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1. Introduction  

In this chapter, the dielectric and electromechanical properties of Ba(Zr0.2Ti0.8)O3 and BaTiO3 

ceramics prepared by spark plasma sintering (SPS) are reported. Those of ceramics prepared 
by conventional sintering are also reported for comparison with the SPS-prepared ceramics. 
The obtained information is helpful for possible application to the fabrication of lead-free 
piezoelectrics. 

1.1 BaTiO3 and Ba(Zr,Ti)O3  
Barium titanate has recently attracted attention due to the demand for lead-free 
piezoelectrics. Barium titanate ceramics prepared by microwave sintering (Takahashi et al., 
2006, 2008) or two-step sintering (Karaki et al., 2007) with fine grains approximately 1 μm in 
size show excellent piezoelectric properties. These high piezoelectric properties are 
considered to be due to the small grain size. It is well known that the suppression of grain 
growth results in low-density samples by conventional sintering. Therefore, spark plasma 
sintering (SPS) was applied in the present study. 
Zr-doped BaTiO3 (BZT) ceramics are interesting materials that exhibit linear field-induced 
strain for actuator applications. We have previously reported the microstructure and the 
dielectric and electromechanical properties of these materials in thin film form (Maiwa et al., 
2010); however, a characterization of the ceramic BZT with fine grains has not yet been 
carried out.    

1.2 Spark plasma sintering 
SPS is a process that uses electrical discharge between particles under pressure of several 
megapascals. SPS enables a compact powder to be sintered to a high density at a relatively 
low temperature and with a shorter sintering period.(Munir et al., 2006, 2011)  In addition, 
SPS has an advantage over conventional sintering in that it suppresses exaggerated grain 
growth. Thus far, SPS has been applied to fabricate various piezoelectric ceramics, the 
reported results indicate that SPS is a powerful technique and opens the possibility of 
processing ceramics with controlled sub-micron grain sizes.(Hungria et al., 2009)  Lead 
titanate (Kakegawa, 2004), NaNbO3 (Wada et al., 2003), and NaxK1-xNbO3 (Zhang, 2006) 
ceramics have been prepared by SPS. SPS has also applied to preprare BaTiO3 ceramics and 
exhibited high dielectric constant of 10000; however, electromechanical properties has not 
been reportred(Takeuchi et al., 1999).       
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2. Experimental 

2.1 Sample preparation 
The starting powder used were commercial Ba(Zr0.1Ti0.9)O3 and Ba(Zr0.2Ti0.8)O3 ceramic 
powder (Sakai Chemicals, Japan) and BaTiO3 ceramic powder (Toda Kogyo, Japan) . These 
powders were prepared by the hydrothermal method. The purities of the sample powder 
were more than 99%. In the case of conventional sintering, the powder was supplemented 
with 1% polyvinyl alcohol (PVA) binder, pressed in a die at a pressure of 80 MPa and 

sintered in air for 2 h from 1100 to 1450°C. In the case of SPS, no binder was added to avoid 
residual organics. Since the pellet is pressed during SPS, a binder is not required. For SPS, 
SPS-511S (SPS Syntex Inc., Japan) was used; raw powder was placed in a graphite die (10 
mm diameter), and sintering was carried out in air atmosphere at a pressure of 60 MPa. The 

temperature was increased to 900-1100°C within 11 minutes and maintained at that 
temperature for 5 minutes, after which the pressure was released and the sample was cooled 

to room temperature. Since the pellet as-sintered by SPS at 1100°C is black and conductive, 

the pellet was annealed at 900-1400°C for 12 h in air. 

2.2 Characterization 
The surface of the sintered ceramics was observed by scanning electron microscopy (SEM, 
Hitachi S-2100A). The sintered samples were polished and then produced electrodes using a 
silver paste. Measurements of the electric field-induced displacement and polarization in 
BZT ceramics were performed using displacement sensor (Mahr GmbH, Millimar Nr. 1301, 
Germany) and a charge-amplifier circuit (Kitamoto Electronics, POEL-101, Japan). An 
alternating electric field of 0.1 Hz was used in these measurements. Prior to the small-signal 
measurements, including resonant-antiresonant methods and d33 measurements with the d33 
meter, the ceramic specimens were polarized for 20 min in a silicone bath under a DC field 
of 20 kV/cm at room temperature. The resonant-antiresonant methods were carried out 
using an impedance analyzer (HP 4192A) for an additional 24 h after the polarization. The 
d33 meter (Chinese Academy of Science ZJ-3B, China) was used for the d33 measurements. 

3. Structure and properties 

3.1 Ba(Zr,Ti)O3 
Dielectric properties were evaluated in both Ba(Zr0.1Ti0.9)O3 and Ba(Zr0.2Ti0.8)O3 ceramic. 
Structure and electromechanical and piezielectric properties were evaluated mainly in 
Ba(Zr0.2Ti0.8)O3(BZT20) ceramic.  

3.1.1 Density and microstructure 
Ba(ZrxTi1-x)O3 (BZT, x=0.1, and 0.2) ceramics are prepared by SPS and conventional 
sintering. By application of SPS, the Ba(Zr,Ti)O3 ceramics with more than 96% relative 
densities could be obtained by the sintering at 1100˚C for 5 minutes in air atmosphere. The 
grain growth is suppressed in the ceramics prepared by SPS, the average grain sizes were 
less than 1micron. Carbon contents of SPS prepared BZT ceramics and the conventionally 
sintered BZT are 0.15% and 0.024%, respectively.(Maiwa, 2008b)  It should be noted that the 
SPS prepared BZT ceramics examined carbon content contained organic binder intentionally 
for comparison. Since the organic binder is not added to SPS prepared ceramics usually, 
carbon contents of the SPS prepared ceramics would be less than 0.15%.  
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The SPS-BZT20 ceramics prepared by SPS at 1100°C and then annealed at 1100°C, 1200°C, 

and 1300°C were 5.89, 5.87, and 5.83 g/cm3, respectively. These ceramics were almost fully 
sintered. SEM images of the BZT20 ceramics prepared by SPS and normal sintered are 

shown in Figs. 1 and 2, respectively. The SPS-BZT20 ceramics annealed at 1200°C were 

found to have very small grains less than 1 μm in diameter. In the SPS-BZT20 ceramics 

annealed at 1300°C, small grains less than 1 μm in diameter and relatively large grains 

several tens of microns in diameter coexisted. Since SPS provided rapid sintering at 1100°C 
within 5 minutes, grain growth was suppressed. As described later, grain growth is limited 

by normal sintering at 1300°C and lower, and the fine grains of as-SPS ceramics are taken 

over after a lower post-annealing temperature of 1200 and 1300°C. The grains of the SPS-

BZT20 ceramics annealed at 1400°C were all relatively large, more than several tens of 
microns in diameter. 
In conventional sintering, the relative density was found to increase and the grains grew 
with increases in the sintering temperature. The relative densities of the ceramics sintered at 

1300, 1350, 1400, and 1450°C were 4.67, 5.03, 5.68, and 5.77 g/cm3, respectively. These values 
were lower than those of the SPS-BZT20 ceramics. It should be noted that the normally 
sintered ceramics contained pores, as show in Fig. 2. The average grain sizes were 

approximately 1 μm for the samples annealed at 1300-1400°C, with the size increasing 

slightly with temperature. Grain growth occurred over the range from 1400-1450°C. 
 

 

Fig. 1. SEM images of the Ba(Zr0.2Ti0.8)O3 ceramics SPS-prepared at 1000°C and annealed at 
(a) 1200, (b)1300°C, and (d)1400 °C. 

 

 

Fig. 2. SEM images of the Ba(Zr0.2Ti0.8)O3 ceramics normally sintered at (a) 1300, (b) 1350, (c) 
1400, and (d)1450. 

3.1.2 Dielectric properties 
Figure 3 and 4 show the temperature dependence of the dielectric constant and loss tangent 
of the Ba(Zr0.1Ti0.9)O3 and Ba(Zr0.2Ti0.8)O3 ceramics in the temperature range of 30 - 150°C, 
respectively. The dielectric anomalies in these Ba(Zr0.1Ti0.9)O3 and Ba(Zr0.2Ti0.8)O3 ceramics 
occur at approximately 90 and 40°C, respectively. These coincide well with reported values. 

(a) (b) (c) (a) (b) (c)
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With increasing sintering temperature in normal sintering, the jumps accompanying the 
dielectric anomaly become clear. The temperature dependence of the SPS-prepared BZT 
ceramics is relatively mild, and the nominal value is higher than that of the sample sintered 
at relatively lower temperatures of 1200 and 1250°C. The mild temperature dependence of 
the SPS BZT ceramics is considered to be due to small grains. The relatively high dielectric 
constant is attributed to the high density. 

It was reported that by Takeuchi et al. BaTiO3 SPS-prepared at 1000°C and with grains less 

than 1 μm does not show a broadening transition but a sharp transition. (Takeuchi et al, 

1999)  Kinoshita et al. reported that fine-grained BaTiO3 ceramics with 1.1 μm grains exhibit 

sharp transition.(Kinoshita & Yamaji 1976)   In this study, the broad transitions are observed 

in Ba(Zr0.1Ti0.9)O3 ceramics with 0.56 μm grains and Ba(Zr0.2Ti0.8)O3 ceramics with 0.86 μm 

and 0.53 μm grains. At present, the reason for the difference in transition between pure 

BaTiO3 and zirconium-containing BaTiO3 system is not clear. It is considered that the relaxor 

nature of the zirconium-containing BaTiO3 system induces a broadening of the transition in 

ceramics with larger grains, than pure BaTiO3 ceramics. In the BaTiO3-BaZrO3 system, 

dielectric relaxation is induced by the addition of nonpolar BaZrO3, and disorder is 

considered to be expanded by separating a large number of small grains. The transition is 

further broadened in small-grained samples of SPS Ba(Zr0.2Ti0.8)O3, supporting the above 

speculations.  

There is another point to be compared with pure BaTiO3. It has been reported that the 

dielectric constant of pure BaTiO3 at room temperature has been determined for ceramics of 

approximately 1 μm grain size. In this study, no marked increase in dielectric constant at 

room temperature is observed in Ba(Zr0.1Ti0.9)O3 and Ba(Zr0.2Ti0.8)O3 ceramics. Compared 

with the conventionally sintered ceramics of the same grain size, the SPS-prepared 

Ba(Zr0.1Ti0.9)O3 and Ba(Zr0.2Ti0.8)O3 ceramics exhibit relatively larger dielectric constants at 

room temperature; however, this is mainly due to the increase in their densities. 

The dielectric properties of the SPS-prepared ceramics are understood to be dependent on 

the enlargement of the small grains of the ceramics sintered at low temperature, as shown in 

Fig. 1. It is reasonable to say that no marked increase in the dielectric properties of the 

materials occurs in the SPS-prepared samples; however, the elimination of pores plays a 

major role in increasing dielectric constant. It is difficult to discuss the effect of density on 

dielectric constant quantitatively. Conductivity affects dielectric constant through 

capacitance; however, is difficult to take conductance into account in the calculation of 

dielectric constant. Moreover, the formularization of pore distribution is difficult. By 

assuming a model of a series of capacitors consisting of air and dielectrics materials, the 

thicknesses ratio of air to the dielectrics of 1/1000, and a dielectric constant of 5000 in the 

dielectrics, the measured dielectric constant becomes 17% of the pure dielectrics. Although 

this model is too simple; however, it shows that the elimination of pores enhances the 

dielectric constant, and it can roughly explain the high dielectric constant of the dense 

ceramics prepared by SPS in the entire throughout measured temperature range. In other 

words, the dielectric constants of the small-grained Ba(Zr0.1Ti0.9)O3 and Ba(Zr0.2Ti0.8)O3 

ceramics are weakly temperature-dependent basically. The low dielectric constants of the 

small-grained ceramics normally sintered are due to the low density. While, SPS-prepared 

ceramics are dense and composed of small grains, their dielectric constant is high and 

weakly temperature-dependent.  
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Fig. 3. Temperature dependences of (a) dielectric constant, (b) dielectric constant 
(expanded), of Ba(Zr0.1Ti0.9)O3 ceramics. 
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Fig. 4. Temperature dependence of (a) dielectric constant, (b) dielectric constant (expanded), 
of Ba(Zr0.2Ti0.8)O3 ceramics. 
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loss tangent, generally less than 2%. An increase in loss tangent accompanying dielectric 

anomaly is more clearly seen in the Ba(Zr0.2Ti0.8)O3 ceramics, probably due to the greater 

diffusivity of the transition.  
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3.1.3 Electromechanical properties 
The Strain/Field in the SPS Ba(Zr0.1Ti0.9)O3 and Ba(Zr0.2Ti0.8)O3 are 76pm/V under 
24.5kV/cm and 252pm/V under 13.9kV/cm, respectively.  Figures 5 and 6 show the field-
induced strain of SPS-BZT20 ceramics annealed at 1200 and 1300°C and the BZT20 ceramics 
normally sintered at 1300 - 1450 °C, respectively. The SPS-BZT20 ceramics annealed at 
1200°C exhibited a strain loop with less shrinkage and lower displacement. Since the strain 
hysteresis behavior accompanying shrinkage is derived from ferroelectric domain 
switching, ferroelectric domain activities are suppressed, probably due to the residual stress 
or small grains, or both. The SPS-BZT20 annealed at 1300°C exhibited a strain loop with 
large shrinkage and larger displacement. The SPS-BZT annealed at 1400°C was too leaky to 
measure the dynamic strain loop under application of a DC field of 10kV/cm and higher. 
In the case of normal sintering, the BZT20 ceramics sintered at 1350°C exhibited the highest 

strain among the samples measured. The sample sintered at 1300°C exhibited smaller strain 

due to the small grains, low density, or both. The samples sintered at 1400 and 1450°C 

exhibited smaller displacement than that sintered at 1350°C. The grain sizes of these samples 

were considered to be larger than appropriate for this material. The strain loops became 

more hysteretic with increasing sintering temperature. In the case of pure BaTiO3, the 

ceramics with a grain size of 0.61-0.74 μm exhibited the largest field-induced strain, and the 

ceramics with smaller and larger grains exhibited lower strain. The results obtained here for 

BZT followed the grain size dependencies seen in pure BaTiO3. 

The unipolar field-induced strains of these samples were also measured. The general 

tendencies were the same as those observed with the bipolar strain loops. The dynamic 

strain/field at 20 kV/cm of SPS-BZT annealed at 1300°C and the BZT20 ceramics normally 

sintered at 1350 °C were 290 and 280 pm/V, respectively. These two values are comparable; 

however, the SPS-BZT20 yielded a more linear strain curve compared with the sample 

normally sintered at 1350°C. This difference can be shown clearly in the dependence of 

electric field on dynamic d33, which is calculated from the strain/field. The results are 

shown in Fig. 7. Considering the relatively low dielectric constant of 1204, the reason for the 

linear strain of SPS-BZT20 is considered to be due to the suppressed polarization 

rotation.(Maiwa 2008a) The lower hysteretic strain with good linearity for the SPS-BZT20 

ceramics is unique and might be desirable for actuator applications that require analogue 

operations. 

3.1.4 Static piezoelectric properties 
The clear resonances were observed only for the SPS-BZT annealed at 1300°C and the BZT20 

ceramics normally sintered at 1400 °C, as shown in Fig. 6. The piezoelectric properties 
calculated by the resonance method are included in Table 1. In the case of the SPS-BT, the 
Qm and kp values are 44-62 and 16.2-17.5, respectively,  which are smaller than the Qm and 
kp values of 325 and 25.1 (%) for the SPS-BZT20 annealed at 1300°C. The reason for this 
difference is not clear, but the unique microstructure composed of submicron and coarse 
grains might play a role in producing the reasonably high Qm and kp values. These 
ceramics exhibit a small loss tangent, generally less than 2%. 
The d33 values measured with the d33 meter are shown in Fig. 7. This measurement method 
is more sensitive than dynamic measurement. The low values are derived from the 
insufficient polarization due to the grains being too small or high conductivity of the 
samples. The d33 values for the SPS-BZT20 annealed 1300°C and the BZT20 ceramics 
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normally sintered at 1400 °C are of 126 and 138pC/N, respectively. Yu et al. have reported 
d33 values of 130pC/N measured in Ba(Zr0.08Ti0.92)O3 ceramics by resonance-antiresonance 
measurements (Yu et al., 2002), and the values obtained in this study are reasonable in 
comparison with the values. 
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Fig. 5. Field-induced strain of the Ba(Zr0.2Ti0.8)O3 ceramics SPS-prepared at 1100°C and then 
annealed at (a)1200 and (b)1300°C. 
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Fig. 6. Field-induced strain of the Ba(Zr0.2Ti0.8)O3 ceramics normally sintered at (a)1300, 
(b)1350, (c)1400, and (d)1450 °C. 
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Fig. 7. Field dependence of the dynamic d33 calculated from the unipolar field-induced 
strain of the Ba(Zr0.2Ti0.8)O3 ceramics SPS-prepared at 1100°C(SPS) and then annealed at 
1300°C and normally sintered at 1400°C(Normal). 
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Fig. 8. Resonance-antiresonance measurement of the Ba(Zr0.2Ti0.8)O3 ceramics SPS-prepared 
at 1100°C and then annealed at 1300°C(SPS) and normally sintered at 1400°C(Normal). 

 

Sample Qm  kp (%)  Dielectric 
constant  

d31(10-12C/N) 

SPS1300 312 25 1204 43 

Normal 1400 119 21 7869 91 

Table 1. Piezoelectric properties of the Ba(Zr0.2Ti0.8)O3 ceramics SPS-prepared at 1100°C and 

then annealed at 1300°CθSPS1300χand normally sintered at 1400°C(Normal 1400). 
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Fig. 9. The d33 values measured by d33 meter. 

3.2 BaTiO3 
Density, dielectric and preliminary electromechanical properties were evaluated in the 

BaTiO3 creramics SPS-prearred at 900°C. Electromechanical and piezielectric properties 

were evaluated mainly in the BaTiO3 creramics SPS-prearred at 950°C.  

3.2.1 Density and microstructure 
The as-sintered pellet prepared by SPS at 900-1100 °C was black and conductive. Although 
SPS was carried out in air atmosphere, the samples were deoxidized by heating the carbon 

die. By post-annealing at 900-1200 °C for 12 h in air, the pellet was oxidized and became 
white and insulating. These features are similar to those of the Ba(Zr,Ti)O3. The relative 

densities of the BT ceramics prepared by SPS at 900-1100 °C were 5.84-5.97 g/cm3. These 
ceramics are almost fully sintered. Compared with Ba(Zr0.2Ti0.8)O3 ceramics, the BT ceramics 
can be sintered at lower temperatures. This is due to the smaller particle size or the nature of 
the pure BT. In conventional sintering, the relative densities of the samples increase with 
sintering temperature, as shown in Fig. 10. SEM images of the BT ceramics prepared by 
conventional sintering and by SPS are shown in Figs. 11 and 12, respectively. The average 
grain sizes of samples of these ceramics are shown in Fig. 13. It is noted that grain growth is 
promoted by high-temperature annealing and suppressed by SPS. The average grain sizes of 

the BT ceramics prepared by SPS at 900-1200 °C, which increase with annealing 

temperature, are below 1 μm. These values are almost equivalent to those of ceramics of the 
same composition conventionally sintered at 1100-1200 °C. Figures 14 and 15 show the X-ray 
diffraction patterns of the BT ceramics prepared by normal sintering and by SPS, 
respectively. The diffraction peaks of the starting powder are broad and no splits due to the 
distortion from cubic structure are observed. The cubic structure of fine BT powder has been 
frequently reported. The peaks of the as-SPS ceramics, the ceramics prepared by SPS 
without annealing, are broad and shifted to a lower angle. The lattice elongation is caused 
by deoxidization. The X-ray diffraction patterns of the ceramics conventionally sintered at 
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1100 °C and the ceramics prepared by SPS at 900 °C and then annealed at 900-1100 °C were 
different in terms of the normal splitting peaks, with 1:2 intensity ratio of tetragonal (002) 

and (200) observed in the ceramics conventionally sintered at 1200 and 1300 °C. This is due 

to the structural change derived from the stress in the small grain below 1 μm. 
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Fig. 10. Relative densities of BaTiO3 samples. 

 

 

Fig. 11. SEM images of the BaTiO3 ceramics normally sintered at (a) 1100, (b) 1200, (c) 1300, 
and (d) 1400 °C. 

 

 

Fig. 12. SEM images of the BaTiO3 ceramics SPS-prepared at 900 °C and then sintered at (a) 
900, (b)1000, (c) 1100, and (d)1200 °C. 
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Fig. 13. Average grain sizes of BaTiO3 samples. 
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Fig. 14. X-ray diffraction patterns of starting powder and the BaTiO3 ceramics 
conventionally sintered at 1100, 1200, and 1300 °C. 
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Fig. 15. X-ray diffraction patterns of starting powder and the BaTiO3 ceramics SPS-prepared 
at 900°C and then sintered at (a) 900, (b)1000, (c) 1100 and (d)1200 °C. 

3.2.2 Dielectric properties 
Figure 16 shows the dielectric constant of the BT ceramics at room temperature. Figure 17 
shows the temperature dependence of the dielectric constant of the BT ceramics prepared by 
normal sintering and by SPS in the temperature range of 30-150 °C. The dielectric constants 
at room temperature of the BT ceramics prepared by SPS and then annealed at 1000 and 

1100 ˚C, whose grains are 0.61-0.74 μm in size, are highest among the samples prepared in 
this study. This result agrees well with the reported values. It was reported by Takeuchi et 

al. that BT ceramics SPS-prepared at 1000 °C with grains of less than 1 μm size, showed a 
dielectric constant of 10000. (Takeuchi et al., 1999)  Kinoshita and Yamaji reported that the 

fine-grained BT ceramics with 1.1 μm grains exhibited a high dielectric constant of 
approximately 5000.(Kinoshita & Yamaji, 1976)  Arlt et al. reported that the fine-grained BT 

ceramics with 0.7 μm grains exhibited a high dielectric constant of approximately 5000 at 
room temperature.(Arlt et al., 1985) 
The transition temperature is another point to be compared with previous reports on pure 
BT. The dielectric anomalies in the BT ceramics occur at approximately 120 °C. In this study, 
a lowering dielectric anomaly with annealing temperature was observed, as shown in Fig. 

17. Kinoshita and Yamaji reported that the fine-grained BaTiO3 ceramics with 1.1 μm grains 
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exhibited a negligible shift compared with the ceramics with 53 μm grains.(Kinoshita & 

Yamaji, 1976)  Takeuchi et al. reported that the BT ceramics SPS-prepared at 1000 °C and 

with grains of less than 1 μm size showed a shift in the Curie temperature.(Takeuchi et al., 
1999)  It has been reported that the Curie temperature of the pure BT ceramics with fine 
grains shifts to a lower temperature. (Line & Glass, 1977) (Xu et al., 1989)  The decrease in 
the Curie temperature is due to the effects of the fine grains. 
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Fig. 16. Dielectric constant of the conventionally sintered BaTiO3 ceramics. 
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Fig. 17. Temperature dependence of dielectric constant of the BaTiO3 ceramics SPS-prepared 
at 900°C and then sintered at (a) 900, (b)1000, (c) 1100 and (d)1200 °C. 
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3.2.3 Electroimechanical properties 

The field-induced displacement of the BT ceramics prepared by SPS at 900 °C were 
measured. The bipolar field-induced strain loops of the BT ceramics prepared by SPS and 

then annealed at 900-1200 °C are shown in Fig. 18. With increasing annealing temperature, 
the strain loops became slim. This is due to the ease of the domain motion in larger grains. A 
larger displacement of the BT ceramics prepared by SPS was observed in the samples 
annealed at 1000 and 1100 ˚C, which have larger dielectric constants than the samples 
annealed at 900 and 1200 ˚C. The unipolar field-induced strain loops and calculated 
dynamic d33 of the BT ceramics prepared by SPS and then annealed at 1000 and 1100 ˚C are 
meaured.(Maiwa 2008a)  The strain/field values at 15 kV/cm of the BT ceramics prepared 
by SPS and then annealed at 1000 and 1100 ˚C are 540 and 530 pm/V, respectively. These 
values are comparable to the reported high remanent d33 values of the BaTiO3 ceramics 
prepared by microwave sintering or two-step sintering. 
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Fig. 18. Field-induced displacement of the BaTiO3 ceramics SPS-prepared at 900 °C and then 
sintered at (a) 900, (b)1000, (c) 1100 and (d)1200 °C. 

The bipolar polarization and field-induced strain loops of the SPS-BT, conventionally 
sintered, and two-step-sintered BT ceramics are shown in Figs.19-21, respectively. Note that 
the SPS-BT ceramics exhibit relatively thin polarization loops. Large hysteretic strain loops 

(a) (b) 

(c) 
(d) 
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are obtained in the ceramics sintered at a high temperature of 1400 ˚C. The large hysteresis is 
due to the effects of polarization rotation in larger grains. The unipolar strain and derived 
dynamic d33 values of these BT ceramics are measured.(Maiwa, 2009) SPS-BT ceramics 
exhibit relatively large strains regardless of their fine grains. Compared with the fine-
grained BT ceramics fabricated by other methods, such as the BT ceramics conventionally 
sintered at 1300 °C and the BT ceramics two-step-sintered at 1300 °C, the SPS-BT ceramics 
exhibit high d31. The field-induced strain loops of the SPS-BT ceramics are linear; this 
corresponds to the flat dynamic d33 behavior under high field. Large hysteretic strain loops 
and high calculated d33 values are observed in the ceramics sintered at high temperature. 
The calculated d33 values of these samples decrease markedly under high field. These 
phenomena can be explained as follows. The samples exhibit large induced strains due to 
polarization rotation under low field, and the induced strains decrease together with the 
completion of polarization rotation. In the case of the SPS-BT ceramics, the observed linear 
strain behavior is considered to be due to the suppressed polarization rotation and 
electrostrictive strain reflected by the high dielectric constant, or both mechanisms. 
 
 

 
 
 

Fig. 19. Polarizations and field-induced strains of the BT ceramics SPS-prepared at 950 °C 
and then annealed at (a)1000 and (b)1200 °C. 
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Fig. 20. Polarizations and field-induced strains of the BT ceramics conventionally sintered at 
(a) 1300 and (b) 1400 °C. 

3.1.4 Static piezoelectric properties 
The piezoelectric properties calculated by resonance methods are included in Table 2. The 
SPS-BT ceramics are characterized by high d31 and low Qm. Compared with the fine-grained 
BT ceramics fabricated by other methods, the SPS-BT ceramics exhibit high d31. Relatively 
high d31 values correspond to large field-induced strains. Here, I discuss the origin of the 
large difference between d31 obtained by the resonance methods and d33 calculated from the 
slope of the dynamic-field-induced strain measurement. The major differences of these 
measurements lie in the driving frequency and field amplitude. The frequencies and electric 
field amplitudes in the resonance methods and the dynamic measurement are 200-300 kHz 
and 14-15 V/cm, and 0.1 Hz and 20-30 kV/cm, respectively. 
A slow and high-field dynamic measurement detects the displacement including 
polarization rotation that requires large energy. A rapid and low-field resonance method 
eliminates the displacement due to polarization rotation. The dynamic d33 values calculated 
from the linear part of the slope under a high field of more than 20 kV/cm are 200-350 
pm/V generally. These values roughly correspond to twice the d31 value calculated by the 
resonance method, indicating that the explanations above are reasonable. Qm is related to 
the internal stress. The low Qm of the SPS-BT ceramics suggests the presence of  high   
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Fig. 21. Polarizations and field-induced strains of the BT ceramics two-step-sintered at  
(a) 1300 and (b) 1400 °C. 
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constant 
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(10-12 C/N) 

Loss  
tangent 

Np 
(Hz·m) 

SPS1000 5.98 0.7  62 16.8 5444 66 0.02 2753 

SPS1100 6.00 1.3 44 17.5 5491 73 0.024 2653 

SPS1200 5.95 2.5 51 16.2 3406 51 0.039 2743 

Normal1300 5.87 3.6 169 14 3356 44 0.014 2796 

Normal1400 5.78 26 936 38.7 2333 99 0.0068 2942 

two-step1300 5.15 1.2 216 8.9 3850 39 0.015 2408 

two-step1350 5.55 3.1 243 17.1 3360 56 0.013 2806 

two-step1400 5.82 7.5 530 38 2236 87 0.0075 2978 

Table 2. Piezoelectric properties of the BaTiO3 ceramics. 
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internal stress in the SPS-BT samples. By considering the distorted X-ray diffraction peaks 
and decrease in transition temperature, it is speculated that the high internal stress still 
remains in the SPS-BT ceramics even after 12 h postannealing. Regardless of the fabrication 
methods, the kp of the fine-grained BT ceramics is low generally. This is probably due to the 
insufficient poling treatment of the fine-grained samples. 

4. Conclusion 

By application of SPS, dense Ba(Zr,Ti)O3 and BaTiO3 ceramics with fine grains can be 
obtained. The properties are quite unique, which cannot be easily obtained by other 
methods. And this method offers applicability to other dielectric and piezoelectric materials 
and may yields unique properties similar with the ones observed in BaTiO3 based ceramics. 
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