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1. Introduction 

Diabetes mellitus, the metabolic disorder is rapidly on the rise, becoming one of the main 

threats to human health and imposing large socio-economic burden on the society in the 

21st century (Dall et al.; 2010). International Diabetes Federation in 2011 estimated that over 

300 million people around the world have diabetes and is expected to rise to 500 million 

within next 20 years. The global prevalence of diabetes is shifting significantly from the 

developed countries to the developing countries. Current therapy for diabetes involves oral 

antidiabetic drugs and insulin administration; these approaches do not mimic the pulsatile 

insulin secretory patterns of native β islets for the regulation of glucose in real-time nor 

provide tight control of blood glucose to avoid late complications of the disease. Whole 

pancreas transplantation holds promise towards a cure for diabetes, but this procedure 

requires major surgery and lifelong immunosuppression to prevent graft rejection. 

Transplantation of islet cells isolated from a donor pancreas has been shown to control 

glucose levels successfully. Being less invasive, it is a better alternative to pancreas 

transplantation yet scarcity of donors, maintenance of islet functions such as cell growth and 

survival in vitro, and concern over the adverse effect of life long immunosuppressants used 

to prevent graft rejection precludes the benefits of islet transplantation from becoming 

universally acceptable. 

One approach to overcome these obstacles of immune rejection is islet encapsulation (Kizilel 

et al., 2005; Mikos et al; 1994) that uses an immuno-protective biomaterial to create a 

permselective membrane around a group of islet cells. Transplanted islet cells are separated 

from the immunological system of host by means of an artificial selectively permeable 

membrane which allows passage of metabolites and nutrients, while excluding based on 

size, the larger proteins and cells of the immune system. Thus, encapsulation is designed to 

limit, and ideally eliminate, an immunological response to the non-host islet cells. Isolation 

of the islet cells from the human immune system may also make xeno-transplants such as 

porcine islets, stem cells derived insulin producing cells possible, eliminating the supply 

problem that exists and the usage of immune suppressive drugs.  

Current research is directed towards exploration of alternative sources of pancreatic islet 
cells. Pancreatic  β- cell lines, embryonic stem cells (ESC), adult progenitor cells (APC), and 
regenerating native islet cells, generation of β cells by therapeutic cloning and 
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differentiation of islets from pancreatic duct cells as well as stem cells are being explored for 
their potential to serve as β-cell sources. Large numbers of cells can be generated from β cell 
lines, although their unrestricted proliferation is also a serious concern in the context of 
cellular therapies. Unlike stem and progenitor cells, β islet cells have limited ability to 
multiply under normal conditions, although investigations into factors that stimulate β-cell 
regeneration have yielded promising results. Therapeutic molecules capable of increasing β-
cell mass in vivo may eliminate the need for invasive surgical procedures. However, the 
extent of adult β cell regenerative capacity is unclear. Ex-vivo expansion of islets is 
indispensable prior to transplantation regardless of the source of islets.  Monolayer culture 
of islets fail to maintain the three dimensional shape and integrity of islets resulting in 
consequent apoptosis and necrosis. In vitro culturing of pancreatic islets result in the loss of 
extracellular matrix (ECM), basement membrane and introduction of free radicals in 
isolation procedure, that cause islet cells to loose their three dimensional (3D) structure, 
function and ultimately undergo apoptosis (Parakevas et al., 1997). These problems could be 
alleviated by using tissue engineering principles and culturing pancreatic islets in 3 
dimensional (3D) scaffold which can help in maintaining cell-cell, and cell-matrix 
interactions.  

2. Islet transplantation 

Islet cell transplantation is an effectual treatment for improving glycemic condition in 
diabetic patients thereby reducing the late complications of disease (Shapiro, 2003). The 
procedure involves isolating islets from a deceased organ donor, purifying, processing and 
infusing them into diabetic patients.  
In the early 1970’s, Dr. Clyde Barker at the University of Pennsylvania and the late Paul 
Lacy at the Washington University in St. Louis were the pioneers in exploring the concept of 
islet transplantation as a means to cure diabetes. In 1972, Ballinger and Lacy reported 
amelioration of diabetes in islet recipient rats (Ballinger & Lacy, 1972). In 1973, Reckard and 
Barker were the first to show that islet transplantation could completely and permanently 
restore normoglycemia in rodent models of chemically induced diabetes (Reckard & Barker, 
1973). 
Human islets isolation procedure is more complex than rodent islets isolation (Gray et al., 
1984). Ricordi’s automated isolation method had given hope for the production of abundant 
islets for the clinical use (Ricordi et al., 1989). Scharp et al. performed the islets 
transplantation under immunosuppression in diabetes patients and patients were insulin 
independent at the period of 22 days (Scharp et al., 1990). This was followed by several 
other cases, but success rates continued to be low (International Islet Transplant Registry). In 
1999, Bretzel  et al reported a markedly improved 3-month islet graft function rate of at least 
75% in 24 consecutive patients (Bretzel et al., 1999). In the 1-year follow-up of 37 patients, 
24% had achieved insulin independence (Bretzel et al., 2000). Between 1999 and 2005 about 
650 patients were treated worldwide (Bretzel et al., 2007).Unfortunately, long-term results 
did not prove that promising. 
The first successful islet allograft was reported in 1990 with steroid free immunosuppressant 
tacrolimus (Tzakis et al., 1990). The success rate of islet transplantation became outstanding 
after the Edmonton trial in 2000, which described successful intraportal alloislet 
transplantation, defined as insulin independence, in 7 consecutive patients with hyperlabile 
diabetes and frequent episodes of hypoglycemia (Shapiro et al., 2000). The success was 
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partly ascribed to the usage of a steroid free immunosuppressive regimen which was a new 
combination of immunosuppressive drugs, consisting of sirolimus, tacrolimus and 
daclizumab, excluding the diabetogenic glucocorticoids and large numbers of donor islets 
(Shapiro et al., 2006). 
The short-term results of islet transplantation with Edmonton trial were promising, with 

insulin independence in approximately 80% of patients  at 1 year post-transplant but the 

proportion of insulin independent recipients declined after the first year post-transplant. 

Five year follow-up study after transplantation revealed that only 10% of the patients 

remained insulin independent (Ryan et al., 2005; Shapiro et al., 2006). The suggested reasons 

attributing for this decline include alloimmune rejection, autoimmune recurrence, and/or 

toxicity of immunosuppressive medications (Monti et al., 2008). However, about 80% were 

still C-peptide positive, indicating functioning grafts. Now, a slightly modified Edmonton 

protocol is used worldwide with reproducible results (Shapiro AM et al., 2006).   

Though islet transplantation research has made significant progress, concern over toxicity as 

well as cost of immunosuppressive therapy still remains.  Insulin independence and long 

term graft survival were achieved for more than three years through a modified 

immunosuppressive protocol (Bellin et al., 2008) even so the requirement of multiple donors 

to obtain 10000 islet equivalents per kilogram of patient’s weight remains unsolved. 

Although insulin independence remains the ultimate goal, today, stabilization of glucose 

levels and avoidance of hypoglycemia are considered to be the main indications for islet 

transplantation. 

3. Alternate sources of pancreatic β cells  

The scarcity of donor pancreas for islet transplantation is a major obstacle to the widespread 

use of islet transplantation which urged the focus towards alternate sources of β cells for 

future transplants. Several alternative means have been suggested which include use of 

xenogenic islets and immortalized beta cell lines (Narushima et al., 2005). Recent advances 

in the field of stem cell differentiation and regeneration therapy have focused on new ways 

to generate insulin-producing beta cells that can be used for transplantation. Several 

candidate cells have been identified including embryonic stem cells (ESC) and adult stem 

cells or progenitor cells residing in the pancreas or other organs. The differentiated beta cells 

have shown to regenerate by replication, which opens the possibility to generate novel beta 

cells in vitro and / or in vivo from pre-existing beta cells. Additionally, there are reports that 

show the successful use of liver cells, endocrine cells from the gut, and bone marrow 

derived stem cells as source to generate islets by cell transdifferentiation.  

3.1 Xenogenic islets 

In a xenogenic approach, islets from different species are used for transplantation purpose. 

Porcine islets serve as a potential source in view of the fact that porcine insulin differ from 

human insulin by 1 amino acid. Neonatal porcine islets were also induced to mature 

endocrine phenotype under in vitro and in vivo conditions (Korbutt et al., 1997). Xenogenic 

tissues induce more vigorous rejection than that of allogenic tissue; hence 

immunosuppressant dosage should be high enough to prevent graft rejection. Alternately, 

the cells of xeno origin can be immunoisolated by encapsulation technology to separate the 

transplanted cells from host immune system which will be discussed later in this review. 
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Risks associated with transfer of endogenous virus from porcine cells to human genome 

(Patience et al., 1997; Van der Laan et al., 2000) and the public concerns regarding the use of 

animal organs for transplantation are major factors impeding the success of this approach in 

clinical applications. 

3.2 Stem cells to treat diabetes 

Stem cells are non specialized cells which have the ability to self regenerate and differentiate 
into specialized cell types depending on the niche or external signaling cues  (Smith, 2006). 
Stem cells offer a limitless supply source for islets as well reduces the graft rejection 
problems (Street et al., 2004). Ideally stem cells used for cell based therapy should meet the 
following criteria (Gimble, 2003) : It should be available in abundant quantities (millions to 
billions of cells), harvest procedure should be less invasive, have multilineage 
differentiation potential and could be efficiently transplanted to the host.  

3.2.1 Embryonic Stem Cells (ESC) 

Embryonic stem cells which are derived from the inner cell mass of pre-implantation 
blastocysts have gained the attention of researchers due to its pluripotent nature. Human 
embryonic stem cells (hES) hold promise for research and clinical applications. hES have 
some unique abilities as compared to all sources of adult cells: 1) the expansion of ESC in the 
undifferentiated state is nearly unlimited; and 2) ESC can give rise to all cell types including 
pancreatic insulin-producing beta cells. Attempts of directed differentiation of hES to 
cardiomyocytes (Klug et al., 1996), and neurons (Li et al., 1998) have been reported. Many 
studies have reported the differentiation of mouse and human embryonic stem cells to islet 
like clusters (Segev et al., 2004; Vaca et al., 2006) either by modifying the culture conditions 
or by genetic manipulation.  Lineage tracing experiments revealed that beta cells are derived 
from the embryonic endoderm followed by a sequential and transient activation of specific 
transcription factors like Pdx1, NeuroD / Beta 2, Isl1, Nkx6.1, Nkx2.2, MafA, Pax4, and 
Pax6.  Most published protocols aim to mimic these differentiation factors for the stepwise 
development of the endo and exocrine pancreas during the embryonic phase. In one 
approach ESC were induced to generate embryoid bodies under in vitro culture and the 
nestin positive cells were selected to differentiate towards β cell lineage by culturing in 
serum free conditions (Lumelsky et al., 2001). Manipulation of the culture conditions with 
various growth supplements like insulin, transferrin, selenium and fibronectin (ITSFn), 
B27,bFGF and nicotinamide resulted in regulated secretion of insulin. Phosphoinositide 
kinase inhibitors have been reported to promote the differentiation of larger numbers of 
ESC towards functional β cells (Hori et al., 2002). Genetic approach involves the 
incorporation of a reporter selector gene whose expression controlled by an insulin 
promoter. Here mouse embryonic stem cells were cultured in manipulated culture 
conditions to develop into embryoid bodies which were then differentiated to insulin 
producing cells. Insulin containing population which exhibited in vitro regulated hormone 
secretion was selected for transplantation into diabetic mice. Genetically engineered insulin 
producing cells maintained glucose homeostasis in vivo in mouse models but 40% of animals 
reversed to hyperglycemic condition after 12 weeks (Soria et al., 2000). ESC culture under 
serum-free conditions or only low-level fetal calf serum together with stage specific 
differentiation factors results in temporal expression of pancreatic lineage genes. The final 
differentiated cells do express insulin secretory granules / C peptide in about 2 – 8 % of the 
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total cell population and secrete insulin / C-peptide after glucose challenge (D’Amour et al., 
2006; Baharvand et al., 2006; Jiang et al., 2007). Feeder free conditions were developed for the 
differentiation of embryonic stem cells to insulin like clusters which allowed single species 
propagation of ESC thus avoiding possible zoonotic infection of cells evident by the increased 
expression of Pdx 1 and reduced expression of Oct-3/4 (Assady et al., 2001). The activation of 
Pax-4 and Pdx 1 gene expression in embryonic stem cells upregulated the genes involved in 
the differentiation towards pancreatic endocrine lineage. Pax-4 expression led to an increase in 
nestin positive cells and insulin producing beta cells but not glucagon producing alpha cells 
(Moritoh et al., 2003). The development pathway for induction of ESC to insulin producing 
cells involves series of events which include generation of endoderm lineage cells followed by 
precursors of pancreatic endocrine lineage cells, and finally the insulin-secreting cells. 
D’Amour et al., developed a five stage protocol for differentiation of hES to pancreatic 
endocrine hormone expressing cells through a series of endodermal intermediates resembling 
those that occur during pancreatic development in vivo (D’Amour et al., 2006). Controversial 
findings also have been reported regarding the differentiation of ESC to pancreatic beta cells.  
Insulin immunoreactivity was demonstrated to occur as the consequence of insulin uptake 

from medium (Rajagopal, J., 2003). Few authors proved that nestin positive cells tend to 

differentiate towards neuronal lineage rather than pancreatic lineage (Sipione et al., 2004). 

Kania  et al explained the cause for the controversial results in generation of pancreatic cells. 

It was suggested that insulin producing cells derived from embryonic stem cells without 

applying lineage selection is dependent on the differentiation factors and protocols (Kania et 

al., 2004).  

Though hES are versatile cells, ethical concerns on the use of human hES, and chances of 

teratoma formation (Fujikawa et al., 2005) limits their usage. Direct transplantation of 

embryonic stem cells has reported to culminate in teratoma formation (Nussbaum et al., 

2007) from contaminating undifferentiated ESCs. Safe transplantation of hES could be 

attempted by viral vector mediated transfection in vitro, yet the risks associated with 

cytomegalovirus promoters in transfection cannot be ruled out.  

3.2.2 Adult Stem Cells 

The potential use of adult stem cells offers the advantage of an autologous model whereby a 

patient’s own cells can be used, thereby circumventing immune rejection. Adult stem cells 

(ASC) are multipotent cells capable of self renewal. They have been reported to be present in 

almost every tissue like bone marrow, blood, heart, liver, pancreas, adipose tissue and could 

be transplanted directly without genetic modification or pre-treatments. They exhibit high 

degree of genomic stability during culture conditions. ASC lack tissue specific 

characteristics but it could be differentiated to specialized cell types under the influence of 

appropriate signaling cues (Barry & Murphy, 2004). The stem cell microenvironment plays 

an important role in its differentiation to committed cells (Galli et al., 2000; Zhao et al., 2002). 

The potential of adult human stem cells from various sources to differentiate to insulin 

producing cells have been explored by various research groups. The relative ease of 

isolating adult stem cells and their expansion makes it an ideal source for cell based therapy. 

3.2.2.1 Pancreatic stem cells 

Pancreatic progenitor/stem cells which are closely related with beta cell lineage represent 

an attractive source for generation of beta cells (Serup et al., 2001). Human pancreatic ductal 
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cells and islet stem cells have been expanded and differentiated to islet like clusters capable 

of producing insulin in vitro which were capable of reversing of diabetes in non obese 

diabetic mice thus normalizing blood glucose levels for more than 3 months (Ramiya et al., 

2000). Nestin positive cell derived islet cell clusters expressed pancreatic endocrine markers 

like Glut2, glucagon, and homeodomain transcription factor PDX-1 as well as pancreatic 

exocrine genes (Zulewski et al., 2001). Glucagon like peptide -1, an intestinal hormone was 

shown to stimulate the neogenesis of beta cells by inducing the expression of various 

transcription factors involved in beta cell development (Abraham et al., 2002).  Exocrine 

pancreatic tissue (Baeyens et al., 2005) and neurogenin 3 positive cells (Gu et al., 2002) could 

also serve as alternative source for beta cells.  Even though pancreatic cells seem to be the 

better source than embryonic stem cells, the fraction of precursor cells isolated from 

pancreas is very less and heterogenous. Furthermore the harvest procedure from pancreas is 

also invasive thus limiting this source being applicable in clinical purposes. 

3.2.2.2 Bone marrow stem cells (BMSC) 

Bone marrow stem cells were induced to differentiate to mature endocrine pancreatic 
lineage in vitro (Y. Sun et al., 2007). The in vitro differentiation of human bone marrow stem 
cells (hBMSC) to endocrine pancreatic cell types were investigated by genetic manipulation 
using adenovirus coding for mouse transcription factors involved in the early phase of 
endocrine developmental pathway (Karnielli et al., 2007). The results suggested that bone 
marrow stem cells shifted towards pancreatic endocrine phenotype with expression of 
insulin and other transcription factors involved in β cell development. Enhanced green 
fluorescent protein (GFP) system based genetic approach was utilized to study the 
differentiation of BMSC to islet like cells. BMSC from transgenic (GFP) male mice were 
transplanted into sublethally irradiated female mice. After 4 weeks 1.7-3% bone marrow 
derived GFP positive cells were found only in the pancreatic islets which ruled out the in 
vivo occurrence of cell fusion. The results indicated that bone marrow derived cells activated 
insulin gene expression after entering pancreatic islet niche (Ianus et al., 2003). However 
controversial finding was also reported suggesting that bone marrow derived stem cells 
cannot differentiate to beta cells without the influence of differentiation factors (Lechner et 
al., 2004) and favorable microenvironment (Moriscot et al., 2005).  Recently Phadnis et al 
evaluated the fate of transplanted epithelialised human bone marrow stem cells under the 
kidney capsule of pancreatomized NOD/SCID mice (Phadnis et al., 2011).The results 
suggested that regenerating pancreas secreted paracrine factors and provided the niche 
which induced the differentiation of hBMSC to mature islet like aggregates capable of 
secreting insulin.  

3.2.2.3 Adipose stem cells 

Human subcutaneous adipose tissue, abundant and easily accessible serves as a potential 

source of adult mesenchymal stem cells. The harvest procedure by lipoaspiration / 

liposuction is less invasive. Adipose stem cells have been reported to exhibit an increased in 

vitro proliferative potential than bone marrow stromal cells (De Ugarte et al., 2003). Adipose 

stem cells release cytokines TGF-β and IL-10 which are responsible for its 

immunomodulatory properties (Puissant et al., 2005). The immunosuppressive property of 

adipose stem cell has been exploited for the treatment of severe graft versus host disease 

(Yanez et al., 2006). The differentiation potential of these cells to pancreatic endocrine cells 

have been investigated by several research groups. Human adipose stem cells induced to 
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islet like cells in serum free differentiation medium for 3 days exhibited an upregulation of 

pancreatic developmental transcription factors like Isl-1, Ngn3 along with islet hormones 

such as insulin, glucagon and somatostatin (Timper et al., 2006).  A novel protocol using 

taurine designed for islet differentiation generated 47-51% C- peptide positive cells when 

compared to reports where the yield was only 2-8% (Jiang et al., 2007).  

3.2.2.4 Progenitor cells and stem cells from other tissues 

The mechanisms involved in the generation of new beta cells in postnatal life remains 
controversial. Lineage tracing experiments suggest that after partial pancreatectomy, the 
majority of novel beta cells derive from pre-existing beta cells by beta cell proliferation 
rather than stem cell differentiation (Dor et al., 2004; Georgia and Bhushan, 2004). These 
findings raise new hope that it may be possible to use beta cells as source for the in vitro cell 
expansion in cell therapy. For example, it has been shown that human beta cells can 
transiently dedifferentiate to fibroblast-like cells, which can proliferate and redifferentiate 
into insulin-positive cells (Gershengorn et al., 2004; Lechner et al., 2005). However, direct 
evidence that this process can be used to produce fully mature beta cells for transplantation 
is missing, thus far.  
It is important to note that the above mentioned experiments do not exclude the existence of 
pancreatic stem cells. There is convincing evidence that under specific experimental 
conditions adult stem cells, which reside in the pancreatic ducts, within islets, or exocrine 
tissue, can develop into beta cells. Bonner-Weir and colleagues as well as other groups 
provide evidence in several studies that murine and human stem cells or progenitor cells 
reside in the epithelium of the small pancreatic ducts, expressing the marker cytokeratin-19 
(CK19). The ductal cells can expand and give rise to novel beta cells after 90% 
pancreatectomy or treatment with streptozotocin (Bonner-Weir et al., 1993; Wang et al., 
1995; Bonner-Weir S et al., 2003; Gao et al., 2003). This suggests that still unknown cellular or 
soluble factors are needed to induce terminal differentiation into the endocrine fate. The 
identification of these critical factors is one focus of current research. 
Amnion epithelial cells (Hou et al., 2008; Kadam et al., 2010a), and stem cells from liver 
(Yang et al., 2002), wharton’s jelly of umbilical cord (Chao et al., 2008), umbilical cord blood 
(Phuc et al., 2010), placenta (Kadam et al., 2010b), gall bladder (Sahu et al., 2009) etc were 
also differentiated to insulin producing cells. In every case the differentiated islets expressed 
islet specific proteins and were capable of secreting insulin in response to glucose 
stimulation, albeit less than native islets. A better understanding of the events that control 
stem cell commitment and the signaling pathways for differentiation to pancreatic lineage is 
required to improve the culture conditions for in vitro generation of islet like clusters. 

4. Tissue engineering based strategies 

Tissue engineering applies the principles of cell transplantation, material science, and 
engineering towards the development of biologic substitutes that can restore and maintain 
normal function. The success of tissue engineering relies on the development of a suitable 
scaffold, cell source and defined culture conditions. Tissue engineering strategies employed 
for islet transplantation could be categorized into use of scaffolds for simulation of the 
native ECM and immunoisolation via encapsulation of islets.  
The biomaterial chosen to synthesize the scaffold should be biocompatible and 
biodegradable (Mohan & Nair, 2005). The scaffold should reproduce an extracellular 
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environment for supporting cell function (Dufour et al., 2005). Neither the scaffold nor its 
degradation products should be toxic to host. Biocompatibility of chosen biomaterial plays 
an important role in controlling the rate of protein adsorption and fibrosis.  The scaffold 
should provide three dimensional space for neotisssue formation and the mechanical 
strength should match the native tissue to withstand in vivo forces. It should be highly 
porous and pores should have interconnectivity to facilitate tissue ingrowth, diffusion of 
nutrients, oxygen and metabolites (Blomeier et al., 2006). Scaffolds should provide an initial 
support for the islet grafts during the early post transplant period, enabling the 
development of a capillary bed and recovery of extracellular matrix interactions (Stock & 
Vacanti, 2009). Polymers such as polylactic acid, polyglycolic acid, polylactide-co- 
polyglycolide (PLGA) (Mao et al., 2009), polyvinyl alcohol – polycaprolactone (Mohan et al., 
2010) were  extensively used for scaffold fabrication purpose for the tissue engineering of 
various tissues.  

4.1 Extracellular matrix - Mimicking nature 

A major limitation with two dimensional cultures is the lack of microenvironment 
indispensable for appropriate spatial organization and function of cells which in turn is 
provided by extracellular matrix (ECM) in native tissue. The ECM of native islets is mainly 
constituted by type IV collagen, laminin although fibronectin, collagen I, collagen V also 
have been detected (Stendahl et al., 2009). The effect of ECM proteins on adhesion and 
proliferation of rat islets have been studied. The results indicated that there were strong 
interactions between islets and ECM proteins via integrins (Chen et al., 2008). ECM protein 
coated scaffolds have shown improved graft efficacy at implanted site (Salvay et al., 2008). 
Earlier reports of islets cultured under two dimensional conditions exhibited low survival 

rate and reduced insulin secretion (Paraskevas et al., 1997). Progress in survivability of  

islets and increased insulin secretion has been achieved by adopting 3D culture conditions. 

Polyglycolic acid scaffolds coated with lysine were shown to promote islet cell adhesion and 

survival. The control cells grown in 2D culture underwent apoptosis by day 7 due to 

accumulation of metabolites and shortage of nutrients (Chun et al., 2008).  

Pancreatic islets cultured on agarose cryogel sponge (Bloch et al., 2005) were reported to 

secrete 15 fold higher insulin at 3mM glucose than islets cultured on polystyrene cell culture 

dish but failed to respond to stimulation at 16.7mM glucose. The failure was due to limited 

oxygen and nutrient diffusion across agarose cryogels. Adequate oxygen is a critical 

parameter to islet cell function and survival (Sweet et al., 2002). The decreased insulin 

response of pancreatic islets cultured on scaffold for prolonged period due to inefficient 

oxygen transfer were also reported (Cui et al., 2001). 

A novel 3D culture system comprising a semi-interpenetrating polymer network of gelatin 

and polyvinyl pyrrolidone was designed in our laboratory for pancreatic islets and stem 

cells to promote  their survival and function. The porous nature of the scaffold facilitated 

efficient nutrient and metabolite exchange. Islets seeded on this scaffold maintained their 

morphology for more than 30 days whereas control islets cultured on cell culture dish 

underwent apoptosis by 7th day. The test islets secreted insulin on stimulation with glucose 

which was comparable to that of freshly isolated mouse islets (Muthyala et al.,2010). 

Zhao et al demonstrated the use of three dimensional self assembling peptide nanofiber 

hydrogel scaffold for islet culture. The peptides formed two beta sheet structures with 

hydrophilic and hydrophobic surfaces in aqueous solution. The hydrophobic moiety 
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facilitated its self assembly in water and the nanofiber structures were flexible for  

fabrication to different geometrical shapes that allowed for efficient nutrient and metabolite 

transfer.  The nanofiber scaffold simulated the microenvironment in vitro as in native 

condition which accounted for improved islet viability and function (Zhao et al., 2010).   

4.2 Immunoisolation strategies for islet transplantation 

The principle behind immunoisolation is protection of islets from host immune system 
using a selectively permeable membrane as a barrier. Low molecular weight substances 
which include nutrients, oxygen, secretory molecules and cell signaling molecules freely 
diffuse through the membrane, but passage of immune cells and its products which have 
high molecular weight is prevented. Immunoisolation mechanism encourages the use of 
allogenic/ xenogenic sources of islets for transplantation and holds promise towards use of 
autologous stem cell derived islets in type I diabetic patients. Immunoisolation mechanism 
includes macroencapsulation and microencapsulation (Narang & Mahato, 2006) of cells. 

4.2.1 Microencapsulation 

Microencapsulation is the encapsulation of single islets or small groups of islets. These 
capsules are usually spherical in shape (Chang, 1964). Microcapsules offer the advantage of 
increased oxygen and nutrient transport due to the large surface area to volume ratio. 
Microcapsules are advantageous due to several reasons like greater surface to volume ratio, 
and ease of implantation. The spherical shapes owe to better diffusion capacity and are 
mechanically stable. The primary drawback of microencapsulation is the difficulty in 
removing the implants if necessary. Moreover the implantation could be achieved by simple 
injection procedure (De Vos et al., 2002).  Porcine islets microencapsulated in alginate-
polylysine-alginate transplanted to diabetic monkeys could achieve normoglycemia without 
immunosuppression for more than 800 days (Y. Sun et al., 1996). Human and rat islets 
encapsulated in alginate gels when transplanted in mice survived for 7 months (Schneider et 
al., 2005). Xenogenic islets immobilized in microcapsules fabricated from alginate –PLL 
when implanted into peritoneum of non immunosuppressed diabetic rats remained in 
excellent condition for more than 40 weeks (Lanza et al., 1999). Despite of these advantages 
some authors have reported reduced functionality of microencapsulated islets in response to 
glucose challenge (Sandler et al., 1997). 

4.2.2 Macroencapsulation 

Macroencapsules contain a large mass of islet cells within a diffusion chamber, which are 
usually formed from spun coat membranes or spun drawn hollow fibers. The advantages of 
macrocapsules are they could be easily retrieved when required and can be shaped in 
required geometries such as tubes or discs. Two approaches such as intravascular and 
extravascular have been tried out in macroencapsulation. Intravascular approach utilizes the 
principle of perfusion chambers which consists of microporous tubular structures perfused 
with blood and enclosed within another tube. Islets were seeded in the space between the 
hollow fibers and the device is anastomised to the host vasculature (Chick et al, 1975). 
Polyacrylonitrile and polyvinylchloride copolymers have been chosen as materials for 
creating artificial microcapillaries. Results from implantation of intravascular macrocapsules 
of islets have shown restoration of normoglycemia in various animal models (AM. Sun et al., 
1977). Due to the direct contact of device with the blood, intense anticoagulation is required 
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to prevent thrombus formation, consequently the material chosen should be highly blood 
compatible and thromboresistant. These concerns have shifted the attention towards 
extravascular devices. 
Extravascular devices are based on the principle of diffusion chambers which does not 

require anastomosis to host vasculature. The geometry could be planar in the form of flat or 

hollow fiber model (Scharp et al., 1984). This approach does not pose severe 

biocompatibility issues and risks to the patient as that of intravascular devices. 

Extravascular devices can be implanted to different sites such as peritoneal cavity (Lanza et 

al., 1999), subcutaneously or under kidney capsules (Siebers et al., 1990) with minimal 

surgical risks. Most commonly used biomaterials for macrocapsule fabrication are 

nitrocellulose acetate, 2-hydroxyethyl methacrylate (HEMA), acrylonitrile, polyacrylonitrile 

and polyvinylchloride copolymer, and alginate.  
The biocompatibility of immunoisolation membrane depends on several factors like 
geometry of the device, implantation site and material chosen. Hollow fiber geometry is 
preferred because of its reduced surface area of contact with the host per islet and reduced 
foreign body response. Higher density of islet cells often results in reduced viability and 
necrosis at the center due to nutrient limitation. Smooth outer surface and hydrogels have 
been reported to improve the biocompatibility by the absence of interfacial tension, thus 
reducing protein adsorption, cell adhesion and fibrosis (Burczak et al., 1996). Nair et al 
studied the effect of degree of hydrophilicity on tissue response of polyurethane 
interpenetrating networks (IPN) (Nair et al., 1992).The results indicated that an increase in 
hydrophilicity of polyurethane –polyvinyl pyrrolidone IPN’s elicited an inert tissue 
response.  
George et al., (2002), Nair (2009, Indian Patent 230740) demonstrated the use of non porous 

polyurethane membranes and porous polyurethane IPN macrocapsules as islet 

immunoisolative matrices. Islet cell morphology remained intact and insulin secretion 

ability was also retained within the immunoislation membranes. Membranes allowed 

diffusion of glucose and insulin while retained transplant rejection factors like antibodies, 

immunoglobulins and immune cells. Reduced protein adsorption and cell adhesion on 

polyurethane membranes contributed to improve the biocompatibility which made them 

ideal for immunoisolation. The IPN macrocapsules also served as an in vivo bioreactor cum 

immunoisolation device permitting immature islet like clusters derived from a variety of 

stem cell sources to mature completely and control glycemic levels of streptozotocin 

induced diabetic animal models without immunosuppression for periods upto 3 months. 

(Kadam, 2010a; Phadnis, 2011;  Muthyala, 2011;; Kadam, 2010 b).Hybrid systems involving 

macro and microencapsulation have also been fabricated and analyzed for its efficiency in 

immunoisolation. Chitosan/gelatin hydrogel system was used as an immunoisolative 

matrix to protect the microencapsulated islet cells from recipient’s immune system in 

xenotransplantation. Mouse insulinoma /agarose microspheres macroencapsulated in 

chitosan/gelatin hydrogel reversed diabetes in rats. The study suggests that this could be 

applied as a cell carrier for injectable bioartificial pancreas after certain modifications (Yang 

et al., 2008).  

4.3 Combined approach of tissue engineering and immunoisolation 

Muthyala et al (2011) employed a combination approach utilising the properties of scaffold 
to mimic the native ECM and macroencapsulation for immunoisolation to protect the islets 
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from immune cell responses. Pancreatic progenitor derived islets were seeded on gelatin-
polyvinylpyrrolidone scaffolds and further macroencapsulated in a polyurethane–
polyvinylpyrrolidone semi IPN macrocapsule. The construct when implanted into 
peritoneal cavity of diabetic rats normalized glycemic condition all through the study period 
of 3 months. Animals implanted with tissue engineered islets without macroencapsulation 
showed no reversal of hyperglycemia and died within 15-20 days due to infiltration of host 
immune cells. Hence the combination approach was found to be very effective in achieving 
euglycemia by maintaining islet survival and functionality as well as protecting the cells 
from host immune attack. 

5. Site for transplantation  

The optimal site should be chosen for transplanting islets inorder to meet its high energy 
requirement and metabolic rate (Hardy et al., 2010). The implantation site has effect on 
hypoxic conditions which determines islet survival. Safety considerations have been raised 
regarding the optimal site for transplantation so as to improve islet engraftment and 
survival (Dufrane et al., 2006; Pillegi et al., 2001). Graft vascularization is an important 
criterion in islet survival and function (Jansson & Carlsson, 2002). Although 
immunoisolation prevents the integration of host blood vessels with transplanted islets 
effective diffusion of nutrients and oxygen can occur within 200μm distances hence highly 
vascularised sites should be chosen for transplantation. Islet transplantation into 
prevascularized sites dramatically improves graft survival and function relative to 
transplantation into non-modified tissue (Balamurugan et al., 2003). Vascularization can be 
introduced in graft by incorporation of angiogenic growth factors like VEGF (Stendahl et al., 
2008) or endothelial cells (Miki et al., 2006). Insulin independence have been achieved by 
intra-portal islet transplantation in diabetic patients (Shapiro et al., 2005), however liver 
could not be considered as an optimal site since islets in liver will be exposed to high 
nutrient concentration and other factors that are toxic and may result in impairment of  beta 
cells(Hiller et al., 1991; Wilson & Chaikof, 2008). Peritoneal cavity has also been tried for 
implantation of islets which requires 200%-400% more islets (Siebers et al., 1993). 
Subcutaneous site (Pillegi et al., 2006) have been chosen in diabetic athymic mice for  
transplantation of islets cultured on plasma –fibroblast gel scaffold (Perez-Basterrechea et 
al., 2009). Normoglycemia was achieved over 60 day period and vascularization was 
observed in and around islets. Kidney subcapsular spaces have also been chosen as 
implantation site to improve biocompatibility of tissue engineered constructs. Islets cultured 
on biodegradable polymer scaffold transplanted to omental pouch of diabetic dogs resulted 
in achievement of euglycemia upto 152 days till graft was taken out (Kin et al., 2008). 

6. Conclusions 

Curative therapy for diabetes mellitus mainly implies replacement of functional insulin-
producing pancreatic cells, with pancreas or islet-cell transplants. Shortage of donor organs 
spurs research into alternative means of generating cells from islet expansion, encapsulated 
islet xenografts, human islet cell-lines, and stem cells. Embryonic and adult stem cells are 
potential sources for cell replacement and merit further scientific investigation. The expense 
of the benefit of cell transplantation is the need for immunosuppressive treatment of the 
recipient, with all its potential risks. Biocompatible macrocapsules for transplantation of 
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islets and islet-like cell clusters differentiated from stem cells help overcome the immune 
rejection without Immunosuppressive drug therapy.  A tissue engineering approach aims to 
mimic the natural extracellular matrix environment for supporting the transplanted islet 
cells without sacrificing form and function. A combination approach of tissue engineering, 
immunoisolation and most appropriately differentiated islet may propel clinical trials 
involving engineered strategies for cell replacement in diabetic patients, in the not too 
distant future. 
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