is a power

allocation factor where ∑
t
i=1 κ2

i = 1. Note that the number of parallel channels that can be
utilized is min{r, t}, i.e., the minimum number of parallel streams of the first- and second hop.
In (9), it is shown that the strategy given by (6) is optimal if the relay mapping is constrained
to be linear. However as we show, AF is in general suboptimal for the underlying channel.
The received signal-to-noise ratio (SNR) of the ith stream at the destination is given by

γAF
i =

κ2
i λ1iλ2iP1iP2

N1N2 + λ1iP1iN2 + κ2
i λ2iP2N1

(7)

where P1i � E[x1ix
†
1i]. The fact that the received noise at the relay is forwarded to the

destination is the main drawback of AF relaying.
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Fig. 4. Error probability transition in DF relaying.

Case r = 1: In order to maximize γi, one should choose the strongest mode (the stream with
largest singular value) with full power when r = 1. Note that the use of weaker streams at
the relay does not improve the performance of AF since all streams are transmitting the same
signal, thus allocating all power to the strongest mode is the optimal solution. Therefore, the
maximum possible achievable SNR for linear relaying when r = 1, is given by

γ∗
AF =

λ11λ21P1P2

N1 N2 + λ11P1N2 + λ21P2N1
(8)

where λ11 and λ21 are the largest eigenvalues of the first- and second hop, respectively.

4.3 Relaying via Detect-and-Forward (DF)

Another approach for forwarding the received signals is to first detect the transmitted message
and then re-modulate it. That is

x2i = gi(ỹ1) = κiαri( ˆ̂w) = κiαri(βr(ỹ1)) (9)

where ˆ̂w = βr(ỹ1) is the detected message and βr denotes the detector at the relay. The
modulator for generating x2i is denoted by αri. We also have trE[x2x

†
2] = P2.

The following proposition derives a simple upper bound on the average message error
probability of DF relaying.

Lemma 2. The average message error probability is upper bounded by

Pe ≤ Pe1 + Pe2 − min
1≤i≤2q

P
(i)
e1

P
(i)
e2

(10)

where P
(i)
e1

and P
(i)
e1

respectively denote the ith message error probability of the first- and the second hop
and Pe1 and Pe1 respectively are the average message error probabilities of the first- and the second hop.

Proof. Consider the transmission of wi from the source. The relay either detects the
transmitted message correctly or declares another message. This is illustrated in Fig. 4. Using
Fig. 4, the ith message error probability can be bounded as

P
(i)
e = (1 − P

(i)
e1

)P
(i)
e2

+ P
(i)
e1

(1 − ǫi) (11)

≤ P
(i)
e1

+ P
(i)
e2

− P
(i)
e1

P
(i)
e2

(12)
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Near-Optimal Nonlinear Forwarding Strategy for Two-Hop MIMO Relaying 7

where ǫi denotes the detection probability of wi at the destination when {wj}2q

j=1,j �=i is

transmitted from the relay, under the constraint that the source is transmitted wi. The
inequality in (11) follows from the fact that 0 ≤ ǫi ≤ 1. By taking average over all possible
messages, we have

Pe =
2q

∑
i=1

P
(i)
e p(wi) (13)

≤
2q

∑
i=1

(

P
(i)
e1

+ P
(i)
e2

− P
(i)
e1

P
(i)
e2

)

p(wi) (14)

= Pe1 + Pe2 −
2q

∑
i=1

P
(i)
e1

P
(i)
e2

p(wi) (15)

≤ Pe1 + Pe2 −
(

min
1≤i≤2q

P
(i)
e1

P
(i)
e2

) 2q

∑
i=1

p(wi) (16)

= Pe1 + Pe2 − min
1≤i≤2q

P
(i)
e1

P
(i)
e2

(17)

This completes the proof.

Proposition 1. DF relaying achieves the same performance as that of a single hop (i.e., max{Pe1 , Pe2})
at high SNR when N �= M.

Proof. For given modulator and optimal demodulator, the error probability at the destination
is upper bounded as

PDF
e ≤ Pe1 + Pe2 =

a1

γNL
1

+ O

(

1

γNL+1
1

)

+
a2

γLM
2

+ O

(

1

γLM+1
2

)

=

⎧

⎪

⎪

⎨

⎪

⎪



a1

γNL
1

+ O

(

1
γNL+1

1

)

if N < M

a2

γLM
2

+ O

(

1
γLM+1

2

)

if M < N
(18)

where we used Lemma 2 and γ1 � P1
N1

, γ2 � P2
N2

, and a1 and a2 are two constants depending
on the number of antennas and the modulation scheme.
We also have the following lower bound using Lemma 1

Pe ≥ max{Pe1 , Pe2} =

⎧

⎪

⎪

⎨

⎪

⎪



a1

γNL
1

+ O

(

1
γNL+1

1

)

if N < M

a2

γLM
2

+ O

(

1
γLM+1

2

)

if M < N
(19)

Comparing (18) and (19), we see that the upper bound and lower bound meet each other at
high SNR. This therefore establishes the optimality of DF at high SNR.

Proposition 2. DF achieves the optimal diversity order d∗ = min{NL, ML}.
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Proof. From Lemma 1, we conclude that d∗ ≤ min{NL, ML}. But, from Lemma 2 we know
that PDF

e ≤ Pe1 + Pe2 . Thus the diversity order is bounded as dDF ≥ min{NL, ML}. Therefore,
DF achieves the optimal diversity order.

In the following we comment further on the conventional DF and a propose a novel DF
relaying scheme.
Conventional DF: One way to simplify the problem is to use the same modulator over all
streams. That is αri = αr for all streams. By doing so, with a similar argument as that in
the linear relaying case, the optimal power allocation would be to use all the power on the
strongest mode.

Proposition 3. Relaying using conventional DF (i.e., transmission using the strongest mode) is
optimal at high SNR when N > M.

Proof. The proof follows from the observation that using only the stream with the strongest
mode of the second hop, one can obtain higher diversity gain compared to the first hop for
any source modulator. Since M < N, we have

PDF
e ≤ a1

γLM
1

+ O

(

1

γLM+1
1

)

, and Pe ≥
a1

γLM
1

+O

(

1

γLM+1
1

)

. (20)

This completes the proof.

Proposed DF: A more sophisticated approach at the relay is to use different modulators over
distinct streams. In the following, we propose a structured method for obtaining different
modulators based on a given modulator, say αr. Let π denote a permutation operation on a
given finite sequence. For example, if a = (1, 2, 3, 4) the operation π(a) produces a different
ordering of the elements in the sequence, such as π1(a) = (4, 3, 1, 2). In the following let ᾱr

denote the list of letters produced by the modulator αr , in the default order. Now we construct
the ith modulator using ᾱr as

ᾱri = κiπi(ᾱr) (21)

where κi is a power allocation factor used at ith stream such that {κi} meets the power
constraint trE[x2x

†
2] ≤ P2. Thus, the transmitted signal from the relay over the ith stream

is given by

x2i = gi(ỹ1) = κiαri( ˆ̂w) = κiαri(βr(ỹ1)) (22)

Here βr denotes the detector used at the relay and the modulator αri is constructed using
the ith permutation used over the ith stream, i.e., πi. Now designing a relaying strategy
specializes to finding the optimal permutations and the power allocation factors. That is

({κ∗i }t
i=1, {π∗

i }t
i=1) = arg min

{κi}t
i=1,{πi}t

i=1

Pr{ŵ �= w} (23)

The proposed DF scheme includes conventional DF as a special case, by choosing κi = 0 for
i �= 1. Thus, the error probability achieved by the proposed DF scheme is upper bounded
by that of conventional DF. The main advantage of the proposed scheme is that it enjoys a
structured design based on a given modulator. From Proposition 3, one can conclude that
this scheme does not bring any advantage at high SNR when N > M. However, in the
following section we show that the proposed DF approach can attain considerable gain over
conventional DF and linear relaying at moderate SNR’s, that is, in an SNR regime where
diversity gain is not a useful performance measure.
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Near-Optimal Nonlinear Forwarding Strategy for Two-Hop MIMO Relaying 9

5. Numerical results and concluding remarks

In the following we present numerical results for the case when the source has only one
single antenna and the relay and the destination have 10 antennas each. This scenario is of
importance, for example in the uplink transmission in cellular networks, where the mobile
node has only a single antenna. Under this constraint, the relay has only one incoming
stream and multiple outgoing streams (see Fig. 3). Fig. 5 shows the average message error
probability for three different relaying schemes; linear relaying, conventional DF relaying, the
proposed DF relaying approach based on permutation mappings using two streams. We use
16-QAM as the modulator and an optimal ML detector at the relay and the destination. For
the proposed scheme we use two streams in the second hop. The optimal permutation is
obtained using exhaustive search. We also plotted a lower bound on the performance for any
relaying scheme, using Lemma 1. Here we set P1 = P2 = P, N1 = N2 = 1. From Fig. 5, we
see that linear relaying performs worst, and the proposed DF relaying scheme provides the
best performance. Surprisingly, the performance of the proposed DF is very close to the lower
bound.

0 3 6 9 12
−5

−4

−3

−2

−1

0 

 

 

AF

DF: 1 Stream

DF: 2 Streams

Lower Bound

P [dB]

lo
g

10
(P

e)

Fig. 5. Average message error probability (Pe) using 16-QAM modulation for different
forwarding strategies (AF, conventional DF (i.e., one stream) and proposed DF (i.e., two
streams with permuted modulations)). Here we set P1 = P2 = P, N1 = N2 = 1, number of
antennas at the source is N = 1 and number of antennas at the relay and the destination are
L = M = 10.

219Near-Optimal Nonlinear Forwarding Strategy for Two-Hop MIMO Relaying

www.intechopen.com



10 Will-be-set-by-IN-TECH

We can see from Fig. 5 that the performance of conventional DF approaches that of the
proposed scheme at high SNR. This is in accordance with Proposition 3. However, we also
see that the new scheme gives considerable gains in the low- and moderate SNR regime, and
it achieves the optimal performance at lower SNR compared to conventional DF.
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