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1. Introduction 

Computed Tomography (CT) scanners essentially consist of a rotating X-ray tube emitting a 

fan-beam of X-rays mounted on a gantry opposite a set of curvilinear detector rows. The X-

ray beam, collimated at source and prior to detection, rotates around the patient who lies on 

a table that passes through the gantry. The gantry may either move sequentially down the 

table (step and shoot) or the table and the gantry move together (helical scanning) thereby 

reducing scan times and improving temporal resolution. 

Early CT scanners, with only one detector and a pencil beam, took approximately 3 minutes 

to complete one 360o rotation around the patient. Fan shaped x-ray beams, increasing the 

number of detectors and the advent of slip-ring technology allow modern CT scanners to 

have speeds in excess of 330ms per rotation (with their absolute mechanical limit being 

between 50 and 200ms) and has allowed cardiac CT to flourish, and in particular allows 

motion free images of the coronary arteries to become a reality. (Kalender, 2000, as cited in 

Nicol & Padley, 2007a). 

The detectors sense and record the attenuation of the X-ray beam for any given point in the 

imaged slice. In Cardiac CT (CCT) images are obtained with slice thicknesses as thin as 

0.4mm. The X-ray attenuation is translated into a numerical value (Hounsfield Units (HU)). 

Multiple attenuation values are obtained from any given point during the rotation of the X-

ray tube. Filtered back projection is then automatically performed to achieve a final 

attenuation value. These values are converted and mapped to form a grey-scale image. 

Magnetic resonance uses a strong static magnetic field to effectively magnetise the protons 

in the body. Radiofrequency pulses are transmitted to excite the protons in the tissue being 

imaged and an echo signal is produced and recorded in the receiver coils and these are used 

to produce an image. Different types of pulse sequences can be used to take advantage of 

the different relaxation characteristics of the tissue to help generate image contrast.  

Typically a 1.5 tesla (T) MRI scanner is used for cardiac MR (CMR) and superior image 

quality is achieved by using higher numbers of receiver channels. 
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2. Technical aspects of CT and MR coronary angiography 

CT and MR coronary angiography (CTCA and MRCA) depend on three main factors – 
spatial resolution, temporal resolution and contrast resolution. 

2.1 Spatial resolution 
Spatial resolution is defined as the ability to distinguish two separate objects in close 
proximity (Fig. 1) (Smith, 1997).  
 

 

Fig. 1. Spatial resolution , expressed as line pairs/mm (lp/mm), is considered the point at 
which the individual strips cannot be readily distinguished by the eye. A line pair gauge 
such as this one is typically used to measure this. Reproduced with permission (Smith, 
1997).  

This is critically important in coronary artery imaging as coronary arteries have small 

luminal diameters, approximately 5mm at the ostia, tapering distally (or within the 

branches) to < 1mm. As CT and MR values for any given point is represented as a voxel (a 

three dimensional pixel), the smaller the voxel, the higher the spatial resolution.  Other 

factors that affect spatial resolution may be fixed or variable. Fixed (non-modifiable) factors 

include scanner capabilities and patient size whilst variable factors include heart rate and 

motion artefact that can, to large extent, be mitigated. 

2.1.1 Fixed factors 
Current CT scanners generate images with isotropic voxel sizes as small as 0.4mm3. 

Importantly, the detector thickness of the scanner determines the z-axis “in-plane” 

resolution which varies between manufacturers from 0.4 to 0.7mm (Nicol & Padley, 2007a). 

As a result of this limitation CTCA can currently only distinguish stenoses to within 30% 

accuracy, compared with 10% on invasive coronary angiography (ICA) with a spatial 

resolution of 0.1-0.2mm. The spatial resolution of MR is typically 1-1.5mm but high 

resolution black blood images may be as low as 0.6mm. 
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2.1.2 Variable factors 
In CT and MR the attenuation or signal values within each voxel are averaged out before 
being displayed on a grey scale image. Slice thickness is also modifiable; the thicker the 
slice, the greater the volume averaged and therefore the lower the spatial resolution. The 
trade-off with higher spatial resolution is increased noise. In both CCT and CMR spatial 
resolution can be improved by reducing the field-of-view, akin to zooming into an image. In 
CT coronary angiography, thin-cuts are obtained with the field of view reduced to just 
larger than the cardiac boundaries (Fig. 2). 
 

 

Fig. 2. The acquired scan is reconstructed to give a wide field-of-view (FOV) to include the 
lungs (a) and a smaller FOV to increase spatial resolution of cardiac structures (b). 

 

 

Fig. 3. Both cardiac and respiratory motion can lead to step artefact. These appear as 
horizontal lines on the sagittal dataset (panel a) and missing sections of the right coronary 
artery (blue arrowheads) on the volume rendered reconstruction (panel b). Respiratory 
rather than cardiac motion artefact can be distinguished by the involvement of the sternum 
(yellow arrowhead) in the former (panel a). (RV=Right Ventricle; Ao=Aorta; PA=Pulmonary 
Artery; LA=Left Atrium; SVC=Superior Vena Cava; LAD=Left Anterior Descending artery.)  
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Motion artefact impairs spatial resolution in both CCT and CMR. A well-prepared and co-
operative patient who is able to comply with the breathing instructions will reduce the 
chance of step artefact (in CCT) (Fig. 3) and blurring (in CMR) due to respiration or 
movement. Reducing the heart rate reduces cardiac motion by increasing the diastolic phase 
during which coronary arteries move least. Arrhythmias, especially if irregular, may make 
prospectively gated studies impossible. 

2.2 Temporal resolution 
Cardiac motion artefact can also be reduced by acquiring images faster. In CCT this is 
achieved by increasing the speed of rotation of the gantry and the pitch of the table. This is 
similar to selecting a faster shutter speed on a camera and enables fast-moving structures 
such as coronary arteries to be captured with minimal blurring.  Standard single source 
scanners with temporal resolution of 165 to 250 ms require heart rates to be <65bpm for 
optimal coronary image quality, and pharmacological rate control, usually with β-blockers, 
is ubiquitous. Dual source CT scanners have reduced the temporal resolution in CCT to 
75ms with each detector array requiring only a quarter scan of data. This has made 
acquisition of CTCA possible at almost any heart rate (Flohr et al., 2006); however image 
quality is still improved at lower heart rates. 
The temporal resolution of CMR is typically 50ms. It is preset by the technician and is not 
constrained by MR hardware as with CT. However, tachycardia does adversely affect image 
quality and lower heart rates are more desirable as the scan time is reduced and more k 
space is filled during each cardiac cycle (Kato et al., 2010). 

2.3 Contrast resolution 
Contrast resolution is the ability to distinguish between objects of different attenuation or 
signal when they are next to each other. In CT the coronary arterial wall and lumen have 
similar attenuation values and administration of intravenous contrast is therefore required. 
Adequate and well-timed opacification enables differentiation of the vessel wall from the 
lumen. Various components of atherosclerotic plaque also have different densities and are 
able to be characterised. This is an advantage of CTCA when compared with the pure 
lumenography of invasive catheter angiography. Coronary calcium can be readily identified 
on an unenhanced CT scan. However lipid-rich soft plaque, that is more prone to rupture 
and vessel remodelling are not visible without contrast administration (Fig. 4).  
In CMR, exogenous contrast agents are usually not required. In 2D black blood sequences, a 
dual inversion recovery prepulse is used to make the blood appear black with persisting 
signal within the walls of the coronary arteries, producing images with reasonable contrast. 
For bright blood sequences, prepulses make the blood appear bright with adjacent tissues 
including myocardium and fat appearing dark. The prepulses used include T2 preparation 
pulses and fat saturation techniques, pre-programmed into the CMR sequence. 

2.4 Patient preparation 
Patient preparation is probably the most vital part of ensuring diagnostically adequate 
studies in both CCT and CMR. The patient selection process should identify those who 
would benefit from CTCA or MRCA and those who would be suitable to have the scan. 
Attention should be paid to patient factors such as excessive body mass index, arrhythmias, 
potential inability to keep still or follow breathing instructions or claustrophobia. If present, 
alternative means of coronary assessment should be considered. 
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Fig. 4. Eccentric plaque (yellow arrows) can lead to positive remodelling (panel a) where the 
vessel expands to preserve lumen size, however continued plaque accumulation eventually 
leads to stenosis (panel b).  

All patients referred for CCT or CMR should receive a patient information leaflet outlining 
the process of their scan. Patients are usually told to take their usual medications, including 
cardio-active medications, and to avoid consuming caffeine for twelve hours prior to the 
scan. On arrival, baseline observations including a heart rate and blood pressure should be 
taken. Patients should complete a questionnaire about allergies, relevant medical conditions 
and medications.  
For CCT, contraindications to β-blockade and glyceryl trinitrate (GTN) are also ascertained. 
Intravenous access in the right antecubital fossa that allows rapid flow of contrast should be 
sited (18G or 20G cannula). The right side is used as it prevents high density contrast 
traversing the thorax and obscuring the cardiac structures through streak artefact (Nicol et 
al., 2008a). 
For both CT and CMR, ECG electrodes are placed in the appropriate positions on the 
patient’s chest to obtain a good amplitude R wave on the ECG trace. For CCT, where a low 
heart rate is critical, the heart rate is monitored and if just greater than 70 beats per minutes 
(bpm), breathing instructions alone may reduce the heart rate to < 65bpm. If the heart rate 
remains greater than 70bpm, negative chronotropic agents should be considered to reduce 
the heart rate.  
For CCT the commonest drug used to reduce the heart rate is metoprolol. It is cheap, has a 
short half-life and is available in oral and intravenous (IV) forms, both of which are equally 
efficacious. Ideally, patients should be rate controlled prior to attendance at the CT 
department; however, if the heart rate remains high, IV metoprolol can be given 
immediately before acquisition. Ivabridine (Procoralan) can be used as an alternative to β-
blockade in those with contra-indications. Sublingual GTN can be administered to promote 
vasodilatation of the coronary arteries and improve image quality but the patient should be 
warned about headaches as possible side effects (McParland et al., 2010). 

2.5 ECG gating 
Once the patient’s heart rate is optimised, the appropriate CCT or CMR gating protocol is 
selected for the acquisition.  
For CCT gating may be prospective or retrospective depending on the clinical scenario and 
information required.  Cardiac motion is usually least in diastole, usually between 60-80% of 
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the R-R interval (Fig. 5). However, in patients with heart rates greater than 70bpm, imaging 
the heart in end-systole (35% of the R-R interval) may be better (Hoffmann et al., 2005).  
 

 

Fig. 5. Sample gated ECG where the heart is scanned during 60-80% of the cardiac cycle 
(diastole). This is when cardiac motion is likely to be at its minimum.  

In order to minimise radiation dose, prospective gating (with variable temporal padding) 
is usually preferred if the heart rate is between 55 and 70bpm. However, if the heart rate 
cannot be optimised to less than 70bpm, or is irregular, a retrospectively gated study 
should be considered. Even with retrospective gating, newer scanning algorithms are able 
to limit the higher dose delivered to diastole (dose modulation). However, even with this, 
the retrospectively gated acquisition confers a higher radiation dose to the patient.  
However, as the heart is imaged throughout the whole cardiac cycle, additional 
information on cardiac output, ejection fraction and wall motion analysis can be obtained. 
With increasing experience, it may also be possible to perform diagnostically adequate 
prospectively gated studies in patients with certain arrhythmias as long as the heart rate 
variability is not too extreme. In CMR, prospectively triggered and gated scans are 
acquired. 

3. Acquiring CTCA and MRCA 

3.1 CTCA acquisition 
The CT coronary angiogram is acquired in several steps – topogram, coronary calcium score, 

test bolus and contrast enhanced coronary angiogram. 

3.1.1 Coronary calcium scoring 
The presence of calcium is a surrogate marker for atherosclerosis and an independent risk 
factor of future coronary risk. It is used as an adjunct to conventional risk stratification. To 
obtain a coronary calcium score, an un-enhanced scan is performed from the carina to just 
below the diaphragm. Good contrast resolution with CT enables quantification of the overall 
burden of disease. The usual scoring system is the Agatston calcium score (Agatston et al., 
1990). Software used in coronary calcium scoring automatically detects any structure 
>130HU. The aggregate score of all detected calcium which lies within the coronary arterial 
tree is used to calculate the overall coronary calcium score. 

3.1.2 Contrast administration (test bolus and CTCA) 
Intravenous contrast administration improves the contrast resolution of the coronary 
angiogram and is essential for lumenography. For CTCA a high iodine concentration (300-
370 mg/ml) is required for appropriate opacification. Usually the contrast injection is given 
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as a timed bolus followed by a saline push to concentrate the dye in the left heart and aorta. 
The minimisation of contrast within the right heart and SVC reduces the likelihood of streak 
artefact interfering with the interpretation of the proximal right coronary artery. 
The accuracy of the timing of the bolus may be improved by the use of a test bolus or bolus 
tracking to accurately determine the time taken to achieve peak concentration in the 
ascending aorta prior to full coronary assessment. 
The test-bolus method determines the time to peak concentration of a small bolus of contrast 
in the aortic root. This time plus an additional 3-5 seconds (to allow adequate coronary 
opacification) is then used for the CTCA acquisition. The test bolus allows the patient to be 
aware of the common side effects of flushing and hopefully negates the potential heart rate 
response during the full CTCA contrast administration. Bolus tracking is similar to the test 
bolus but the scan and contrast injections are activated simultaneously. Once the contrast 
opacification in the region of interest reaches a predetermined threshold (usually 100-
150HU), and following a preset delay (usually 5-8 second) to allow for breathing 
instructions or table movement, the full scan is started and the CTCA is acquired. Whilst the 
total radiation dose is slightly less, the timed bolus does not allow much room for error.  
Whilst newer contrast media have an improved allergenic profile, any cardiac CT imaging 
service must be equipped to handle any potential contrast reactions. Patients with contrast 
media allergy may still undergo an un-enhanced coronary calcium score so that some 
information about their coronary risk profile can be obtained.  

3.2 Post processing 
CTCA images are best viewed on dedicated post-processing workstations. The table below 
shows the commonly used post-processing display protocols highlighting their advantages 
and drawbacks (Table 1).  
 

 

Table 1. Comparison of commonly used post-processing display protocols. (Reproduced 
with permission from Nicol & Padley, 2007b). 
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Fig. 6. Axial raw data through the heart showing the right and left coronary ostia (yellow 
and blue arrows respectively).  

 

 

Fig. 7. Sagittal multiplanar reformat showing the closed aortic valve in profile (yellow 
arrow), open mitral valve (blue arrow) and right (blue arrowhead) and left (yellow 
arrowhead) coronary ostia. (LV=Left Ventricle; LA=Left Atrium;Ao=Aorta;dAo=descending 
Aorta).  
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Fig. 8. Two curved multiplanar reformat images of the right coronary artery. These are 
obtained by rotating the image about a centreline through the artery.  

 
 

 

Fig. 9. Sagittal maximum intensity projection of showing the right (blue arrowhead) and left 
(yellow arrowhead) coronary ostia. (RV=Right Ventricle; Ao=Aorta;dAo=descending Aorta; 
LA=Left Atrium; LVOT=Left Ventricular Outflow Tract). 
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Fig. 10. Volume rendered image demonstrating a left anterior oblique view of the heart. The 
right coronary (yellow arrow), left anterior descending (blue arrow) and left circumflex 
(yellow arrowheads) arteries are clearly seen. (Ao=Aorta).  

3.3 MRCA acquisition technique 
There are two major hurdles to overcome when performing MRCA; respiratory and cardiac 

motion. Two methods are used to acquire MRCA images. These are breath-hold and free-

breathing, coronary MRA. MRCA, as with CTCA, is further hampered by arrhythmias.  

Breath-hold MRCA attempts to suppress respiratory motion by acquiring images in periods 

of apnoea. This technique allows both two-dimensional (2D) sequential images and 

subsequent shorter 3D imaging with first pass intravenous contrast. However, image quality 

is often suboptimal due to limited patient co-operation secondary to fatigue or inability to 

follow instruction adequately. Additionally breath holding is frequently associated with 

cranial drift of the diaphragm (of up to 1cm) (Danias et al., 1998), further limiting the final 

resolution of the images. These limitations may result in registration errors with apparent 

gaps in the coronary arteries that may be misinterpreted as signal voids from stenoses. As a 

result of these limitations free breathing navigator sequences are now most commonly used 

for MRCA. 

Navigator sequences are used to correct for, and reduce the effects of, respiratory motion 

(Fig. 11). The position of the diaphragm is tracked and image data is only acquired at end 

expiration when respiratory motion is minimal or absent. Prospective ECG gating is used to 

correct for cardiac motion and data is only collected when coronary artery motion is known 

to be minimal. As with CTCA, this is usually mid-to-late diastole, however, at higher heart 

rates end-systole may be preferable. The disadvantages of this technique are that scan times 

are long with a full coronary dataset taking between 5 and 15 minutes to acquire (Sakuma et 

al., 2005, 2006). This is due to the fact that this technique is very inefficient with often less 

than 2% of the scan time being used to acquire data when there is neither coronary nor 

respiratory motion. The data acquisition is pre-programmed into the MRCA sequence, 
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Fig. 11. Coronal view of the MRCA sequence showing the right coronary artery 
(arrowheads) as it passes through the AV groove. The left main stem is seen in cross-section 
(arrow) as it passes underneath the right pulmonary artery (RPA). (RV=right ventricle; 
MPA=main pulmonary artery; LA=left atrium). 

although the user must define the time of least coronary motion at the time of acquisition. 
More recently 3D data acquisition during a single breath-hold using steady state free 
precession (SSFP) and parallel imaging has become possible (Deshpande et al., 2001) 
producing high resolution and high quality images with reduced scan times (Jahnke et al., 
2005). Parallel imaging (with under sampling in two rather than one phase encoding 
direction) further reduces scan time but requires large coil arrays (Nehrke et al., 2006; 
Niendorf et al., 2006).  
Newer self-navigated, free-breathing, whole heart MRCA techniques further improve image 
quality due to reduced respiratory and cardiac motion artifact. This technique uses a 
synchronous respiratory signal from the echoes acquired during imaging. The motion 
information is then retrospectively corrected, improving temporal resolution and producing 
stiller images (Stehning et al., 2005). 

4. Clinical application of CTCA and MRCA 

The significant technological improvements in CT imaging have brought CTCA into the 
forefront of coronary artery disease (CAD) assessment. With the improved temporal and 
spatial resolution, CTCA has become a viable alternative to invasive coronary angiography 
(ICA) in patients with low to intermediate likelihood of CAD (Schuijf et al., 2011). ICA 
however remains the most appropriate test in those with a high probability of severe CAD 
that may require intervention.  
More broadly CCT can also be used to assess plaque morphology, and depending on the 
protocol selected, be used to assess cardiac function (wall motion and ejection fraction), 
cardiac chamber volumes, myocardial perfusion and be used to image the pericardium, 
cardiac valves, and pulmonary veins (Nicol et al., 2009). CCT is increasingly used to 
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examine acquired structural or congenital heart disease (Nicol et al., 2007), aberrant 
coronary vasculature, coronary artery bypass grafts (CABG) (Niemen et al., 2003) and intra-
coronary stents (Gaspar et al., 2005). 
 

 

Fig. 12. Maximum intensity projection image from a navigator coronary MRA sequence 
demonstrating an aberrant circumflex artery (black arrowheads) arising from the right 
coronary artery passing between the aorta (Ao) and the right atrium (RA). Note also the 
resultant artefact (yellow arrowheads) due to cardiac motion. (LA=left atrium). 

MRCA is most commonly used to investigate patients with suspected anomalous coronary 
arteries (Fig. 12) and fistulae, and in children and young adults with suspected coronary 
artery aneurysms such as in patients with Kawasaki's disease. It can potentially be used to 
assess graft patency in CABG; however the presence of surgical clips may limit graft 
visualisation. In patients with poor renal function, MRCA can be used to assess the patency 
of proximal coronary arteries in patients undergoing major cardiac surgery, such as valve 
replacement, as no contrast agent is used. 

4.1 CT and MR coronary angiography 
Unlike ICA that provides a “lumenogram”, a good quality CTCA can demonstrate both the 
lumen and the wall. The real strength of CTCA is its negative predictive value (usually over 
99% cf. ICA), effectively ruling out coronary artery disease in those with a normal study 
(Budoff et al., 2008; Meijboom et al., 2008). The positive predictive value of CTCA is less 
favourable due its comparatively limited spatial resolution. The diagnostic accuracy of 
CTCA is further impaired by the presence of heavy coronary calcification, which may lead 
to the overestimation of stenoses. All coronary stenoses should be viewed from multiple 
angles and appropriate window settings to reduce “blooming” artefact from calcium. If 
contrast is seen passing alongside a calcified lesion in any plane, then the stenosis is unlikely 
to be more than 50% on ICA. CTCA is as effective in determining soft plaque burden as 
intravascular ultrasound (IVUS) (Leber et al., 2006). Clinically this is important due to the 
higher prevalence of soft plaque in those patients with acute coronary syndromes than those 
who have stable angina (Korosoglou et al., 2010; Motoyama et al., 2007). An algorithm for 
the investigation of symptomatic patients based on their pre-test probability is suggested 
(Fig. 13).  
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Fig. 13. Potential algorithm for sequential imaging of anatomy and function for diagnosis 
and management of coronary artery disease (CAD) based on pre-test probability in 
symptomatic patients. A low to intermediate pre-test probability favours initial evaluation 
of the presence or absence of obstructive stenosis, since the prevalence of obstructive CAD 
will be low. As a consequence only a few patients will have abnormalities that may require 
further testing and revascularisation. (LM = left main coronary artery; 3VD = triple vessel 
disease.) Adapted with permission from Schuijf JD et al., 2011).  

Like CTCA, MRCA is able to demonstrate both the lumen and vessel wall. However CMR 
studies routinely provide additional cardiac anatomy and functional information. 
Compared with CTCA the speed of acquisition and spatial resolution of MRCA has so far 
limited its use clinically. There are important technical differences between CTCA and 
MRCA; in CTCA the right coronary artery is often the most difficult vessel to image due to 
movement artifact, especially in prospectively acquired imaging, but in MRCA the left 
circumflex artery is relatively difficult to image due to its distance from the receiver coil and 
its proximity to the great cardiac vein (Danias et al., 1999). As with CTCA, multiple studies 
have assessed the accuracy of MRCA for the detection of significant CAD. In essence 
MRCA, like CTCA, has a high negative predictive value but variable specificity and positive 
predictive value (Danias et al., 2004; Kato et al., 2010; Kim et al., 2001; Schuetz et al., 2010). 
MRCA is particularly useful in left main coronary and three vessel disease assessment (Kato 
et al., 2010; Kim et al., 2001) (Fig. 14) but overall 1.5T CMRA is comparable with 16 MDCT 
when assessing the entire coronary tree (Kefer et al., 2005). 
Wall thickness and plaque characterisation are significant areas of research in both CTCA 
and MRCA as plaque rupture and myocardial infarction can occur in the absence of 
significant luminal narrowing. In MRCA, T1 weighted 2D and 3D black blood imaging can 
detect atherosclerotic plaque and determine wall thickness and thus positive remodelling 
(Fayad et al., 2000; Kim et al., 2002), whilst CTCA studies have demonstrated that the 
presence of positive remodelling and “spotty” plaque morphology (a predominantly soft 
plaque with some areas of calcification within it) are strongly associated with subsequent 
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Fig. 14. Maximum intensity projection image (a) from a navigator coronary MRA sequence 
demonstrating a normal calibre left anterior descending artery (arrowheads). The second 
image (b) shows non-occlusive, non-calcified plaque (arrow) in the mid left anterior 
descending artery (arrowheads) on this coronary MRA. (Ao=aorta; LV=left ventricle; 
PA=pulmonary artery). 

acute coronary syndrome (Motoyama et al., 2007). MRCA has been used to demonstrate 
positive remodelling in diabetic patients with nephropathy compared with those without 
(Kim et al., 2007) and recent evidence demonstrates that high signal on T1 weighted images 
seen in plaques in the walls of coronary arteries is associated with positive remodelling. This 
suggests MRCA may also be useful for investigating complex plaques non-invasively 
(Kawasaki et al., 2009). Late contrast enhancement of the coronary arterial wall in MRCA 
has been seen in areas of calcific plaque and significant stenotic lesions following recent 
infarcts (Yeon et al., 2007; Ibrahim et al., 2009) and it has been proposed that late contrast 
enhancement may be useful in visualisation of inflammatory activity in atherosclerosis 
associated with acute coronary syndrome. For early CAD assessment, recent studies have 
shown that MRCA can demonstrate endothelial loss of normal vasomotor tone prior to the 
development of any vascular remodelling (Hays et al., 2010).  

4.2 Coronary stent assessment 
Clinically all stents are susceptible to varying degrees of neo-intimal hyperplasia, in-stent re-
stenosis and complete occlusion. The metal in the stents make them easily visible on CT (Fig. 
15) however CTCA analysis of stents must be done cautiously due to “blooming” artefacts 
(Nicol & Padley, 2007b). Blooming is worse with bare metal stents than drug eluting stents 
but CTCA has been shown to be clinically reliable for stents >3mm in diameter and is 
clinically useful in the assessment of left main stem stents (Pugliese et al., 2008). Stents of 
smaller calibre are less easily assessed and caution is advised when attempting to determine 
the severity of stenoses. 

4.3 Coronary artery bypass graft assessment 
The inherent larger calibre of vessel grafts, relative immobility and lack of calcification, 
make them ideally suited to CTCA analysis (Fig. 16). Indeed, the sensitivity and specificity 
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of CTCA in graft patency analysis has been shown to be 95-100% and 94-100% respectively 
(Nieman et al., 2003). 
 

 
 

Fig. 15. Curved planar reformat of a metal stent extending from the left main stem (blue 
arrowhead) into left anterior descending (blue arrow) and left circumflex (yellow arrow) 
arteries.  

 

 
 

Fig. 16. Volume-rendered images demonstrating quadruple coronary artery bypass grafts. 
There are a vein graft to the right coronary artery (yellow arrow), two vein grafts supplying 
the acute marginal and lateral marginal branches of the LCx (blue arrows) and a left internal 
mammary artery graft supplying the left anterior descending artery (arrowheads). 

However, complete examination of grafts and their patency should include assessment of 

their run-off which may be limited with CT. Limitations of CTCA include blooming artefact 

from surgical clips which can particularly affect distal LIMA anastomosis assessment. CABG 

patients often have significant and heavy calcification, which can also cause blooming 

artefact on CTCA. MRCA can also be used to assess CABG but again surgical clips may 

hinder full assessment.  
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4.4 Functional information 
Whilst CMR remains the gold-standard for cardiac functional analysis, retrospectively gated 
CCT studies allow assessment of global and regional left ventricular function with good 
correlation with both CMR and transthoracic echocardiography (Nicol et al., 2008b). It is 
important to be aware of limitations of CCT however when assessing both global and 
regional wall motion abnormalities especially if not reconstructing 100% of the cardiac cycle. 
Whilst end-systole and end-diastole usually fall at around 35% and 65% respectively there is 
significant inter-patient variation and values from the analysis may not reflect that of CMR 
or echocardiography that routinely utilise the whole cardiac cycle. Importantly, when 
assessing functional CT data regional wall motion abnormalities in the absence of impaired 
systolic wall thickening should also be treated with caution as they may be artefactual 
(Nicol et al., 2008). 

5. Clinical application of CTCA and MRCA in congenital and structural heart 
disease assessment 

Both CCT and CMR are able to demonstrate complex anatomy in congenital cardiac disease. 
CMR remains the gold standard for adult congenital heart disease assessment but the 
increasing availability, speed of acquisition and superior spatial resolution of CCT makes it 
a viable alternative in many clinical situations (Nicol et al., 2007). CMR is generally 
contraindicated in patients with pacemaker and implanted defibrillator devices. 
Unlike CMR, that offers complete cardiothoracic visualisation, CCT is only able to 
demonstrate both the coronary anatomy and the pulmonary arterial trunk with extended 
injection protocols that increase right heart and pulmonary opacification in addition to the 
coronary anatomy (Nicol et al., 2009). CTCA is the gold standard for the full delineation of 
aberrant coronary anatomy, however MRCA is, in most patients, adequate for delineation of 
the clinically important coronary ostia and using dedicated sequences can also sometimes 
produce diagnostic images of the entire coronary tree. As a general rule, MRCA should be 
considered first line if radiation exposure is likely to be higher than acceptable, i.e. in 
children or young females, and MRCA should certainly be considered in those requiring 
regular follow up such as Kawasaki’s disease. 
Increasingly CCT is used for acquired structural heart disease and assessment of valve 
disease using planimetry and assessment of valve function on cine images acquired in 
retrospectively gated studies is gaining clinical acceptance (Chheda et al., 2010). It is 
important to remember however that CCT is unable to assess flow and is therefore inferior 
to both CMR and echocardiography for the assessment of valve gradients. 
Combined cardiac and non-cardiac angiography is now used in the assessment of trans-

catheter aortic valve implantation (TAVI). Assessment of the aortic root size, aortic 

pathology (plaque burden, calcification, vessel tortuosity), access routes (ilio-femoral and 

subclavian arteries), coronary arteries and valve calcification can all be assessed using CT 

angiography (Ewe et al., 2011) (Fig. 17). 

6. Future developments in CT and MR 

6.1 CCT imaging 
There have been significant advances in CT scanner technology over the last decade with 
the advent of increasing numbers of detectors (up to 320) allowing whole heart coverage 
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Fig. 17. Volume rendered images of the aorta obtained as part of the TAVI assessment 
protocol. The level of the aortic root (yellow arrow), right subclavian artery origin (blue 
arrowhead), right carotid artery (yellow arrow head) and left brachiocephalic artery (blue 
arrow) are shown in (a). The tortuosity of the iliofemoral arteries (yellow arrowheads) 
demonstrated in (b), will help with surgical planning.  

without table feed, and fast pitch dual source CT allowing a full cardiac acquisition in a 
fraction of a second with radiation doses routinely <1mSv for a CTCA. 
Future technological advances are likely to remain focused on rapid acquisition of cardiac 
data at low ionizing radiation doses. This may be achieved using a variety of techniques 
such as multi-source, multi-energy CT or inverse geometry CT. 

6.2 Multi-source, multi-energy CT 
By increasing the number of X-ray sources it may be possible to further reduce the temporal 
resolution by two-thirds with the addition of a third source (58ms) or three-quarters with a 
fourth (41ms), however the weight of each additional X-ray source may reduce the overall 
gantry rotation time negating any additional benefit. The use of air bearing systems may 
allow this but the ability to overcome the effects of high centrifugal forces remains a 
significant challenge. 
The major advantage of dual source CT (DSCT) technology is the ability to acquire a 
complete dataset using one-quarter of a gantry rotation time, thereby reducing the temporal 
resolution by half. The second advantage of dual headed CT is the ability to acquire the 
dataset at differing energies (Dual energy CT (DECT)). It is also possible to perform DECT 
on single headed scanners by rapidly alternating kV from a single tube. Either technique 
fundamentally alters the penetration of the X-ray beam and therefore the attenuation by 
tissues. By subtracting one dataset from the other it is possible to, for example to artificially 
“remove” calcium or contrast, potentially spelling the end for non-enhanced CT preceding 
contrast studies. It may also be used to assess myocardial densities at different energies, 
paving the way for potential tissue characterization in infarct or ischaemic myocardium. 
DECT subtraction techniques are currently limited to large calibre vessels such as the aorta 
as the resolution of the current generation of CT scanners is not yet sufficient to apply this to 
the coronary arteries. 
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6.3 Inverse Geometry CT (IGCT) 
IGCT is a novel system under investigation that employs a large array of X-ray sources 
opposite a smaller detector array (Fig. 18). It is anticipated to be able to image a thick 
volume in a single gantry rotation with isotropic resolution. The ability to image a volume is 
primarily determined by the size of the X-ray source array, in much the same way that it is 
determined by the size of the detector array in a conventional CT system. As well as 
demonstrating low wasted radiation (Mazin et al., 2007) (and therefore a much smaller 
radiation requirement), this technique also has the potential to maximise gantry rotation 
time further reducing spatial resolution. 
 

 

Fig. 18. Standard MDCT (a) requires an 18cm detector array when scanning a 10cm region of 
interest (due to cone beam) introducing artefacts at beam edges. Inverse Geometry CT 
(IGCT) (b) uses multiple x-ray sources and only requires a 10cm detector array for a 10cm 
region of interest, reducing detector size and weight, reducing cone beam artefact and 
producing greater signal to noise ratios for reduced radiation exposure.  

Future advances in material technology will also advance CT imaging with flat panel 
technology already under investigation. The use of strong light weight materials may also 
overcome some of the mechanical limitations that prevent faster gantry rotation times today 
and may improve spatial and temporal resolution to nearer that of interventional coronary 
angiography. 

6.4 3T CMR imaging 
At 3T, there is improved signal to noise ratio (SNR) as SNR is proportional to the field 
strength of the static magnetic field (Singerman et al., 1997). 3T results in better spatial and 
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temporal resolution and shorter scanning time. There is a doubling of SNR and a 4-fold 
reduction in scanning time using 3T parallel imaging and spatial harmonics compared with 
1.5T. Additionally, at higher field strengths the prolongation of the T1 values make spin 
labelling techniques more attractive. However triggering is more problematic at higher field 
strengths (3T and 7T) as the enhanced magneto-hydrodynamic effect produces an artifactual 
voltage that is overlaid on the T wave of the ECG. This can result in triggering off the T 
wave (rather than the R wave) making it difficult to reliably identify the time of least 
coronary motion. Using sophisticated R wave detection algorithms this problem can be 
overcome. 
MRCA at 3T has been performed (Stuber et al., 2002) however although the contrast to noise 
ratio is improved, there is no overall improvement in image quality or diagnostic accuracy 
(25). 3T MRCA has been shown to have high sensitivity and specificity for the detection of 
significant (>50%) coronary stenoses (Yang et al., 2009), possibly even being comparable to 
64 MDCT (Hamdan et al., 2011) when using contrast-enhanced methods that rely on double 
dose infusion of contrast media. This is required as gradient-echo sequences are used 
instead of SSFP sequences due to the need to overcome magnetic field inhomogeneity and 
radiofrequency energy deposition at high field strengths (Bi et al., 2007; Liu et al., 2008). It is 
hoped that the use of sophisticated shimming algorithms and adiabetic T2 preparations will 
further improve acquisition at 3T (Nezafat et al., 2006; Schär et al., 2004) in the future. 

7. Future application of CTCA and MRCA 

Both CCT and CMR continue to develop rapidly. The applications for CTCA continue to 
expand and with the development of myocardial perfusion and scar imaging the ability to 
look at the coronary lumen and vessel wall and gain functional information about both the 
blood flow and myocardial function will see this field continue to expand.  
The recent UK NICE guidelines include CTCA within their recommendations for patients 
with chest pain (NICE, 2010) and the ever growing demand for rapid exclusion or 
confirmation of coronary artery disease are likely to see CTCA become a far more 
ubiquitous tool used in almost all hospitals. 
As radiation doses continue to fall and as CTCA research produces outcome and cost 
effectiveness data, the role and utilisation of this rapidly evolving technology is likely to 
increase further. The combination of newer technology has raised the possibility of assessing 
flow; indeed venous and arterial phases of cerebral flow can already be imaged using CT 
and this opens up many possibilities for potential cardiac flow assessment in the future.  
In MRCA, the greater availability of more powerful magnets, increased number of receiver 
coils and more sophisticated algorithms, may reduce imaging time. MRCA may become 
routine in the early detection of coronary artery disease at the positive remodelling stage or 
even earlier. Plaques at risk of rupture may be identified early and intervention undertaken 
before myocardial damage occurs. 
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However the nuclear technique most frequently used by cardiologists is myocardial perfusion imaging (MPI).

The combination of a nuclear camera with CTA allows for the attainment of coronary anatomic, cardiac

function and MPI from one piece of equipment. PET/SPECT cameras can now assess perfusion, function, and

metabolism. Assessing cardiac viability is now fairly routine with these enhancements to cardiac imaging. This

issue is full of important information that every cardiologist needs to now.
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