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1. Introduction 

The main function of a ligament is to connect one bone to another bone across a joint, 

keeping them aligned to prevent abnormal motions and dislocations. The typical magnitude 

of force a ligament may experience during day-to-day activities varies. For example the 

anterior cruciate ligament of the knee can be exposed to daily tensile forces ranging between 

67N for ascending stairs to 630N for jogging (Vunjak-Novakovic, Altman et al. 2004), 

whereas large loads, exceeding 1800N, can cause rupturing. Depending upon anatomical 

location and the extent of vascularisation, the ligament may or may not be capable of self-

healing after a rupture. 

Some of the most frequently ruptured ligaments occur in the knee joint, often through 

sporting activities such as skiing, football and basketball and the number of injuries are 

increasing each year (Cooper, Lu et al. 2005). Ninety percent of knee ligament injuries 

involve the anterior cruciate ligament (ACL) and medial collateral ligament (MCL) (Woo, 

Abramowitch et al. 2006). The MCL can self-heal, but the ACL cannot due to poor 

vascularisation. Because of this, alternative methods such as regenerative medicine have 

focused heavily upon the ACL with the aim of producing a fully functional tissue in vitro.  

Figures indicate that approximately 250,000 people are diagnosed with ACL injuries each 
year in the USA (Doroski and Brink 2007), and approximately 150,000 need to undergo 
surgical treatment, known as an ACL reconstruction (Cooper, Lu et al. 2005). If the rupture 
is not treated it can cause loss of function of the associated joint which can then lead to early 
development of osteoarthritis (Cooper and Bailey 2006; Gentleman, Livesay et al. 2006). 
The current gold standard procedure for an ACL reconstruction is surgical autografting. 

This involves using part of the patients own patellar tendon, hamstring or quadriceps to 

replace the ruptured ACL (Beasley, Weiland et al. 2005). However, these techniques cause 

donor site morbidity (Goulet and Germain 1997; Van Eijk, Saris et al. 2004; Cooper and 

Bailey 2006; Hairfield-Stein, England et al. 2007) which is associated with pain and a 

recovery period for the donor tissue site (Cooper, Lu et al. 2005; Hairfield-Stein, England et 

al. 2007). Generally 75-90% of patients have good or excellent long term success rates from 

these current grafting techniques (regarding functional stability and symptomatic relief 

upon return to normal activities) but unfortunately a substantial number of patients exist 

who have unsatisfactory results which could be attributed to graft failure (Vergis and 

Gillquist 1995). Some of these patients continue to endure pain, suffer from loss of motion 

secondary to the operative procedure and continue with recurrent instability (Vergis and 

Gillquist 1995), while others suffer from degenerative joint disease such as arthritis or 
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experience re-injury (Hairfield-Stein, England et al. 2007). Alternatively, allografts can be 

used where the donor tendon is taken from a cadaver, but the disadvantages associated 

with this include donor scarcity, the risk of the recipient contracting a disease from the 

donor, or tissue rejection (Ahmed, Collins et al. 2004; Vunjak-Novakovic, Altman et al. 

2004). Prosthetic replacements (synthetic grafts) have previously been used, but these have 

shown to be inadequate due to wear and degeneration (Mascarenhas and MacDonald 2008). 

It is evident that surgical ACL reconstructions have limitations and do not always give 

completely satisfactory long-term results in a high proportion of patients, which 

consequently affects their quality of life (Vergis and Gillquist 1995; Lanza, Langer et al. 

2007). Because of this dilemma, regenerative medicine could be an option, where in vitro 

tissue engineering of ligaments can offer a solution to the problems associated with the 

current surgical methods (Van Eijk, Saris et al. 2004; Hairfield-Stein, England et al. 2007). 

Tissue engineered ligaments could provide better performance in the long run by improved 

biocompatibility, integration into host tissue and the ability to remodel their own 

extracellular matrix (Nesic, Whiteside et al. 2006).  

Tissue engineering is a method which combines knowledge from material science, 

engineering, molecular biology and medicine (Nesic, Whiteside et al. 2006). The basic 

procedure normally involves using scaffolds to act as structural supports for cell growth 

and maturation in-vitro, where a stimulus (chemical or mechanical) may also be applied to 

promote the formation of a functional tissue. This concept was originally developed to 

repair skin and cartilage, but is now being considered as a possible option to produce 

neoligament tissue. To date, many different types of material have been investigated as 

potentially suitable scaffolds for ligament tissue engineering, focusing upon their 

biocompatibility, degradability, surface properties for cell attachment and overall 

mechanical properties. These include polymers (such as polyurethane, polylactic acid, 

polyglycolic acid, polycaprolactone, polyhydroxyalkanoates and alginates), silk fibroin, 

glasses, hydrogels and biological materials such as de-cellularised tissues. 
There has been much research into the application of chemical stimulus upon cell culture 
in vitro. It is well documented that specific growth and differentiation factors can trigger 
various cellular responses such as cell differentiation, cell division and matrix remodelling 
(Evans 1999), making them useful in tissue engineering to influence cell behaviour. Some 
of the most commonly studied growth factors include transforming growth factor beta-1 

(TGF-β1), basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). 
Bioreactors also have applications in tissue engineering, where they can be used to 
optimise the cell culturing conditions; for example they can improve the mass transfer of 
nutrients to cells in a 3D scaffold (perfusion), improve cell seeding onto a scaffold 
(rotation), or provide a mechanical stimulus (in tension or compression) to influence cell 
behaviour. For ligament tissue engineering, the bioreactor is normally used to apply tensile 
straining forces within physiological ranges to promote differentiation and extracellular 
matrix (ECM) synthesis. From the literature, the mechanical loading regimes investigated 
have varied from 1-10% strain, 0.01-1Hz frequency, from ½ hour – 24 hours/day over a 
period ranging from 1 day to six weeks. Achieving the optimal culturing conditions for a 
ligament tissue engineered construct can be complex, where small changes can have large 
affects upon cell behaviour and their final product. This chapter will review in detail the 
different biomaterials, loading regimes and growth factors that have been currently 
investigated for this purpose. 

www.intechopen.com



 
Tissue Engineering of Ligaments 

 

133 

2. Anatomy of the ligament 

2.1 Structure and function of a ligament 

A ligament is a capsule of connective tissue made of fibres joining one bone to another 
across a joint where they help to guide joint motions and prevent abnormal displacement of 
bones relative to each other (Einhorn, O'Keefe et al. 2007). They are very strong compared to 
other connective tissues, such as skin, because of the high tensile loads they need to 
withstand (Einhorn, O'Keefe et al. 2007). Although there are several hundred ligaments in 
the body, many of the examples given have focused upon the ACL because it is the most 
frequently injured knee ligament. Figure 1 indicates where the main knee ligaments are 
located around and within the knee joint. 
 

 

Fig. 1. The diagram illustrates where the fours main knee ligaments are located; the anterior 
cruciate ligament (ACL), the posterior cruciate ligament (PCL), the medial collateral 
ligament (MCL), and the lateral collateral ligament (LCL) 

There are three main types of connective tissue within the human body, connective tissue 
proper (loose and dense regular connective tissue), fluid connective tissue (transports 
substances in blood) and supporting connective tissue (cartilage and bone). Skeletal 
ligament is a dense regular connective tissue, which is comprised of fibroblasts (connective 
tissue cells), and extracellular matrix (proteins and water making up the connective tissue). 
The periodical change in direction of collagen fibres gives the connective tissue a distinct 
undulating pattern. The fibroblasts (located within in the ECM) are responsible for 
producing the ECM components to maintain and repair the connective tissue. After an 
injury, these cells become mobile, migrating to the wounded tissue to increase the synthesis 
of specific proteins to aid tissue repair (Rogers 1983; Alberts, Johnson et al. 2000). The ECM 
is composed of two main classes of macromolecules; polysaccharide chains of 
glycosaminoglycans (which have adhesion functions and attract water), and fibrous proteins 
such as collagen, elastin and reticular fibres which give structural support to the tissue 
(Alberts, Johnson et al. 2000). The ground substance of the ECM is a hydrophilic water-like 
gel containing the polysaccharides and fibrous proteins, allowing diffusion of waste 
products and nutrients between the tissue cells and capillaries (Hansen, Masouros et al. 
2006). 
Ligament connective tissue is classed as dense regular tissue because the closely packed 
collagen fibres are aligned in an ordered regular, way, giving tensile strength and support to 
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the tissue. The basic structure of collagen is very similar in all collagen types, where its 
formation starts with the synthesis of polypeptide chains on the ribosome which are 
composed mainly of glycine, hydroxylysine and hydroxyproline repeats (Carpenter and 
Hankenson 2004). Inside the cell, three polypeptide ǂ-chains coil together into a right-hand 
twist to make a triple helix (super helix) forming the procollagen molecule which then 
becomes exocytosed from the cell. The procollagen molecules polymerize in the extracellular 
space firstly by aggregating together into a microfibrils, then aggregating into fibrils, where 
finally, the fibres become stabilized by covalent cross-links which form within and between 
the tropocollagen molecules (Alberts, Johnson et al. 2000). It is this extensive cross-linking, 
particularly in collagen I, which gives the collagen fibrils their stability and great tensile 
strength, which in turn makes the tissue very strong so that the ligament can resist 
deformation from stretching forces (Doroski, Brink et al. 2007).  Collagen type I, III and V 
are all structural components of ligament fibrils (Posthemus, September et al. 2009), where 
type I and III provide tensile strength and type V regulates fibre assembly and diameter 
(September, Schwellnus et al. 2007). Collagen type X is present where the ligament 
integrates into the bone. Tenascin-c, another type of protein found in ligament ECM, 
regulates the tissues response to mechanical loading (September, Schwellnus et al. 2007). 
The individual collagen fibrils are randomly orientated, but as they aggregate into fibres 
they gain a more parallel orientation with the longitudinal axis of the ligament, giving the 
tissue a crimping pattern (wavy appearance) (Goulet, Germain et al. 1997). 

2.2 Bone attachment 

Ligaments attach to the bone surfaces as an aggregation of collagen fibre bundles 
(Ellenbecker 2000), either by direct insertion, or both direct and indirect insertion. The ACL 
inserts into the bone by direct insertion, the most common ligament insertion type, where its 
collagenous fibres attach directly to the bone tissue. The collagenous fibres blend into the 
fibrocartilaginous layer, interweave through the fibrocartilage zone, through the 
mineralized fibrocartilage zone, then enter the bone (Beasley, Weiland et al. 2005; Woo, 
Abramowitch et al. 2006). The calcified collagenous fibres which anchor the ligament firmly 
to the bone are known as Sharpey’s fibres (Einhorn, O'Keefe et al. 2007). The medial 
collateral ligament (MCL), which is also a knee ligament, is inserted into the bone by both 
direct and indirect insertion, where the superficial fibres (near to the surface) merge with the 
periosteum (the connective tissue surrounding the bone), while other fibres penetrate the 
bone deeper and attach to the bone directly at acute angles (Woo, Abramowitch et al. 2006). 

2.3 Characteristic components of ligament tissue 

It is the variation in ratio between collagen types and other ECM components which gives 
each ligament type its diversity and characteristic mechanical behaviour (Woo, 
Abramowitch et al. 2006). Due to the absence of specific markers, ligaments can only be 
distinguished from other ligaments and other tissue types (eg tendon) by structural, 
molecular and mechanical properties. Although there is no single specific marker in the 
ligament, tenscin-c has been considered to be a marker due to its characteristically high 
amounts in the ligament (Doroski, Brink et al. 2007), where the presence of collagen types I 
and III, tenomodulin, biglycan, decorin, elastin and fibronectin are also characteristic of 
ligament tissue (Vunjak-Novakovic, Altman et al. 2004; Chen, Huang et al. 2008). The total 
amounts and specific ratios of the ECM components, ground substance and cells are 
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characteristic properties unique for each type of connective tissue which relate to its 
anatomical location and function (Vunjak-Novakovic, Altman et al. 2004). Connective tissue 
types can be differentiated by the presence and total quantities of collagen, tenascin-c, 
elastin, fibronectin, decorin, biglycan, ratios of collagen types, crimping pattern and collagen 
fibril diameter. Table 1 lists the main components of a typical ligament as a percentage of 
their wet weights, whereas those in table 2 are the dry weights of the main collagen types 
and ratio of collagen type I : III which are unique to the ACL, as reported by various 
authors.  
 

Tissue 
type (wet 
weight) 

Collagen 
type I 

(%) 

Other 
collagens  
such as 
type III, 

V, VI (%)

Elastin 
(%) 

Fibronectin 
and other 

glycoproteins 
(%) 

Proteoglycans 
(%) 

Water 
(%) 

Author 

Ligament 
(general) 

20 3-5 1-2 1-2 <1 70 (Einhorn, 
O'Keefe 
et al. 
2007) 

Table 1. The biochemical constituents of wet ligament tissue 

 

Tissue type 
(dry 

weight) 

Collagen 
type I (%)

Collagen 
type III (%)

Collagen 
type V (%) 

Ratio of collagen 
I : III 

Author 

ACL 70-80 8-10 10-12 9:1 (Woo, 
Abramowitch et al. 
2006; Doroski, 
Brink et al. 2007) 

Table 2. The collagen content of the ACL in dry tissue 

3. Cell adherence 

It is essential for fibroblasts to attach to a substrate and spread out to enable them to grow, 
proliferate, mature and produce functional tissue. In order for these cells to adhere to their 
substrate, ECM adhesion proteins such as fibronectin, vitronectin or collagen are required to 
adsorb to the substrate first, where the cells will then subsequently adhere to the adhesion 
proteins. Fibronectin can exist in two major forms; (1) soluble plasma fibronectin, a 
constituent of plasma, and (2) insoluble cellular fibronectin, a component of the ECM 
(Pankov and Yamada 2002). Cellular fibronectin can be expressed by different cell types 
including fibroblasts (Pankov and Yamada 2002), where it is found in ligaments and other 
connective tissues. Studies have found it be up-regulated during ligament formation in 
embryogenesis where it guides the migrating cells (Laurencin and Freeman 2005). 
Integrin-mediated binding enables the cell to become connected to its surroundings by 
linking the interior of the cell to the ECM proteins (outside the cell). The contact made with 
the ECM can generate intercellular signals which can affect gene expression, morphology, 
cell survival (Johansson, Svineng et al. 1997), control cell adherence, cell migration, 
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cytoskeletal organization (Sechler, Corbett et al. 1997) regulate growth, proliferation, 
differentiation, and subsequently affect development or maintenance of the ligament tissue 
(Alberts, Johnson et al. 2000; Vunjak-Novakovic, Altman et al. 2004). Two known 
intracellular pathways involved upon integrin-fibronectin binding are the Ras-MAPK (Ras-
mitogen activated protein kinase) and the FAK (focal adhesion kinase) pathways.  
Fibronectin mediated cell adhesion studies have been conducted by various researchers as a 
technique for improving cell attachment in vitro. Research has shown that cell retention of 
rat MSC’s on fibronectin-coated surfaces was improved (Dennis and Caplan 1993), whilst 
other studies indicate that it increases the adhesive strength of cells, suggesting it occurred 
due to the increased number of bonds between fibroblasts and fibronectin-coated glass 
slides (Athanassiou and Deligianni 2001).  

4. Response of fibroblasts to mechanical stimulus 

4.1 Mechanical transduction 

Mechanical forces play a major role in the formation and architecture of native tissues in 
vivo, but also help maintain healthy tissue (homeostasis) in adult tissue. During daily 
activities, human body tissues are subjected to mechanical forces of various magnitudes, 
depending upon the activity and posture during these movements. The ACL has been 
shown to withstand forces of up to 1730N in people aged 16-26 years, but much less in 
people aged 48-86 years, with a mean average of approximately 734N (Noyes and Grood 
1976). However, the forces which can be tolerated become significantly reduced when they 
are perpendicular to the bone insertion sites (Einhorn, O'Keefe et al. 2007). The externally 
applied forces can alter the cells structure, mechanical properties, behaviour, and function 
(Miyazaki, Hasegawa et al. 2000) which are required for tissue homeostasis (Fulton 1984; 
Altman, Lu et al. 2002). Tissue homeostasis occurs through ECM remodelling (re-
organization) which involves ECM degradation by apoptosis (programmed cell death) and 
the formation of new tissue by cell proliferation (multiplication). An equilibrium between 
proliferation and apoptosis is essential during ligament growth, healing, tissue homeostasis 
and adaptation to exercise (Chuen, Chuk et al. 2004). 
The cells are believed to sense mechanical forces either through their cell surface integrin 
receptors or through ion channels in the cell membrane, and respond accordingly. These 
external forces can alter the cell structure, its mechanical properties, behaviour, and function 
(Miyazaki, Hasegawa et al. 2000), where, for example they may increase or decrease ECM 
production, or regulate proliferate and differentiate. Transducing (converting) external 
physical forces into cellular signals across the membrane is known as mechanical 
transduction (Ingber 1999). Although the mechanisms of transduction are not well 
understood, many investigations have been carried out upon integrin receptors and the cell 
cytoskeleton that support the theory that the cell senses external mechanical forces from the 
ECM via the integrin receptors (subsequently causing deformation and reorganisation of the 
cell cytoskeleton) (Pertigliano, McAllister et al. 2006) and activates specific cellular 
pathways. 

4.1.1 Cytoskeletal tension 

Upon cell-substrate binding via the integrin receptors, this exerts a force upon the cell 
cytoskeleton, which generates an intracellular tension. In effect, this links the cell membrane 
to the nucleus which influences gene expression, by relaying signals from the plasma 

www.intechopen.com



 
Tissue Engineering of Ligaments 

 

137 

membrane to the nucleus (Matyas, Edwards et al. 1994). The cytoskeleton is composed of a 
network of protein filaments within the cytoplasm, which maintains cell shape, giving it 
structure and support, and allowing the cell to bear stress without splitting (Alberts, 
Johnson et al. 2000). The cytoskeleton has a number of other functions including connecting 
each fibroblast to other cells and to the substrate, generating tension within the cell to 
produce stress fibres, and also assisting the cell in locomotion (Fulton 1984). There are three 
proteins in the cytoskeletal network, actin, tubulin and vimentin, which assemble to form 
the three main structural filaments of the network system (actin filaments, microtubules, 
intermediate filaments respectively) (Portner, Bagel-Heyer et al. 2005). Both actin and the 
intermediate filaments are involved in connecting the fibroblasts’ internal structure to other 
cells and to the ECM. When the fibroblast encounters a suitable substrate, it extends its 
projections (filopodia), which then attach to the substrate allowing the rest of the cell to 
adhere. This generates a small tension, where the cell subsequently spreads (Fulton 1984; 
Alberts, Johnson et al. 2000), promoting formation of stress fibres within the cell. This 
enables the cell to withstand the tension generated from the cell-ECM contact and make 
connections with the nucleus to modulate cell behaviour. The effects include activating 
specific genes (Fulton 1984; Altman, Lu et al. 2002) and generating key proteins (including 
degrading enzymes and ECM components) to remodel the ECM for promoting new tissue 
formation (Vunjak-Novakovic, Altman et al. 2004; Portner, Bagel-Heyer et al. 2005).  

4.1.2 Intracellular cell signalling 

The most widely accepted mechanism for mechanical transduction is that involving 

intracellular signalling pathways. Once the cell binds its substrate, the integrin receptors act 

as mechanoreceptors, receiving then relaying mechanical signals from the ECM through the 

cell (as biochemical signals) to the nucleus via intracellular pathways. This can either 

promote gene expression, regulate growth, proliferation or differentiation, subsequently 

affecting development or maintenance of the connective tissue (Alberts, Johnson et al. 2000; 

Vunjak-Novakovic, Altman et al. 2004). The most studied intracellular pathway is the Ras-

mitogen-activated protein kinase (Ras-MAPK) pathway, which is considered to be the one 

which acts as a general, but unspecific signal transducer, converting the signal from the 

applied mechanical stress and relaying it through the cell interior (Chiquet, Sarasa-Renedo 

et al. 2003). The Ras-MAPK pathway becomes activated once the receptor receives an 

extracellular mechanical signal. Briefly, the received signal causes a kinase on the receptor to 

become activated which then activates a GTP-binding protein (Ras protein). The Ras protein 

causes downstream phosphorylations by activating the first MAP kinase (Raf) in the chain 

to phosphorylate the next MAP kinase (Mek), which phoshporylates and activates the next 

MAP kinase (Erk), which subsequently activates other proteins. Eventually the signal 

reaches the gene regulatory proteins in the nucleus which interact with transcription factors 

and promoters to regulate gene expression and protein activity (Alberts, Johnson et al. 2000). 

4.1.3 Ion channels 

Besides mechanical transduction via integrin receptors, external forces (stress) can also be 

conveyed into the cell through stretch-induced ion channels which open and close in 

response to cell membrane deformation (Matyas, Edwards et al. 1994). Ion channels are 

cation specific channels located in the cell plasma membrane, which allows rapid diffusion 

of the ions down their electro-chemical gradients across the lipid bilayer. The channels are 
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gated, only opening briefly to allow specific cations (such as calcium, sodium or potassium) 

to pass through, and then close again. The channel gates open in response to several types of 

specific stimulus, one those being mechanical stress which operates mechanically-gated 

channels (Alberts, Johnson et al. 2000), subsequently affecting the cell behaviour. Cyclic 

stretching has been reported to stimulate Ca2+ influx into osteoblasts, and it is thought that 

mechanical stretch-induced Ca2+ signal transmission may involve the actin filaments (Wang 

2006). 

5. Injuries sustained and healing potential 

Ligaments in skeletally mature people are very strong and stiff at high loads, however, there 

can be some variation in the mechanical properties of each ligament type depending upon 

the individuals’ gender and age. Strength and stiffness of the ACL has been found to 

significantly reduce as age increases in adults (Noyes and Grood 1976) and can be 

significantly lower in  adult females compared to  their male counterparts (Chandrashekar, 

Mansouri et al. 2006). Ligaments reach their maximum strength when the loading forces are 

aligned with the ligament fibres and aligned with the direction of bone insertion, becoming 

three times as strong as when the force acts perpendicular to the bone insertion sites 

(Einhorn, O'Keefe et al. 2007). They rupture when the load (externally applied force) 

becomes too excessive to withstand and the collagen fibres tear apart. The ACL, for 

example, normally ruptures in the mid-substance (middle region) when the knee joint 

experiences too much force, but it can also tear at the bone insertion sites. The position of the 

tibia relative to the femur can increase the magnitude of the stress placed onto the knee 

joint. The stress becomes greatest when the tibia is fully extended and internally rotated 

simultaneously, increasing the tension upon specific fibre bundles which are trying to resist 

deformation and abnormal motion. A rupture of the mid-substance occurs when the cross-

links between the collagen fibrils slip allowing the tropocollagen helix to over-stretch, 

allowing the tissue to tear (Laurencin and Freeman 2005).  

Generally, the blood supply to ligaments is sparse when compared to other tissue types 

(such as the skin), affecting their healing potential (Einhorn, O'Keefe et al. 2007) which can 

be limited further by anatomical location, age and gender. The healing capacity of the 

mature ACL is very low due to its anatomical location. It is encapsulated within the knee 

joint (intrasynovial), being surrounded by the lubricating synovial fluid, and is poorly 

vascularised (Amiel, Frank et al. 1984; Ahmed, Collins et al. 2004; Cooper, Lu et al. 2005). As 

a result it cannot self repair (Cooper, Lu et al. 2005; Lu, Cooper et al. 2005), therefore medical 

treatment is necessary. There is no direct blood supply from the fibrocartilage zone of the 

bone to the ACL, so the ACL relies mainly upon diffusion of nutrients and waste through 

the joint fluid from and to the blood vessels of the surrounding synovial tissue respectively 

(Beasley, Weiland et al. 2005). The surrounding synovial tissue is vascularized by the medial 

genicular artery, and the lateral inferior genicular artery, forming a vascular plexus 

(network of vessels) around the knee. It is the small vessels from the plexus which supply 

the ligament with the essential nutrients by diffusion (Zantop, Patterson et al. 2005). It 

possible that a few of these small blood vessels may actually penetrate the ACL and directly 

supply it with nutrients (Arnoczky 1983). As a result of poor vascularization to the 

midsubstance, the ACL has a low healing capacity and can not self repair (Carpenter and 

Hankenson 2004). In contrast to the ACL, the MCL which is extrasynovial can self heal 
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spontaneously because it has a greater vascularisation and receives more blood (Carpenter 

and Hankenson 2004). 

After injury, those ligaments which are well vascularized have three stages of healing; 
inflammation, cellular proliferation and migration, ECM repair and finally ECM 
remodelling (Laurencin and Freeman 2005). Generally, these stages promote fibroblast 
proliferation. Fibroblasts and macrophages then migrate to the injured site and granulation 
tissue forms (stroma). GAG, elastin and collagen are synthesised to form new ECM, and 
finally the ECM is remodelled, where it initially forms into a disordered tissue but later 
becomes more organized (Alberts, Johnson et al. 2000; Laurencin and Freeman 2005). With 
avascular, or poorly vascularised ligaments, this process is not carried out, or only in a 
limited way, which prevents them from self-healing spontaneously and surgery may be 
needed to repair them. With the case of the ACL, if left untreated, this could eventually 
cause osteoarthritis in the knee because the ACL has failed to maintain correct bone 
alignment and control normal motion across the knee joint (Foster, Butcher et al. 2005; 
Utukuri, Somayaji et al. 2006).  

6. Surgical treatment 

After rupture, the ligament is normally repaired by surgery, which can be by suturing or 
grafting. Based upon clinical investigations, surgical grafting has become the gold standard 
for ligament repair (Einhorn, O'Keefe et al. 2007). In the case of the ACL, a surgical 
reconstruction is performed which is the only method shown to at least partially restore 
function, helping to improve the patient’s quality of life. This method involves implanting a 
graft to replace the damaged ligament.  
Three main types of grafts can be used; autografts, allografts or synthetic grafts. The current 
gold standard procedure for reconstructing an ACL is autografting, which involves using a 
ligament or tendon from another part of the patient’s body and using it to replace the 
damaged ACL. This can be a section from the patients patellar tendon (joining knee cap to 
tibia) or the hamstring tendon (joining calf muscle to bone in heal) (Beasley, Weiland et al. 
2005). Patellar tendon is often used because its strength and mechanical properties are 
similar to or exceed that of normal native ACL (Fenwick, Hazleman et al. 2002).  The central 
third of the patellar tendon is removed with a piece of knee cap (bone plug) attached to one 
end, and a section of the tibia attached at the other end (Beasley, Weiland et al. 2005). The 
damaged ACL is removed, a bone tunnel (channel) is drilled out from the femur and tibia, 
and the graft is threaded through and screwed into leg bones. This reconstruction operation 
takes approximately 2 ½ hours. Allografting involves using a ligament or tendon from a 
different human donor, normally a cadaver (corpse). The procedure is the same as 
autografting, and may give the same results, but disadvantages include donor scarcity, the 
risk of the recipient contracting a disease from the donor, or tissue rejection (Vunjak-
Novakovic, Altman et al. 2004). Clinical outcomes in the short term can be good, with 80% 
success rate in restoring knee stability (Einhorn, O'Keefe et al. 2007). Unfortunately, both 
autografting and allografting can be unsatisfactory methods for long term performance in 
some patients, where they suffer from instability (Woo, Abramowitch et al. 2006) due to 
mechanical failure, fatigue or creeping, (gradual stretching of the tissue under constant 
load). This occurs due to a slight mismatch in mechanical properties between the graft and 
native ligament tissue, where the injury may then recur at a later date (Lu, Cooper et al. 
2005). It has been suggested that even two years after the implantation the tendon graft 
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remains structurally and mechanically different to normal native ligament and never 
actually becomes “ligamentised” (Fenwick, Hazleman et al. 2002). Another disadvantage of 
autografting is donor site morbidity which can cause pain, swelling, local nerve damage, 
scarring, stiffness weakness or infection (Einhorn, O'Keefe et al. 2007). Synthetic grafts have 
also been used such as carbon, the Gortex prosthesis, the Stryker-Dacon ligament, the Leeds-
Keio artificial ligament, LARS ligament and Kennedy ligament augmentation devices, but 
creeping, fatigue and limited integration between host tissue and the graft have occurred 
several years after implantation (Ahmed, Collins et al. 2004; Cooper, Lu et al. 2005). The 
advantages and disadvantages of the current grafting methods are summarized in table 3. 
 

  
Autograft 

 
Allograft 

 
Synthetic graft 

 

Advantages No rejection. 
No disease 
transmission. 
No donor scarcity. 

No donor site 
morbidity. 

No donor site morbidity. 
No tissue disease 
transmission. 
No donor scarcity. 

Disadvantages Donor site morbidity.  
Patellar fracture. 
Quadriceps weakness. 
Limited bone 
integration. 
Mismatch in different 
tissue properties, 
causing mechanical 
failure, creeping, 
fatigue. 
Recurring injury. 
 

Donor scarcity. 
Limited bone 
integration. 
Tissue rejection. 
Mismatch in different 
tissue properties, 
causing mechanical 
failure, creeping, 
fatigue. 
Recurring injury. 
 

Limited bone integration 
(weak graft-host tissue 
interface). 
Mismatch in different 
tissue properties causing 
mechanical failure.  
Creeping (stretching & 
loosening).  
Poor long-term 
instability. Fatigue. 
Recurring injury. 

Table 3. The advantages and disadvantages of three types of graft 

7. Tissue engineering as regenerative medicine 

7.1 Background 

Tissue engineering is a rapidly developing area in regenerative medicine which uses 
knowledge of biological, chemical and engineering techniques to regenerate new tissue in-
vitro (Cooper, Lu et al. 2005). Some tissues in the body are capable of self repair after injury, 
while others are not, and tissue engineering is a relatively new technique which could offer 
alternative methods to restore tissues and organ functions (Quaglia 2008). The techniques 
enable various biophysiological parameters to be controlled in order to develop a functional 
tissue ready for implantation (Lanza, Langer et al. 2007). The procedure involves using a 
scaffold to act as a structural support for cell growth and maturation in vitro to eventually 
produce a functional tissue to repair or replace damaged tissue. This concept was originally 
developed to repair skin, cartilage and bone, but is now being considered as a possible 
option to produce neo-ligament tissue rather than using the traditional surgical grafting 
approach. Although the current methods of treatment may help to fully restore the 
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ligaments in some patients, its long-term success in others is unsatisfactory, indicating that 
there is a need to find more successful, alternative methods of treatment for full restoration 
of ligaments. Unlike synthetic grafts which can degrade and lose strength over time, tissue 
engineered implants could perform better in the long term with their biocompatibility, 
improved integration into surrounding host tissue, and their ability to remodel the ECM as 
and when required to (Nesic and Whiteside 2006). Tissue engineering also has the 
advantage of producing an immediately functional tissue (Vunjak-Novakovic, Altman et al. 
2004), but the successful incorporation of the soft tissue implant into bone could be a 
challenge. 
For applications in ligament tissue engineering, a scaffold is required to be biocompatible, 
biodegradable, allow cell adherence, have sufficient surface area and volume for cell in-
growth, be sufficiently strong to withstand mechanical loading forces in vitro and in vivo, 
and posses a similar stiffness to the native ligament tissue (if it is to be implanted before it 
degrades) (Christian, Jones et al. 2001 ; Cooper and Lu 2005; Probhakar, Brocchini et al. 2005; 
Gentleman, Livesay et al. 2006; Sahoo, Ouyang et al. 2006). These points are summarized in 
table 4. Often, three-dimensional (3-D) scaffolds are preferred to the two-dimensional (2-D) 
scaffolds because they not only allow cell in-growth, but can also retain cells in their 
differentiated state. From the literature, it has been reported that fibroblasts cultured in 2-D 
monolayers have de-differentiated (reverted back to their undifferentiated state) during cell 
culture (Schulze-Tanzil, Mobasheri et al. 2004), which may not be desirable for tissue 
engineering purposes. 
 

 
Scaffold requirements 

 
The purpose of this feature 
 

Biocompatible Avoids immunorejection (a cytotoxic 
response could kill the cells) 

Biodegradable To degrade at the same rate at which 
neotissue forms to avoid the need for 
surgical removal 

Enable cell adherence To allow cells attachment for growth and 
proliferation to occur 

Provide sufficient surface area/volume To provide sufficient space for cell spreading 
and growth 

Possess comparable strength/stiffness To withstand cyclic mechanical loading 
forces with magnitudes and strains similar to 
those found in vivo 

Surgical implantation Ease of fixing/bonding to bone (bio-active) 

Table 4. The main requirements of a scaffold with respect to their application 

7.2 Suitable cell types for ligament tissue engineering 

Fibroblasts and mesenchymal stem cells (MSC’s) have been considered to be the preferred 
cell type for seeding onto scaffolds in tissue engineering (Doroski, Brink et al. 2007). Some 
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reports suggest that MSC’s are a potentially better source for ligament tissue engineering 
than ligament fibroblasts due to their higher expression of collagen type I and III (Ge, Goh et 
al. 2005). Other reports however, feel that ACL fibroblasts are more appropriate because of 
the characteristic ratios of collagen types produced during tissue repair (Fu, Harner et al. 
1993). In one particular study MSC’s were isolated from a human ACL and the results 
demonstrated that both ACL-derived MSC’s and bone marrow MSC’s expressed marker 
genes for ligament fibroblasts, but mRNA expression levels for collagen I and III were 
higher in the ACL-derived MSC’s. It was concluded from this study that ACL-derived 
MSC’s have an increased potential to form ligament fibroblasts in comparison to bone 
marrow MSC’s (Huang, Chen et al. 2008). Co-culturing MSC’s with ligament fibroblast has 
been shown to successfully induce MSC differentiation into fibroblasts, where this 
conclusion was based upon the mRNA expression of key ligament genes (collagen I collagen 
III, and tenascin-c) and synthesis of these key ligament proteins (Fan, Liu et al. 2008). This 
feature makes them an attractive cell choice for ligament tissue engineering.  

7.2.1 Mesenchymal stem cells (MSC’s) 

Mesenchymal stem cells (MSC’s) are multipotent progenitor cells, meaning they can 
differentiate into specific cell types of various cell lineages. They are found in multiple adult 
tissue types including bone marrow, muscle, synovial tissue and adipose tissue (Centeno, 
Busse et al. 2008), where they have the potential to produce cartilage, bone, muscle, tendon, 
ligament or fat (Papathanasopoulos and Gaiannoudis 2008) in response to the appropriate 
stimuli (Lanza, Langer et al. 2007). MSC’s can be encouraged to move down specific cell 
lineages by using media which contains hormones such as dexamethasone, hydrocortisone, 

or growth factors such as transforming growth factor β (TGF-β) (Papathanasopoulos and 
Gaiannoudis 2008), cytokines, transcription factors  (Lanza, Langer et al. 2007) or using 
purely mechanical stimulus (Altman, Horan et al. 2001). MSC’s have been used successfully 
to regenerate articular cartilage in animal models and to regenerate bone in humans 
(Papathanasopoulos and Gaiannoudis 2008). Because they can be easily isolated and 
expanded (Papathanasopoulos and Gaiannoudis 2008; Yu, Chen et al. 2008), with the 
capacity to differentiate, this makes them desirable for tissue engineering applications 
(Papathanasopoulos and Gaiannoudis 2008). One of the first areas in which they were 
applied was in tendon and ligament tissue engineering (Lanza, Langer et al. 2007). 
Another appealing feature of MSC’s is their immunosuppressive and anti-inflammatory 

effects. They express low levels of major histocompatibility complex (MHC) class I 

molecules on their surface (preventing natural killer cells deleting them), and no class II 

MHC, allowing them to escape recognition by alloreactive T helper cells (Zhao, Liao et al. 

2004; Lanza, Langer et al. 2007; Popp, Eggenhofer et al. 2008; Swart, Martens et al. 2008). 

However, it has been reported that MSC’s infused into allogeneic MHC-mismatched mice 

have been rejected (Swart, Martens et al. 2008). In contrast, this was not the case when 

genetically modified MSC’s were injected into a baboon (Zhao, Liao et al. 2004).  

7.3 Biomaterials suitable for ligament tissue engineering 

To date, many different materials in their various physical forms have been investigated as 

substrates for tissue engineering applications in general. These include synthetic polymers, 

natural polymers, glasses, silk, hydrogels, composites and many more. Only those related to 

ligament tissue engineering, are covered in this chapter (summarized in table 5).  

www.intechopen.com



 
Tissue Engineering of Ligaments 

 

143 

Synthetic polymers such as polylactic acid, polyglycolic acid and polylactide-co-glycolide 

(PLA, PGA and PLAGA respectively) are approved by the USA food and drugs agency 

(FDA) for a variety of clinical applications (Cooper, Lu et al. 2005). These polymers degrade 

by hydrolysis of ester bonds (water breaks up the molecule), and the components are 

removed by the natural pathways of the body (Rezwan, Ghen et al. 2006), making them 

biocompatible. Some of these have been produced into cell scaffolds and tested for their 

suitability as substrates. PLAGA fibres have been used to make 3-D braided scaffolds, which 

consisted of 3 regions – the attachment site for the femur bone at one end, the main ligament 

region in the middle, and the attachment site for the tibia bone at the other end. The results 

indicated that the scaffold was biocompatible by the observed attachment, spreading and 

growth of the ACL fibroblasts initially seeded onto it (Cooper, Lu et al. 2005). PLAGA has 

also been produced into nano-fibres which were electrospun into a knitted PLAGA 

scaffold to increase the surface area for cell attachment. It significantly improved MSC 

attachment and proliferation, but also demonstrated that cell function had improved due 

to the increased mRNA expression of type I collagen and decorin (Sahoo, Ouyang et al. 

2006). Braided PLA, PGA and PLAGA have also been found to enhanced rabbit ACL 

fibroblast attachment and support high cell numbers, being highest on PLA (Lu, Cooper 

et al. 2005). 

Alginates are a natural linear polysaccharide copolymers extracted from brown algae 
belonging to the phaeophyceae (Hua and Wang 2009). They are currently used in the food, 
cosmetic and agricultural industries (Hua and Wang 2009). Because they are easy to process, 
with good biocompatibility and low toxicity, they have been studied in drug stabilization 
and drug delivery (Lee and Mooney 2001; Drury and Mooney 2003) and for tissue 
engineering purposes (Sakai, Masuhara et al. 2005), where bone marrow cells have been 
successfully cultured on them (Wang, Shelton et al. 2003). Other report have also confirmed 
there suitability by enabling cell adhesion, migration, proliferation and differentiation to 
take place (Zhao, Deng et al. 2003).   
Polyhydroxyalkanoates (PHA’s) are currently under investigation for their uses in tissue 

engineering. They are naturally derived biocompatible polyesters which are produced by 

microorganisms as carbon and energy stores in unbalanced growing conditions become 

(Chen and Wu 2005). They are known to be biocompatible because they are found naturally 

occurring in mammal blood and tissues, where their purity can be increased by removing 

long-chain fatty acids and the endotoxin lipopolysaccharide, preventing any adverse 

reactions (Zhao, Deng et al. 2003; Chen and Wu 2005). They range from hard and brittle to 

soft and elastomeric, but can also be blended (combined) with other types of PHA or 

modified at the surface to alter their mechanical properties and biocompatibility, and 

produced either as a film or a foam (Rezwan, Ghen et al. 2006). So far, PHA’s have been 

used for a number of different applications including tissue regeneration, repair devices, 

sutures and bone marrow scaffolds (Shishataskaya, Volova et al. 2004). One report 

compared the mechanical and surface properties of several modified PHA’s and it was 

concluded that hydrophilicity and a low tackiness were found to be more important than 

the surface roughness for cell attachment and growth. Substrate stiffness also appeared to 

influence cell attachment, where the stiffer, more brittle PHA’s, retained a significant 

number of viable cells on their surfaces (Rathbone, Furrer et al. 2009). Because of their 

diversity in surface texture, flexibility and their biocompatibility, PHA’s show potential as 

cell substrates in tissue engineering.  
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Two types of glasses that have been used for medical research are bioglass (developed in the 

1969 by Larry Hench) and controlled release glass (CRG) which is a phosphate-based glass, 

developed in the 1970’s. Bioglass does not dissolve completely in fluids, but changes 

chemically upon its partial degradation, and is currently regarded as the most 

biocompatible material for bone regeneration due to its bioactivity and osteoconductivity 

(Wu, Hsu et al. 2009). Unlike bioglass, CRG dissolves completely in fluids at a 

predetermined rate, leaving no solid residues because phosphorous pentoxide is a main 

component within its formulation. The metal ions in CRG are found naturally occurring 

within the body (Probhakar, Brocchini et al. 2005) and upon glass degradation (dissolution) 

the released ions become removed by the bodies own metabolic system without causing a 

toxic response, avoiding the need for surgical removal if implanted into the body. Because 

CRG has a controllable solubility in body fluids and do not need surgical removal, this 

makes them an ideal scaffold material for promoting neotissue formation in vivo (Ahmed, 

Lewis et al. 2003). Very little work has been carried out with phosphate based glasses (CRG) 

for soft tissue engineering, however Bitar and colleagues cultured several cell types, 

including tendon fibroblasts, upon glass disks with various dissolution rates, where they 

successfully attached, proliferated while maintaining their phenotype, and it was concluded 

that the glass (of specific composition) would be ideal scaffold materials for engineering of 

both hard and soft tissues (Bitar, Salih et al. 2004). In fibrous form, phosphate based glasses 

have high tensile strength, making them useful for tensile applications, but it is also possible 

to produce them with dimensions similar to ligament collagen fibres in vivo, particularly the 

diameter, which can potentially assist cell attachment and spreading. Bitar et al suggested 

that the fibre diameter of the phosphate based glass which they tested influenced cell 

attachment (Bitar, Salih et al. 2008).  

Many other materials have been investigated. Silk fibroin scaffolds have supported and 

enhanced ligament- specific differentiation of human MSC’s. The silk was cabled into 6-cord 

wire rope matrices, improving its elasticity. The authors suggested that the silk matrix had 

similar a hierarchical structure to the collagen fibres in native ACL, making the mechanical 

properties comparable to ACL in stiffness and strength (Wang, Kim et al. 2006). Silk fibroin 

has also been produced as a microporous silk sponge and incorporated into a knitted silk 

mesh. After seeding them with rabbit MSC’s, the constructs were implanted into rabbits, 

where at 24 weeks the cells were well distributed throughout a regenerating ACL, and 

producing key ligament proteins (collagen I and III, and tenacin-c). Also a direct ligament–

bone insertion was achieved resembling native ACL-bone insertion (Fan, Liu et al. 2008). 

Collagen hydrogels have been shown to successfully promote higher production of type I 

and type III collagen from the cells, where the tissue formation was improved with a 

ligament-like organisation (Noth, Schupp et al. 2005; Gentleman, Livesay et al. 2006).   Poly 

desamino-tyrosine ethyl carbonate scaffolds have proved to be successful in supporting 

fibroblast growth while possessing the necessary strength for use as an ACL graft 

(Laurencin and Freeman 2005).  
Composites (consisting of more than one type of material) have also been constructed and 
analysed. Gelatin with silk fibroin has been produced into microporous sponges around Silk 
cables, where Fan and colleagues co-cultured rabbit MSC’s with ACL fibroblasts on the 
scaffold, which enabled MSC differentiation into ligament fibroblasts. They detected mRNA 
expression of collagen type I and III, and tenascin-c with the corresponding protein 
production (Fan, Liu et al. 2008). 
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Material 

 

 
Physical form 

 

 
Affect on cells/material properties 

 

 
Author 

Synthetic 
polymers 

   

PLAGA Braided Improved fibroblast attachment, 
spreading & growth. 

(Cooper, Lu 
et al. 2005) 

PLAGA Electrospun 
PLAGA nano-
fibres onto knitted 
PLAGA scaffold. 

Improved porcine MSC attachment & 
proliferation. Cells gave higher 
expression of type I collagen, decorin 
and biglycan genes in comparison to 
cells on just a knitted PLAGA 
scaffold. 

(Sahoo, 
Ouyang et al. 
2006) 

PGA coated with 
BioGlass 

Mesh coated with 
Bioglass. 

Increased fibroblast proliferation (208f 
cell line). 

(Day, 
Boccaccini et 
al. 2004) 

PLA, PGA, 
PLAGA coated 
with fibronectin 

Braided Enhanced rabbit ACL fibroblast 
adhesion and supported high cell 
numbers, (highest for PLA). 

(Lu, Cooper 
et al. 2005) 

DegrapolR PU Fibre-fleece Supported fibroblast adhesion & 
proliferation. 

(Milleret, 
Simonet et al. 
2009) 

Natural polymers    

Collagen 
hydrogel 

Hydrogel + 
collagen fibres 

Increased production of type I & III 
collagen fibres, giving better tissue 
formation, and ligament-like 
organization in the tissue. 

(Noth, 
Schupp et al. 
2005; 
Gentleman, 
Livesay et al. 
2006) 

Silk fibroin Rope matrix Enhanced ligament- specific 
differentiation of human MSC’s. 

(Wang, Kim 
et al. 2006) 

Silk fibroin Microporous silk 
mesh rolled 
around braided 
silk cord 

MSC seeded construct was implanted 
into pigs. At 24 weeks MSC’s 
differentiated into fibroblast-like cells, 
expressing collagen I and III, tenascin-c.

(Fan, Liu et al. 
2009) 

Silk fibroin Microporous silk 
sponge 
incorporated into 
knitted silk mesh 

Rabbit MSC seeded constructs 
implanted into rabbits. At 24 weeks 
cells were well distributed throughout 
the regenerating ACL, producing key 
ligament  proteins (coll I & III, 
Tenascin-c), direct ligament –bone 
insertion with 4 zones was 
reconstructed resembling native ACL-
bone insertion.  

(Fan, Liu et al. 
2008) 
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Silk fibroin Silk fibroin 
electrospun onto 
knitted silk base 
(random/aligned)

Aligned fibres showed improved cell 
proliferation and collagen production 
compared to random orientation. 

(Teh, Goh et 
al. 2008) 

Composites    

Gelatin + silk 
fibroin 

Microporous 
sponge around 
Silk cables 

Co-cultured rabbit MSC + ACL 
fibroblasts on the scaffold allowing 
MSC differentiation into ligament 
fibroblasts (mRNA expression of Coll 
1 & 3, Tenascin-c and corresponding 
protein production).  

(Fan, Liu et al. 
2008) 

Glass    

Phosphate-based 
glass 

Disks Increased adhesion & proliferation of 
fibroblasts when CaO content was 46-
48 mol%. 

(Bitar, Salih et 
al. 2004) 

Phosphate-based 
glass 

Fibres Increased adhesion & proliferation of 
fibroblasts when CaO content was 
46mol%. 

(Bitar, 
Knowles et al. 
2005)  

Bioactive glass Disks Supported rabbit MSC adherence and 
proliferation.  

(Meseguer-
Olmo, 
Bernabeu-
Esclapez et al. 
2008) 

Collagen fibres Braided/plied 
(cross-linked) 

Implanted into goats, analysed over 
11 months post implantation, 
concluded they were loosing strength, 
therefore not suitable as ACL 
substitute. 

(Chvapil, 
Speer et al. 
1993) 

Table 5. Some of the various different materials previously used as scaffolds (for ligament 
tissue engineering) their physical forms, and their suitability for cell cultures 

7.4 Material surface modifications using fibronectin 

Because fibronectin is known to function as a cell adhesion protein in vivo, it has been 
studied in vitro as a method for improving cell attachment.  It has been used to modify the 
surface of various biomaterials to improve cell attachment to the surface, making it useful 
for tissue engineering. Reports have shown that fibronectin has improved cell retention of 
rat MSC’s on fibronectin-coated surfaces (Dennis and Caplan 1993), increased the adhesive 
strength of cells, which was probably due to the increased number of bonds between 
fibroblasts and fibronectin-coated glass slides (Athanassiou and Deligianni 2001). Other 
studies concluded that braided PLLA and PLAGA polymers coated with fibronectin 

(10µg/ml) improved attachment of rabbit ACL cells and effected long term matrix 
production (Lu, Cooper et al. 2005). From the work carried out by Garcia and colleagues, 
their results indicated that cell adhesion strength (in osteosarcoma cells) increased on glass 
surfaces in a concentration-dependent fashion as fibronectin concentrations increased from 

www.intechopen.com



 
Tissue Engineering of Ligaments 

 

147 

0.1-1µg/ml.  Plates coated with a concentration of 20µg/ml have been shown to improve 
cell adhesion of human MSC’s in comparison to uncoated plates (Salasznyk, Williams et al. 
2004), being more affective than coatings of collagen I or IV. However, in contrast to 
Salasznyk’s findings, Vohra and colleagues who also used a fibronectin concentration of 
20μg/ml (Vohra, Hennessy et al. 2008), suggested that although the fibronectin coating 
improved cell attachment compared to the negative control, MSC’s preferred to attach to a 
collagen I coating in comparison to the fibronectin and negative control. 

7.5 Bioreactor culture of tissue engineered ligaments 

A bioreactor is a vessel designed to contain cultures, where the environmental conditions 
can be optimised and carefully controlled to encourage certain biological and biochemical 
processes to take place (Martin, Wendt et al. 2004). Currently, many different types of 
bioreactors exist. They can be used to improve mass transfer of nutrients, waste products 
and oxygen through the culture medium, improve cell attachment, cell growth and 
proliferation. Bioreactors have been used in tissue engineering to apply mechanical forces to 
cell constructs (mechanical loading), and reported to promote differentiation of 
mesenchymal stem cells (MSC) into ligament fibroblasts (Zhang, Wang et al. 2004; Meyer, 
Buchter et al. 2005), induce alignment of fibroblasts with the direction of the applied force, 
upregulate mRNA expression of key ligament genes and produce helically organized 
collagen fibres (Altman, Horan et al. 2001). Mechanical conditioning can also be used to 
improve the structural and functional properties of a tissue once it has been engineered. 
Only those bioreactors related to ligament tissue engineering will be discussed here.  
When forces are applied to cells, the magnitude of the applied force, the way in which it is 
applied (constantly or alternating), the duration of time and the direction of forces 
(translational or rotational) will have a specific effect upon cell behaviour. These complex 
forces are experienced by the native tissue under physiological conditions. A specific 
combination or sequence of any of these can influence the cell to give a positive or negative 
response. Therefore variations in mechanical loading regimens can affect and alter the gene 
expression, and hence protein production and regulate tissue formation (Nesic, Whiteside et 
al. 2006).  

8. Response of cells to mechanical stimuli in vitro 

Many in vitro studies investigating the affects of mechanical loading have been performed 
with bioreactors. Kaplan and colleagues used a bioreactor to apply mechanical stimulation 
to mesenchymal progenitor cells seeded into a collagen 3-D gel matrix. The bioreactor 
applied multidimensional forces concurrently - translational (2mm) + rotational (90o) - at a 
frequency of 0.0167 Hz (one complete cycle of stress and relaxation per minute) constantly 
for 21 days, which was chosen to mimic the unique combination of forces experienced by 
the ligament under physiological conditions in vivo (Altman, Horan et al. 2001). Their 
results induced cell alignment parallel to the direction of the stretching force with an 
elongated cell morphology, mRNA expression of specific genes (type I and III collagen, 
tenascin-c and fibronectin), helically organized type I collagen fibres orientated in the 
direction of force, with the selective differentiation of human MSC’s into a ligament cell 
lineage rather than towards alternative lineages. The controls (non- loaded cells), showed 
few of these features. They concluded that “the mechanical forces could play a role in 
differentiation and not just promote formation of specific tissue types from the already 
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Cell type 

 
TGF 

concentration 

 
Combined with 

other GF’s 

 
Effects 

 
Author 

MSC hr TGF-β1 
10ng/ml 
Static culture 

 10ng/ml increased GAG 
expression & 
proliferation after 
14days, whereas 0.1-
1ng/ml did not. 

(Chen, Tsai et 
al. 2005)  

h ACL 
explants 

TGF-β1 
0.6ng/ml 
Static culture 

Ascorbic acid 
25ug/ml 

Cell number increased. 
Collagen production 
increased by 3 times. 

(Meaney 
Murray, Rice 
et al. 2003)  
 

h MSC TGF-β 
5ng/ml 
Static culture 
 
 

TGF+Insulin 
 
Adding ascorbic 
acid to TGF 
promoted 
greatest ratio of 
collagen:  total 
protein 
production 

TGF alone encouraged 
differentiation into 
fibroblasts (regarding 
morphology & 
alignment). Collagen 1 & 
3 express increased. 
Negligible expression of 
BSP & OSP. 

(Moreau, 
Chen et al. 
2005)  
 

h MSC TGF-β 
0.1, 0.5, 1, 5 
ng/ml 
Static culture 

 Proliferation rate 
increased as 
concentration increased 
(0.1-5ng/ml). 
1ng/ml TGF + FCS 
increased matrix 
production. 

(Locklin, 
Oreffo et al. 
1998) 
 

Rabbit ACL 
fibroblasts 

TGF-β1 
0.01, 0.1, 1ng/ml
Static culture 

 Increased collagen & 
non-collagenous protein 
synthesis as 
concentration increased, 
highest being at 1ng/ml. 
The increase was mostly 
for collagen 1 which 
increased by 1.5 times. 

(Marui, 
Niyibizi et al. 
1997)  
 

Sheep ACL 
explants 

hr TGF-β1 
10, 50, 100ng/ml
Static culture 

 Increased proliferation 
(seen at 96 hrs). 

(Spindler, 
Imro et al. 
1996)  

Human and 
rabbit 
mesenchymal 
progenitor 
cells 

hr TGF-β1 
Static culture 

 Chondrogenic (Chen, Tsai et 
al. 2005)  
 

Table 7. The effects of TGF-β1 upon fibroblasts and MSC’s 
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9. Response of cells to chemical stimuli in vitro 

During a cells life cycle, the cell needs to receive the appropriate signals at specific time 

points to instruct it to grow, proliferate, differentiate or synthesise ECM. These chemical 

signals are often provided by growth and differentiation factors. They bind the cell surface 

receptors on target cells to activate specific intracellular signalling pathways, controlling cell 

growth, proliferation, migration and differentiation (Quaglia 2008). The effect that a 

differentiation or growth factor has upon a cell can vary depending on the cell type, the 

stage in the cells life cycle and its environmental conditions. Such an example is 

transforming growth factor-β (TGF-β) which can be an inhibitor or stimulator of 

inflammation, or ECM remodelling by inducing mRNA expression of integrins, collagen 

and fibronectin (Evans 1999). 

In order for tissue engineering to be successful, it is necessary to create an artificial 

environment for the cells, and possibly mimic the in vivo environment, to promote 

formation of new tissue. Such an environment can be created by using, not only a suitable 

scaffold or mechanical stimulus, but also a chemical stimulus by incorporating growth 

factors into the culture media (Tabata 2003). From published research work, many authors 

report using various different growth factors such as basic fibroblast growth factor (bFGF), 

platelet derived growth factor (PDGF), transforming growth factor-β1 (TGF- β1), epidermal 

growth factor (EGF) and insulin-like growth factor (IGF) to encourage cells to proliferate, 

differentiate or increase the production of collagen (Schmidt, Georgescu et al. 1995; Spindler, 

Imro et al. 1996; Scherping, Schmidt et al. 1997; Murray, Rice et al. 2003; Pertigliano, 

McAllister et al. 2006). In vitro cell culture studies which used bFGF, PDGF, EGF or TGF-β1 

individually, have shown them to increase the proliferation of ACL fibroblasts (Schmidt, 

Georgescu et al. 1995; Spindler, Imro et al. 1996; Scherping, Schmidt et al. 1997; Murray, Rice 

et al. 2003), whereas a combination of TGF with bFGF or EGF has promoted MSC 

differentiation into fibroblasts (Pertigliano, McAllister et al. 2006). Growth factors have also 

been identified for their roles in regulating healing and repair of connective tissue after 

injury (Spindler, Imro et al. 1996). It is thought that the response of musculoskeletal tissues 

to injury or mechanical stress is modulated by growth factors such as PDGF and TGF-β 

(Spindler, Imro et al. 1996).  

9.1 In vitro studies with TGF-β1 

TGF-β1 has been used in various studies ranging in concentration from 0.1-15ng/ml. 

Specific concentrations have been shown to increase fibroblast proliferation, increase 

collagen production, glycosaminoglycan expression, and encourage MSC’s to differentiate 

into fibroblasts (Spindler, Imro et al. 1996; Locklin, Oreffo et al. 1998; Meaney Murray, Rice 

et al. 2003; Chen, Tsai et al. 2004; Chen, Tsai et al. 2005; Moreau, Chen et al. 2005; Giannouli 

and Kletsas 2006; Marenzara, Wilson-Jones et al. 2006). Table 7 summarises the effects that 

different concentrations of TGF-β1 have had on fibroblasts and MSC’s.  

10. Characterisation of a tissue engineered ligament 

When creating a tissue-engineered ligament, it is important to be aware of the characteristic 

components and properties found in native ligament as a comparing standard for 

functionality (shown in table 1). The ACL characteristics are demonstrated below in table 8. 
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The variation in tensile strength has been correlated to age and gender, where strength and 

stiffness of the ACL has been found to be lower in adult females (Chandrashekar, Mansouri 

et al. 2006), and can also significantly reduce as age increases, being 2-3 times higher in 

younger people, aged 16-26 years, compared to those aged at approximately 60 years old 

(Noyes and Grood 1976).  

 

 
Collagen fibre 
arrangement 

 
Fibroblast 

distribution and 
orientation 

 
Tensile 

strength - 
maximum 
force upon 

ACL at 
failure (N)

 
Maximum 
elongation 
of ACL at 

failure (mm)

 
Stiffness - 
Young’s 
modulus 

of 
elasticity 

(MPa) 

 
Author 

Aligned in a 
fairly parallel 
orientation 
with the 
longitudinal 
axis of the 
ligament 

Sparsely 
distributed 
throughout the 
ECM 
(approximately 
20% if the tissue 
volume), 
aligned on 
collagen fibre 
bundles 

556-1730 
 

8-12 9-13 (Noyes and 
Grood 1976; 
Laurencin, 
Ambrosio et al. 
1999; Azangwe, 
Mathias et al. 
2001; 
Chandrashekar, 
Mansouri et al. 
2006; Doroski, 
Brink et al. 2007) 

Table 8. Fibre organisation and mechanical properties of the ACL 

11. Conclusions  

Tissue engineering of ligaments is still in its early stages, but its prospects have great 
potential. Tissue engineering has the ability to overcome the limitations of autografts and 
allografts by generating a tissue with the correct structural and biomechanical properties for 
a more successful transplant, hopefully giving a better long-term mechanical performance. 
The benefits of using autologous cells from the patient reduces the risk of tissue rejection or 
transmission of infectious diseases associated with allografts, and also avoids donor site 
morbidity associated with allografts. Advances in research in this area continue to optimise 
a combination of the factors discussed in this chapter such as choice of biomaterial, cell type 
and stimuli for potential synergistic effects. 
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