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1. Introduction 

Estimation theory has been developed over centuries. There are several approaches to 
utilizing this theory; in this chapter, these approaches are classified into three types. Type I 
includes the oldest two methods, the least squares (LS) and moment methods; both of these 
methods are non-optimal estimators. The least squares method was introduced by Carl 
Friedrich Gauss. Least squares problems fall into linear and non-linear categories. The linear 
least squares problem is also known as regression analysis in statistics, which have a closed 
form solution. An important feature of the least squares method is that no probabilistic 
assumptions of the data are made. Therefore, the linear least squares approach is used for 
parameter estimation, especially for low complexity design (Lin, 2008; 2009). The design 
goal of the least squares estimator is to find a linear function of observations whose 
expectation is a linear function of the unknown parameter with minimum variance. In 
addition, the least squares method corresponds to the maximum likelihood (ML) criterion if 
the experimental errors are normally distributed and can also be derived from the moment 
estimation. As an alternative to the LS method, the moment method is another simple 
parameter estimation method with probabilistic assumptions of the data. The general 
moment method was introduced by K. Pearson. The main procedure in the moment method 
involves equating the unknown parameter to a moment of distribution, then replacing the 
moment with a sample moment to obtain the moment estimator. Although the moment 
estimator has no optimal properties, the accuracy can be validated through lengthy data 
measurements. This is mainly because the estimator based on moment can be maintained to 
be consistent. Type II includes the methods of minimum variance unbiased estimator 
(MVUE) and the Bayesian approach, which are both optimal in terms of possible minimum 
estimation error, i.e., statistical efficiency. MVUE is the best guess of an unknown 
parameter. The standard MVUE procedure includes two steps. In the first step, the Cramer-
Rao lower bound is determined, and the ability of some estimator to approach the bound. In 
the second step, the Rao-Blackwell-Lehmann-Scheffe (RBLS) theorem is applied. The MVUE 
can be produced by these two steps. Moreover, a linear MVUE might be found under more 
restricted conditions. 
In the Bayesian method, the Bayesian philosophy begins with the cost function, and the 
expected cost with respect to the parameter is the risk. The design goal of Bayesian 
philosophy is to find an estimator that minimizes the average risk (Bayes risk). The most 
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common cost function is a quadratic function because it measures the performance of the 
estimator in terms of the square of the estimation error. In this case, the Bayes risk is the 
mean square error (MSE), and thus, the Bayes estimate is a minimum mean square error 
(MMSE) estimator. Another common cost function is the absolute function, which regards 
the absolute estimate error as the Bayes risk. In this case, the Bayes estimate is a minimum 
mean absolute error (MMAE) estimator. Another estimation, which is not a proper Bayes 
estimation but fits within Bayes philosophy, is the maximum a posteriori (MAP) estimation. 
The MAP criterion considers the uniform cost function, and the parameter is discretely, 
randomly distributed under this assumption. Although this estimate usually only 
approximates the Bayes estimate for uniform cost, the MAP criterion is widely used for 
estimator design. Type III includes the maximum likelihood (ML) estimate, which is the 
most important estimation theory in the 20th century. The ML estimate can be referred to as 
an alternative MAP without knowledge of apriori probability of the parameters. The ML 
estimator is the most popular approach for obtaining a practical estimator, which was 
previously used by Gauss. The general method of estimation was first introduced by R. A. 
Fisher with the concepts of consistency, efficiency and sufficiency of the estimation function. 
The ML estimator is required when MVUE does not exist or cannot be found. An advantage 
of the ML estimator is that a practical estimation is easy to obtain through the prescribed 
procedures. Another advantage of this approach is that MVUE can be approximated due to 
its efficiency. Thus, from the theoretical and practical perspectives, the ML approach is the 
most important and widely used estimation method of this century (Lin, 2003). 
Because the ML estimator is essential in estimation theory, the analysis of its performance is 

a benchmark of estimator design. This benchmark is commonly known as the Cramer-Rao 

lower bound (CRLB), which is named after Harald Cramer and Calyampudi Radhakrishna 

Rao. In section 2, the definition of the CRLB is introduced with several examples. A general 

case of CRLB under two common communication channels is then introduced in section 3. 

To establish basic knowledge of hybrid parameter estimation, random parameter estimation 

is presented in section 4. In section 5, Cramer-Rao-like bounds for hybrid parameter 

estimation are introduced and compared with each other. Lastly, we summarize some 

practical cases and compare these cases with modified CRB which is most common used 

Cramer-Rao-like bounds. 

2. Cramer-Rao lower bound (CRLB) 

The Cramer-Rao lower bound (CRLB) is a lower bound on the variance of any unbiased 
estimator. Many other variance bounds exist, but the CRLB is the easiest one to derive and is 
thus widely used in many estimation studies. This theory provides a benchmark for 
examining the performance of novel estimation algorithms and also highlights the 
impossibility of finding an unbiased estimator with a variance less than this lower bound. 
Before introducing the definition of CRLB, there is a simple estimation example that may 
could help promote understanding of the basic CRLB concept. 

Example 2.1 

There is a simple signal transmission model with a transmitted signal s , a received signal 
[ ]r n  and an additive white Gaussian noise [ ]w n . 

 [ ] [ ]r n s w n= +  (1) 
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Here, the index n  refers to the n ’th observation. In this problem, the transmitted signal s  is 

assumed to be an unknown parameter that is deterministic during n  observations. The first 

idea estimate s  takes one observation as our estimation, e.g., the n ’th observation, 

namely ˆ [ ]s r n= . To analyze the estimation accuracy, we check the likelihood function of 

[ ]r n as shown.  

 ( )2

22

1 1
( [ ]; ) exp [ ]

22
p r n s r n s

σπσ
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (2) 

 

Substituting the estimator we chose in this likelihood function yields  
 

 ( )2

22

1 1
ˆ ˆ( ; ) exp

22
p s s s s

σπσ
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (3) 

 

Now, the mean value is the target parameter s , and the estimation variance is 2σ . The 

estimation accuracy can then be determined as 
 

 

12
2

2

ln ( [ ]; )
ˆvar( )

p r n s
s E

s
σ

−
⎛ ⎞∂

= = − ⎜ ⎟⎜ ⎟∂⎝ ⎠
. (4) 

 

Furthermore, we are interested in finding a more accurate estimator by lowering the 
variance 2σ . This can be achieved by exploiting multiple observations. Assuming the 
observation samples are identical independently distributed, the likelihood function for  
multiple observations is 

 

( )
( )2

2
2 2

11 1
( [ ]; ) exp [ ]

2 12
N

N
p n s r n s

nσπσ

−⎡ ⎤
= − −∑⎢ ⎥

⎢ ⎥=⎣ ⎦
r . (5) 

A ML estimator can be derived in the same way as for a single observation to yield 

 

1

1
[ ]

ˆ

N

n
r n

s
N

−

=
∑

= , (6) 

which is an unbiased estimator, namely { }ˆE s s= . We can also find the estimation variance 

using equation (4); the result is similar to the single observation MLs with a factor N  in the 

denominator: 

 
2

ˆvar( )s
N

σ
= . (7) 

An extreme case occurs when N  approaches ∞ , and the process reduces the estimation 
variance to 0. From this simple example, we can summarize that the ultimate goal of 
estimator design is to find the minimum variance unbiased estimator (MVUE), and if we 
wish to illustrate the performance of our estimator, then estimation variance can be found 
through the likelihood function. Now, we are ready to define the CRLB (Kay, 1998). 
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<Theorem> 

Assume the pdf, ( ; )p r θ ,satisfies the regularity condition 

 
ln ( ; )

0;
p r

Er
θ

θ θ
∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦

  for all θ . (8) 

Then, the variance of any unbiased estimator θ̂  has a lower limitation 

 
2

; 2

1ˆvar( )
ln ( ; )

r

p r
E θ

θ
θ

θ

≥
⎡ ⎤∂

− ⎢ ⎥
∂⎢ ⎥⎣ ⎦

. (9) 

An unbiased estimator may be found that attains the bound for all θ  if and only if 

 
ln ( ; )

( )( ( ) )
p r

I g r
θ θ θ

θ
∂

= −
∂

 (10) 

for some function ( )I θ  and ( )g r . This estimator can be stated as ˆ ( )g rθ = , which is a MVUE with 
variance 1 / ( )I θ . To attain the variance lower bound, Fisher’s information is defined as 

 ( )
2

; 2

ln ( ; )
r

p r
I E θ

θθ
θ

⎡ ⎤∂
= − ⎢ ⎥

∂⎢ ⎥⎣ ⎦
, (11) 

which is used to calculate the covariance matrices associated with maximum-likelihood estimates. 
An unbiased estimator that achieves the variance lower bound is referred to as “efficient”. 

In other words, an unbiased estimator that achieves the CRLB is an efficient estimator and 

must be MVUE. Figures 1 and 2 are illustrations of the relationship between a MVU 

estimator and the CRLB. 

 

 

Fig. 1. 1θ̂  MVU and efficient 
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Fig. 2. 1θ̂  MVU and not efficient 

Although there are some theories capable of finding MVUE by sufficient statistics and the 
Rao-Blackwell-Lehmann-Scheffe theorem, we will not introduce the details in this chapter. 
However, we encourage readers to fully inform themselves concering MVUE from the 
references in this chapter (Kay, 1998). 

A question may be raised concerning why the minimum variance estimator should be an 
unbiased one. Although the unbiased estimator seems to sucessfully find an perfect 
estimator ϕ  because the expectation value approaches the true parameter i.e., 0

ˆ[ ]E θ θ= , but  
a biased estimator may outperform than an unbiased one. For example, in some situations, 
the relationship between a MVUE and a Bayesian MSE estimator may be illustrated in figure 
3. 
 

 

Fig. 3. MVUE vs. Bayesian estimator 
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In this example, the Bayesian MSE estimator is an unbiased estimator. The performance 
comparison in figure 3 shows that within a certain parameter interval, the biased Bayesian 
estimator may have lower estimation variance than MVUE’s. However, this comparison also 
shows that the biased estimator performs terribly outside this interval. Thus, the unbiased 
estimator has an advantage in terms of consistent performance. 

2.1 Asymptotic CRLB 

For some cases in which the closed form of the CRLB may not be derived, the asymptotic 
CRLB can be used instead; this form can be attained by assuming that infinite observation 
samples are available. Under this assumption, we have an observation sample with an 
infinite signal-to-noise ratio (SNR). 

3. General case CRLB  

3.1 Gaussian noise 

The AWGN channel is the most common channel model in wireless communication, which 
was also used in the example in the last section. In example 2.1, we only consider the 
estimate of symbol s . Now, a general form of any parameter θ  is derived. 

Example 3.1 

Assuming symbol s  is transmitted with a general unknown parameter θ  and added with 
an AWGN ( )nw t . The signal model is describe as 

 ( ) ( ; ) ( )n nr t s t w tθ= + , (12) 

where n  indicate the n th observation. Following the general CRLB derivation steps, the 
likelihood function is found first and differentiation with respect to θ  is then performed 
twice. 

 

( )
[ ]

1 2

2
12 2

1 1
( ( ); ( ), ) exp ( ) ( ; )

2
2

N

nn N
n

p r t s t r t s tθ θ
σπσ

−

=

⎡ ⎤= − −∑⎢ ⎥⎣ ⎦
 (13) 

 [ ]
1

2
0

ln ( ( ); ( ), ) 1 ( ; )
( ) ( ; )

N
n

n
n

p r t s t s t
r t s t

θ θθ
θ θσ

−

=

∂ ∂
= −∑

∂ ∂
 (14) 

 [ ]
22 21

2 2 2
0

ln ( ( ); ( ), ) 1 ( ; ) ( ; )
( ) ( ; )

N
n

n
n

p r t s t s t s t
r t s t

θ θ θθ
θθ σ θ

−

=

∂ ∂ ∂⎛ ⎞= + −∑ ⎜ ⎟∂∂ ∂⎝ ⎠
 (15) 

Taking the expectation of 
2

2

ln ( ( ); ( ), )np r t s t θ
θ

∂
∂

 with respect to ( ; , )p r s θ  into Fisher’s information 

yields 

 ( )
22 1

; , 2 2
0

ln ( ( ); ( ), ) 1 ( ; )
=

N
n

r s
n

p r t s t s t
I E θ

θ θθ
θθ σ

−

=

⎧ ⎫∂ ∂⎪ ⎪ ⎛ ⎞= − ∑⎨ ⎬ ⎜ ⎟∂∂ ⎝ ⎠⎪ ⎪⎩ ⎭
 (16) 

Finally, the inverse recipocal of the Fisher‘s information produced by the CRLB in the 
AWGN channel.  
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( )

2

2
1

0

1ˆvar( )
( ; )N

n

I s t

σθ
θ θ

θ
−

=

≥ =
∂⎛ ⎞∑ ⎜ ⎟∂⎝ ⎠

 (17) 

 

3.2 Complex Gaussian channel 

Another commonly seen channel is complex Gaussian channel. The mobile communication 

and wireless communication usually introduce the Rayleigh fading due to multipath delay 

spread and Doppler shift. In numerical simulation we may use the Jake’s (Clarke) model, 

but in theoretical analysis, complex Gaussian channel is more popular, because it has 

Rayleigh distributed amplitude with an uniformly distributed phase, which is convenient to 

use and without loss of generality.  

Example 3.2 

The signal model can be extended from the general AWGN channel model. We multiply the 

Rayleigh distributed channel gain 0α  and the uniformly distributed channel phase 0j
e

φ−
 

with the symbol ( ; )us t θ .  
 

 0
0( ) ( ; ) ( )

j
n u nr t e s t w t

φα θ−= +  (18) 
 

Alternatively, using complex coordinates, i.e., the Gaussian distributed Iα and Qα with 

mean Aη  and variance 2
Aσ  yields 

 

  ( ) ( ) ( ; ) ( )n I Q nr t j s t w tα α θ= + +  (19) 

 

Because the Iα , Qα and ( )nw t  terms are Gaussian distributed, the received signal ( )nr t  is 

also Gaussian distributed. To find the joint likelihood function, the mean mr  and variance 
2
rσ  of the received signal should be derived.  

 

 (1 ) ( ; )r Am j s tη θ= +  (20) 

 2 2 22 ( ; ) 2r A s NP tσ σ θ σ= +  (21) 
 

Here, *( ; ) ( ; ) ( ; )sP t s t s tθ θ θ=  is the power of the transmitted signal. The joint likelihood 

function turns out is then described by 
 

 
2

22

1 ( ( ) )
( ( ); ( ; )) exp( )

22

r
r

rr

r t m
p r t s t θ

σπσ

−
= −  (22) 

 

4. Random parameter estimation 

In previous sections, some basic knowledge of estimation bounds were introduced based on 

unknown parameters with random interference. These kinds of estimation problems are 

categorized in the classical estimation approach. Some properties of estimation methods are 

listed in Table 1. 
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 Parameter 
types 

Sample 
distribution 

Parameter 
distribution 

LS Unknown Unknown Non 

Moment Unknown Known Non 

MVUE Unknown Known Non 

Bayesian Random Known Known 

MAP Random Known Known 

ML Both Known Uniform 

Table 1. Some estimation properties 

Another research area focuses on random parameters estimation, and several approaches, 
including the Bayesian theorem, MAP and ML, are widely used already. One of the most 
popular and well-known Bayesian approache is the MMSE estimator. Below, the MMSE will 
be briefly introduced with an example.  

Example 4.1 

Assuming that we received signal ( )r t  that is composed of a random symbol s  and white 
Gaussian noise ( )w t , the following relationship can be described. 

 ( ) ( )r t s w t= +  (23) 

The conditional pdf of ( )r t  with a priori information can be stated as 

 
1

2

2 0

1 1
( ( ); ) exp ( ( ) )

22

N

n
n

p r t s r t s
πσ

−

=

⎛ ⎞= − −∑⎜ ⎟
⎝ ⎠

 (24) 

Using Bayes’ rule,  

 
( ; ( )) ( ( ))

( ( ); )
( )

p s r t p r t
p r t s

p s
=  (25) 

After certain computations, the conditional pdf with a posteriori information is obtained as 

 2
;22

;;

1 1
( ; ( )) exp ( )

22
s r

s rs r

p s r t s μ
σπσ

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
, (26) 

where 

 2
;

2 2

1
1s r

s

N
σ

σ σ

=
+

; (27) 

 2
; ;2 2

s
s r s r

s

N
x

μμ σ
σ σ
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

. (28) 

The MMSE estimator is then determined as 

 ;
ˆ { | ( )} (1 )s r ss E s r t xμ α α μ= = = + −  (29) 
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where 

 
2

2
2

s

s N

σα
σσ

=
+

 (30) 

 

The Bayesian mean square error is defined as 
 

 ( )
2 2 2

2

2
2

ˆ ˆ( ) [ ] s

s

Bmse s E s s
N N

N

σ σ σ
σσ

⎛ ⎞
⎜ ⎟= − = ≤⎜ ⎟

+⎜ ⎟
⎝ ⎠

 (31) 

 

As 2
s

σ →∞  i.e., without any information from a prior knowledge, the bound would be the 

same with the sample mean estimator. This result can be compared with that of the first 

example in this chapter, and an important concept of Bayesian estimator is revealed: any 

prior knowledge will result in higher accuracy of the Bayesian estimator. 

5. Hybrid parameter estimation 

In addition to classical estimation and random parameter estimation, there is a more 
complicated scenario called hybrid parameter estimation. In hybrid parameter estimation, 
the desired parameter is a vector that is composed of several unknown paramters and 
random parameters. The parameter vector can be constructed as  
 

 
TT T

r u
⎡ ⎤= ⎣ ⎦θ θ θ , (32) 

 

where rθ  is a random parameter vector and uθ is an unknown parameter vector. Because 
we are considering the random parameters, we assume that we have some prior knowledge 
of these parameters, such as the probability distribution function. Several techniques for 
calculating hybrid parameter Cramer-Rao like bounds are described below. 

5.1 CRLB with nuisance parameter 

In our first case, rθ  is treated as a nuisance parameter, which means that these random 
parameter are undesired.  

Example 5.1 

Reformulating the signal model and likelihood function yields 
 

 ( ) ( ; ) ( )n nr t s t w t= +θ  (33) 

 
[ ]2

22

( ) ( ; )1
( ( ), ; ( ), ) exp( )

22

n
n r u

r t s t
p r t s t

σπσ

−
= −

θ
θ θ . (34) 

Because we assumed that the pdf is well-known and these denoted parameters are 
unimportant, the marginal likelihood function is derived first, and the nuisance parameters 
are integrated out of the equation. 
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 ( ( ); ( ), ) ( ( ), ; ( ), ) ( )n r un u r r

r

p r t s t p r t s t p d
θ

= ∫θ θ θ θ θ  (35) 

Now, the resultant problem becomes a classical estimation problem, and the CRLB can be 
derived step by step. 

1.   [ ]
1)

2
0

ln ( ( ); ( , ) 1 ( , )
( ) ( , )

N
n u u

n u
nu u

p r t s t s t
r t s t

σ

−

=

∂ ∂
= −∑

∂ ∂
θ θθ

θ θ
 (36) 

2.   [ ]
22 21

2 2 2
0

ln ( ( ); ( , )) 1 ( , ) ( , )
( ) ( , )

N
n u u u

n u
n uu u

p r t s t s t s t
r t s t

σ

−

=

⎛ ⎞∂ ∂ ∂
= + −∑ ⎜ ⎟∂∂ ∂⎝ ⎠

θ θ θθ
θθ θ

 (37) 

3.   ( ) ) )

,

ln ( ( ); ( , ) ln ( ( ); ( , )n u n u
ri j

i j

p r t s t p r t s t
I E

θ θ

⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭

θ θθ  (38) 

4.   
( )

,

1ˆ ˆ( ) var( )i i

i i

CRLB
I

θ θ
⎡ ⎤

= ≤⎢ ⎥
⎢ ⎥⎣ ⎦θ

  (39) 

5.2 Hybrid CRLB 

In some scenarios, the effect of these ramdom parameters cannot be ignored. Another 
method that considers the joint pdf called joint estimation. The CRLB for this kind of joint 
estimation is called hybrid Cramer-Rao bound (HCRB). The derivation process is nearly 
identical to that of ordinary CRLB; the likelihood function is determined, and partial 
differentiation with respect to the desired parameter is performed twice. 

 ( ) ( ; ) ( )r t s t w tn n= +θ  (40) 

 [ ]2
22

( ) ( ; )1
( ( ), ; ( ), ) exp( )

22

r t s tnp r t s tn r u σπσ

−
= −

θ
θ θ  (41) 

 [ ]
1

2
0

ln ( ( ), ; ( ), ) 1 ( ; )
( ) ( ; )

N

n

p r t s t s tn r u r t s tn
σ

−

=

∂ ∂
= −∑

∂ ∂
θ θ θθ
θ θ

 (42) 

 [ ]
22 21

2 2 2
0

ln ( ( ), ; ( ), ) 1 ( ; ) ( ; )
( ) ( ; )

N
n r u

n

p r t s t s t s t
r t s tnσ

−

=

∂ ∂ ∂⎛ ⎞= + −∑ ⎜ ⎟∂∂ ∂⎝ ⎠
θ θ θ θθ

θθ θ
 (43) 

Because the joint pdf is considered, the expection of Fisher’s information should be taken  
with respect to ( ( ), )p r t rθ  

 ( ) ,,

ln ( ( ), ; ( ), ) ln ( ( ), ; ( ), )
r

n r u n r u
ri j

i j

p r t s t p r t s t
I E

θ θ

⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
θ

θ θ θ θθ  (44) 

The joint pdf ( ( ), )p r t rθ  is not easy to determine, and an alternative approach using double 
layer expectation which computes the expectation with respect to the conditional pdf first. 
We define the information matrix with respect to the conditional pdf ( ( ); )p r t rθ  as  
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 ( )0 ;,

ln ( ( ), ; ( ), ) ln ( ( ), ; ( ), )
|n r u n r u

rri j r
i j

p r t s t p r t s t
I E

θ θ

⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
θ

θ θ θ θθ θ . (45) 

Then expectation is computed with respect to ( )p rθ , and all of the random pararameters are 
eliminated. 

 
( )

( ) ( ){ }
;,

0 ,,

ln ( ( ), ; ( ), ) ln ( ( ), ; ( ), )
|n r u n r u

r ri j rr
i j

i jri j

p r t s t p r t s t
I E E

E II

θ θ

⎧ ⎫⎧ ⎫∂ ∂⎪ ⎪ ⎪⎪= ⎨ ⎨ ⎬⎬∂ ∂⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

=

θθ

θθ

θ θ θ θθ θ

θ

 (46) 

Finally, the HCRB is derived as 

 
( )

,

1ˆ ˆ( ) var( )i i

i i

HCRB
I

θ θ
⎡ ⎤

= ≤⎢ ⎥
⎢ ⎥⎣ ⎦θ

. (47) 

5.3 Modified CRLB 

During the process of deriving the HCRB, an important step involves taking the inverse of 
the Fisher’s information matrix. In some cases, the inverse of the Fisher‘s information matrix 
may not exist or cannot be derived into a closed form lower bound. We can then try the 
modified or simplified bound, such as the MCRB. Instead of taking the inverse of the matrix 
first, we select the desired estimation element from the information matrix first and then 
execute the inverse step. After choosing the desired estimation element, the Fisher’s 
information is no longer in a matrix form, and derivation is easier. 

 
( ) ,

1ˆ ˆ( ) var( )i i

i i

MCRB
I

θ θ
⎡ ⎤
⎢ ⎥= ≤
⎢ ⎥⎣ ⎦θ

 (48) 

An previously reported example can help distinguish the difference between these CR-like 
bounds (F. Gini, 2000). 

Example 5.2 

When considering a data-aided joint frequency offset estimation case, the signal model can 
be described as 

  2( ) ( ) ( )Dj f t
n nr t Ae s t w tπ−= +  (49) 

Here, A  is the complex channel, which can be rewritten as 0
0

j
I QA e j

φα α α−
= = + , and 

2 Dj f te π−  represents the frequency offset. The estimation parameter matrix 

[ ]TD I Qf α α=θ can be defined. Because this is a data-aided case, ( )s t  can be a pilot or 

preamble, and we can assume that *( ) ( ) 1s t s t =  without loss of generality. Then the signal 

after pilot removal is 

 
2

*( ) ( ) ( )

( ) ( )D
n

n n

j f t
I Q n

x t r t s t

j e v tx πα α

=

= + +
 (50) 
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( )nx t  is also Gaussian distributed. Following the derivation of S. M. Kay (1998) and F. Gini 
(2000), we can find the conditional Fisher’s information matrix. 
 

 

2
2 2

2 2 2

2

0 2 2 2

2

2 2 2

2 ( 1)(2 1) ( 1) ( 1)
( )

3

( 1) ( )
( ) 0

( )( 1)
0

I Q Q I
N N N

I A
Q

N N A

Q A
I

N N A

N N N N N N N

N N N
I

N N N

π π πα α α α
σ σ σ

π α ηθ α
σ σ σ

α ηπ α
σ σ σ

⎡ ⎤− − − −
+ −⎢ ⎥

⎢ ⎥
⎢ ⎥− −⎢ ⎥= − +
⎢ ⎥
⎢ ⎥

−⎢ ⎥−
+⎢ ⎥

⎣ ⎦

 (51) 

 

By computing the expectation of α , the Fisher’s information for the frequency offset is 

 { }0( ) ( )DI f E Iα θ=  (52) 

Then the MCRB is derived as 

 
( ) 2

11

1 3
( )

4 ( 1)(2 1)
D

D

MCRB f
I f N N Nπ ρ

= =
⎡ ⎤ − −⎣ ⎦

 (53) 

 

where 2 2 2( ) /
A A N

ρ η σ σ= +  is the SNR. Now, the difference between the MCRB and the HCRB 
can be checked. As mentioned previously, the HCRB is  
 

 
( )

11

2

1
( )

3( 1)( 1 ) 1

2(2 1)( 1)( 1 ) 3 ( 1)2 ( 1)

D
D

R R

R R R

HCRB f
I f

K K N

N K K N N N KN N

ρ
ρ ρπ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

+ + +
=

− + + + − −−

, (54) 

 

where 2 2/R A AK η σ=  is the Rice factor, which is the power ratio between direct path signal 
and other scatter path signals. A comparison of the HCRB and MCRB can be evaluted as. 
 

 
( ) 2(2 1)( 1)( 1 )

( ) 2(2 1)( 1)( 1 ) 3 ( 1)
D R R

D R R R

HCRB f N K K N

MCRB f N K K N N N K

ρ
ρ ρ

− + + +
=

− + + + − −
. (55) 

 

Based on the equation above, in the general case, the ratio is always larger than 1, which 
means that the HCRB is generally a tighter bound than the MCRB. Conversely, when 

0
R

K →  or 
R

K →∞ , the ratio of HCRB to MCRB approaches 1. It is interesting that these 
two bounds only meet for two extreme scenarios, namely the Rayleigh channel and direct 
path. 

5.4 Miller Chang bound 

The Miller Chang bound (MCB) is proposed by R. W. Miller and C. B. Chang (1978). They 
state that the MCB can apply to a more restricted class of estimator that is unbiased for each 
value of the nuisance parameter, which is referred to as locally unbiased, whereas the 
standard Cramer-Rao bound (CRB) can applies to any estimators that are unbiased over the 
ensemble. The Miller Chang bound is defined as 
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( )0 ,

1ˆ( )i r
i i

MCB E
I

θ
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

θ θ
. (56) 

The MCB has a similar form to the MCRB, but the MCB is always tighter than the MCRB. 
More directly, the MCB applies to more restricted estimators than the CRLB, which implies 
that the MCB is tighter than CRB, and the MCRB is looser than the CRB, which was derived 
by A. N. D’Andrea (1994). Therefore, the MCB is tighter than the MCRB. Alternatively, we 
can also explain this relationship using Jensen’s inequality for any convex function ϕ  and 

random variable x  

 [ ]( ) ( )E x E xϕ ϕ≤ ⎡ ⎤⎣ ⎦ . (57) 

In our case, the inverse function for a positive defined matrix is a convex function, so  

 
( ){ } ( )0 ,0 ,

1 1ˆ ˆ( )= = ( )i ir
i ii ir

MCRB E MCB
IE I

θ θ
⎧ ⎫⎪ ⎪≤ ⎨ ⎬
⎪ ⎪⎩ ⎭

θ
θ θθ

. (58) 

Now, from example 5.2 in the MCRB subsection, the MCB of the joint estimated frequency 
offset is 

 

2

2 2 2

2 2

2 2
(

3 1
( )

2 ( 1)(2 1)

2
()

( )
)

N
D

I Q

D
A A

D
I Q

MCB f E
N N N

MCRBMCB f f E

α

α

σ
π α α

η σ
α α

⎧ ⎫⎪ ⎪= ⎨ ⎬
− − +⎪ ⎪⎩ ⎭

⎧ ⎫+⎪ ⎪= ⎨ ⎬
+⎪ ⎪⎩ ⎭

 (59) 

The final result still remains the expectation term, so it cannot be derived into a closed form. 
Although the MCB is a tighter bound than the MCRB, the MCRB is more likely to derive 
into a closed form. In addition, the MCB requires a locally unbiased estimator, which is also 
a harsh restriction for estimator design, so the MCRB is more popular for theoretical 
analysis. 

5.5 Summary of the relationship between Cramer-Rao-like bounds 

Some of the relationship between Cramer-Rao-like bounds has been derived previously 
(Reuven, 1997). In this work, they consider the signal model with Gaussian distributed 
channel gain and an unknown timing delay. We can also derive this relationship from our 
examples in subsection 5. Following from example 5.1, if we carry through  the calculation 

to the end, then we will obtain the marginal CRB of the frequency offset Df . 

 
2

3( 1 )
( )

2 ( 1) [ ( 1) 2(2 1) ]
R

D
R

K N
CRB f

N N N N N K

ρ
π ρ ρ

+ +
=

− + + −
 (60) 

Then, this result is compared with that for the HCRB, which was derived in equation (55). 

 2(2 1)( 1)( 1 ) 3 ( 1)
( ) ( )

( 1)[ ( 1) 2(2 1) ]
R R R

D D
R R

N K K N N N K
CRB f HCRB f

K N N N K

ρ ρ
ρ

− + + + − −
=

+ + + −
 (61) 
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After calculations, the CRB can be summarized into the HCRB multiplied by a function. We 
simplified the fraction in equation (62) and found that it is larger than 1 only if 1N < . This 
result implies that ( ) ( )D DCRB f HCRB f≥ , and the relationship ( ) ( )D DHCRB f MCRB f≥  has 
been proven by equation (56). Another way to prove this is to use a corollary. 

“For any positive defined matrix M , [ ] 11
11

11

M M −−⎡ ⎤ ≥⎢ ⎥⎣ ⎦
, an equal occur if  M is diagonal”. 

Finally, we summarize the relationship between CRB, HCRB and MCRB as 

 ( ) ( ) ( )D D DCRB f HCRB f MCRB f≥ ≥  (62) 

However, the relationship between the MCB and MCRB was also derived in equations 
(58-59) using Jensen’s inequality. Because the MCRB seems to be a looser bound in the 
Cramer-Rao-like bounds family, we normalized all other bounds to the MCRB, as shown 
in figure 4.  
 

 

Fig. 4. Normalized bounds versus the Rice factor 

From the figure above, the MCB exhibits drastic variation near 1RK = , which indicates that 

the locally unbiased estimatior of Df  is difficult to find when the power of scatter signal is 

larger  than line-of-sight (LOS) signal. Moreover, when 0KR =  (Rayleigh channel), the ratio 

of the normalized MCB approaches infinity, which means that no locally unbiased estimator 

exists. The Rayleigh fading channel is the most frequently used channel model in a wireless 
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communication environment, which is another reason that the MCRB is more popular than 

the MCB. In multiple parameters estimation, joint estimation techniques have been a 

popular topics recently. In terms of hybrid parameter joint estimation, the benchmark for 

comparison with is the HCRB. Based on equation (56) and figure 3, the HCRB has a feature 

that approaches the MCRB when 0
R

K →  or 
R

K →∞ . As mentioned previously, the 

scenario 0
R

K →  implies the Rayleigh channel. The analysis shows that the MCRB is quite 

sufficient as a benchmark to design an estimator in the Rayleigh channel environment. 
Some prior research has been reported on the relationship among the joint estimate initial 
phase, timing delay and frequency offset (D'Andrea , 1994). The author summarized and 
derived some cases in which the CRB is equal to the MCRB. 

i. Estimation of φ  when Df , τ and data are known 

ii. Estimation of τ  when Df , φ , and data are known 

iii. Estimation of Df  with M-PSK modulation, when τ  and differential data are available 

but φ  is unknown.  

Here, φ , Df  and τ  are the initial phase , frequency offset and timing delay. Other cases 

may exist in which the CRB is equal to the MCRB, but these cases are difficult to analyze. An 

important conclusion here is that if an estimator approaches the MCRB, then the MCRB 

must be closed to the CRB. 
 

6. Advanced topics 

6.1 Carrier phase and clock recovery 

As summarized by A. N. D’Andrea (1994), there are several synchronization techniques that 

can attain or approach the MCRB for a carrier phase θ  and timing τ  estimation. Under the 

assumption that the frequency offset and timing are known, ( )MCRB θ  can be attained 

using two algorithms.  
i. Maximum likelihood decision-directed (ML-DD), proposed in H. Kobayashi (1971)  
ii. Ad hoc non-data-aided (ad hoc NDA) method, proposed by A. J. Viterbi (1983).  

The ( )MCRB τ  can also be attained using the ML-DD algorithm with derivative-matched 

filters (DMFs); however, the use of DMFs also makes the estimator impractical to 

implement. Several alternative algorithma have been found that can approach ( )MCRB τ  

without using DMFs. 

i. DD early-late scheme with / 2T  sample space, proposed by T. Jesupret (1991). 
ii. DD scheme, proposed by K. H. Mueller (1976). 
iii. NDA scheme, proposed by F. M. Gardner (1986). 

Although these alternative algorithms can approach ( )MCRB τ  without using DMFs, they 

are subject to some restrictions that require θ  to be known and a roll-off factor α  that 

should be small. 

6.2 Frequency offset estimation  

In this subsection, three practical carrier frequency estimation techniques are overviewed 

and compared with the popular MCRB. 

A. NDA loop algorithm 

The first algorithm is a non-data-aided carrier frequency estimation; a block diagram 

representing this algorithm is shown in figure 5. The received signal ( )r t  first passes 
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through the matched filter *( )G f  and the so-called “frequency-matched filter” *( ) /dG f df . 

Assuming that the timing is perfectly synchronized, the frequency error is described as 

 *Re{ }k k ke x y= . (63) 

Then, the frequency error passes through a loop filter and triggers the voltage-control 
oscillator (VCO) to compensate for the frequency offset. If the loop filter is implemented by 
a simple digital integrator, then the VCO output can be written as 

 ˆ ˆ( 1) ( )D D kf k f k eγ+ = +  (64) 

 

 

Fig. 5. NDA loop algorithm 

The next step is to evaluate the estimation noise performance. There are three assumptions  
i. The frequency errors are small as compared to the symbol rate. 

ii. The pulse shaping filter *( )G f  is a root-raised cosine function with a roll-off factor α .  
iii. There is perfect timing delay synchronization 

Under these assumptions, the frequency jitter is minimized, and the estimation variance of 

Df  is derived to be 

 2
2 2

0 0

4 1 1
1

/ /D

L
f

s s

B T

E N E NT

ασ
π

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
, (65) 

where LB  is the loop noise bandwidth and T  is the symbol duration.  

B. Differential decision-directed algorithm 

The second algorithm is a differential decision-directed (DDD) algorithm that is used on 
PSK signals; the block diagram for this algorithm is shown in figure 5. This algorithm is 
similar to the NDA algorothm except for the frequency error generator. The assumptions for 
this algorithm include the following: 
i. The frequency errors are small compared to the symbol rate. 

ii. *( )G f  is the same as was defined previously. 
iii. Timing is perfectly synchronized.  
Because we are discussing the M-PSK signal, we can denote our symbol by  
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 exp( )k kc jϕ= , (66) 

where 

 2 / ,   1,2...k n M n Mϕ π= = . (67) 

 

 

Fig. 6. Differential decision-directed (DDD) algorithm 

Then the phase difference between kx  and 1kx −  will be 

 ˆ( )k k D D kf f Tφ ϕ δΔ = Δ + − + , (68) 

where kϕΔ  is due to modulation, ˆ( )D Df f−  is caused by estimation error, and kδ  is the 
phase noise with other interferences, which can be modeled as an uniformly distributed 
random variable from π−  to π . When the difference between kx  and 1kx −  is correct, 
perfect ˆ

k kϕ ϕΔ = Δ is obtained. The most important component of this block diagram is the 
frequency error that is defined as 

 { }*
1 ˆIm exp( )k k kke x x j ϕ−= − Δ  (69) 

The performance of the estimator is then 

 2
2 2

0 0

1 1
2

/ /
L

LfD
s s

B T
B T

E N E NT
σ

π
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (70) 

Prior to the simulation, we assume that 35 10LB T −= ×  and the QPSK signals have a roll-off 
factor 0.5α = . The result is compared with the MCRB in figure 7. 
As shown in figure 7, these two algorithms yield much greater variance than the MCRB, 
which indicates that there is still room for improvement. 

C. Feed-forward NDA 

The third algorithm is the feed-forward NDA for M-PSK signal modulation; the block 
diagram for this algorithm is shown in figure 8. The F  function in the middle of the block 
diagram is a 4th-powered non-linear function. Similar to the previous analyses , the received 
phase can be separated into three parts: 
i. A step-wise increasing quantity 2 DMf kTπ due to the frequency error Df . 
ii. A constant initial phase. 
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iii. A phase noise caused by thermal noise and inter-symbol interference that is uniformly 
distributed from π−  to π .  

 

 

Fig. 7. Comparison of the variance of the two algorithms with that of the MCRB 

 

 

Fig. 8. Feed-forward NDA 

The estimation variance has been derived (Bellini, 1990) in a scenario with a very high SNR, 
the estimation variance can be approached as 
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 2
2 2 2

0

3 1

/2 ( -1)Df sE NT L L m
σ

π
≈  (71) 

 

The MCRB in this case is 
 

 
( )33

0

3 1
( )

/2
D

s

T
MCRB f

E NLTπ
=  (72) 

 

Thus, when 1L4  and 1m = ,the algorithm performance will attain the MCRB. However, 

this result is obtained under very high SNR. Further research is needed to design estimators 

that can approach or attain the estimation bounds with less restriction. 
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