
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Analysis of Error Propagation
Between Software Processes

Sizarta Sarshar
Institute for Energy Technology

Norway

1. Introduction

All software systems can contain faults. In critical systems, this problem is alleviated by

controlling the possible effects of a fault being executed, typically through techniques for

achieving fault tolerance. Ensuring that failures are properly isolated, and not allowed to

propagate, is essential when developing critical systems.

In much of the research on error propagation analysis the focus has been on probabilistic

models. While these models are well suited for quantitative analysis, they are usually not

very specific with regard to the actual mechanisms that might allow a failure to propagate

between entities. Quantitative analysis is often applied on code level and not seen as

influenced by and in conjunction with the operating system. A more detailed insight into the

actual mechanisms can be beneficial to decide whether or not error propagation is a concern

for a given source code.

A method for studying mechanisms of error propagation between software processes was

proposed in (Sarshar, 2007). This chapter describes the method, which (1) facilitates the

study of error propagation between software processes; (2) identifies mechanisms for error

propagation; and (3) provides means to determine whether these can be automatically

detected by a static analyser. In this context a process represents a program in execution,

typically managed by an operating system. Processes can communicate with each other via

inter-process communication and their shared resources. Examples of shared resources can

be the operating system itself and the memory. The analysed problem is how one process

can cause another process to fail and concerns interaction methods available in the source

code of a program. The work criteria and scope are described in the following:

• Consider processes running on a single CPU computer with an operating system.

• The method should only require the source code and minimal manual input to work.

• The source code must compile without any errors prior to the analysis.

• The primary interest is to determine whether error propagation is a concern or not.

This chapter further reports on the applicability of the method in a case where a module of a

core surveillance framework named SCORPIO has been analysed. The framework is a

support system for nuclear power plants supporting monitoring and prediction of core

conditions.

Some of the terminologies used in this chapter are briefly described in the following (Storey,

1996):

www.intechopen.com

Nuclear Power - System Simulations and Operation

70

• A fault – is a defect within the system.

• An error – is a deviation from the required operation of the system or subsystem.

• A system failure – occurs when the system fails to perform its required function.
This chapter is structured as follows: Section 2 gives a definition of error propagation,
describes the mechanisms of error propagation, and previous work on the topic. Section 3
describes the proposed method for studying error propagation between software processes.
Section 4 reports on the applicability of the method on one module of the SCORPIO
framework. Section 5 addresses the main results. Section 6 discusses the work while section
7 provides conclusions and comments on future work.

2. Background

This section gives a definition of error propagation, describes the mechanisms of error
propagation, operating systems and related work on the topic.

2.1 Error propagation

In our work, error propagation is defined as the situation where an error (or failure)
propagates from one entity to another (Sarshar et al., 2007). Errors can propagate between
different types of entities, including: physical entities, processes running on single or
multiple CPUs, data objects in a database, functions in a program, and statements in a
program. Our approach concerns propagation of errors between processes running on a
single CPU computer.
Systems of interest in our work have not been limited to those that are safety critical only,
e.g. systems that are directly involved in controlling a nuclear reactor. A problem of
particular interest is the possible negative effect a low criticality application might have on a
higher criticality application by means of error propagation because they share common
resources.
Programs make use of interaction methods provided by the underlying operating system to
communicate with each other, or make use of shared resources. These services are provided
through the system call interface of the operating system, and are usually wrapped in
functions available using standard libraries. Such interaction methods can cause errors and
provide mechanisms for error propagation. A coding fault which may be manifested as an
error may in principle be anything, e.g. an incorrect instruction or an erroneous data value.
It may be manifested inside a local function or an external function. The propagated error
need not be of the same type in different functions, e.g. an instruction error in one function
realization causes a data error in another. Even if an error is propagated to one function, this
does not necessarily mean that the source function fails functionally. The propagated error
may only be a side-effect in this function. Another type of error related to function usage is
error caused by passing illegal arguments to functions or misusing their return variables.
Error propagation between two programs may occur even if both programs individually
operate functionally correct. This can e.g. be caused by erroneous side effect in the
implementation or execution of the programs. There are two situations possible for how one
process can cause another process to fail:

• One process experiences a failure, which then causes another process to fail.

• One process propagates a fault to another process while not failing itself.
According to (Fredriksen & Winther, 2007), possible ways of characterizing error
propagation is as either intended or unintended communication or as resource conflicts.

www.intechopen.com

Analysis of Error Propagation Between Software Processes

71

Error propagation in intended communication channels might consist of erroneous data
transfer through parameters or global variables. Writing to the wrong addresses in memory,
due e.g. to faulty pointers, exemplifies error propagation through unintended channels.
Processes that demand high processor load so that other processes cannot execute are
examples of resource conflicts which could cause error propagation. This indicates that error
propagation between functions can occur in at least two ways:

• An error in one function is transferred via a communication channel to another
function, for example through passing of arguments or return value.

• The execution of one function interacts with another function in an unintended and
incorrect way, due to an error, and causes the second function to fail.

Thus error propagation can take place via the intended communication channels, i.e. those
that are used by the set of functions to fulfil their tasks. It is also possible that an error in one
function generates a communication channel that is not intended and propagates the error
through this.

2.2 Operating systems

The references (Nutt, 2004; Bacon & Harris, 2003; Bic & Shaw, 2003; Tanenbaum &
Woodhull, 2006; Stallings, 2005) cover the basic principles of a number of important
operating systems.
With respect to the Linux operating system and its kernel, one source to its understanding is
given in (Bovet & Cesati, 2003). Here, the authors describe the kernel components from how
they are built to how they work. (Beck et al., 2002) explains what is in the kernel, and how to
write kernel code or a kernel module. The work in (Bic & Shaw, 2003) explains process
management and interaction in the UNIX operating system, and in (Pinkert & Wear, 1989),
the authors describe all major components of an operating system down to the pseudo code
level. The authors employ a generic approach and present the fundamental concepts
involved, alternative policies from which a designer can choose, and illustrative
mechanisms for implementing selected policies.
In (Kropp et al., 1998), the Ballista methodology is applied on several implementations of the
POSIX operating system C language API. The methodology is for automatic creation and
execution of invalid input robustness tests designed to detect crashes and hangs caused by
invalid inputs to function calls. The Ballista POSIX robustness test suite was ported to ten
operating systems where even in the best case, about half of the functions had at least one
robustness failure. The results illustrate that error propagation is a concern in operating
systems.
A study of operating system errors found by automatic and static compiler analysis applied
to the Linux and OpenBSD kernels is reported in (Chou et al., 2001). Static analysis is
applied uniformly to the entire kernel source. The scope of errors in the study is limited to
those found by their automatic tools. These bugs are mostly straightforward source-level
errors. They do not directly track problems with performance, high-level design, user space
programs, or other facets of a complete system. (Engler et al., 2000) examines features of
operating system errors found automatically by compiler extensions. Some of the results
they present include the distribution of errors in the kernel: the vast majority of bugs are in
drivers.
Our approach focuses on analysing user space programs. We examine how the operating
system manages processes and provides services to user programs through the system call
interface, but we do not analyse its code. We assume that the operating system performs its

www.intechopen.com

Nuclear Power - System Simulations and Operation

72

intended functions correctly and that it is implemented correctly. Instead, we analyse the
system call interface and other process interaction mechanisms to identify whether these
may cause error propagation.

2.3 Related work

Error propagation analysis has to a large extent been focused on probabilistic approaches

(Hiller et al., 2001, Jhumka et al., 2001; Nassar et al., 2004; Abdelmoez et al., 2004) and model

based approaches (Voas, 1997; Michael & Jones, 1997; Goradia, 1993).

In (Hiller et al., 2001), the concept of error permeability is introduced as a basic measure

upon which a set of related measures is defined. These measures guide the process of

analysing the vulnerability of software to find the modules that are most likely to propagate

errors. Based on the analysis performed with error permeability and its related measures,

how to select suitable locations for error detection mechanisms (EDMs) and error recovery

mechanisms (ERMs) are described. Furthermore, a method for experimental estimation of

error permeability, based in fault injection, is described and the software of a real embedded

control system analysed to show the type of results obtainable by the analysis framework.

The results show that the developed framework is very useful for analysing error

propagation and software vulnerability, and for deciding where to place EDMs and ERMs.

The paper (Jhumka et al., 2001), assess the impact of inter-modular error propagation

between embedded software systems. They develop an analytical framework which enables

to systematically design software modules so the inter-modular error propagation is

reduced by design. The framework is developed using influence and separation metrics,

then the framework is validated using fault injection experiments, which artificially inject

faults and errors into the system. Influence metric is in their paper referred to as the

probability of a module directly influencing another module, i.e., when no other module is

considered while separation metric is referred to as the probability of a module not

influencing another one when all other modules are considered. The results showed that the

analytical framework can predict the influence value between a pair of modules very

accurately.
The study of software architectures is an important discipline in software engineering, due
to its emphasis on large scale composition of software products, and its support for
emerging software engineering paradigms such as product line engineering, component
based software engineering, and software evolution. Architectural attributes differ from
code-level software attributes in that they focus on the level of components and connectors,
and that they are meaningful for architecture. In (Abdelmoez et al., 2004), focus is on a
specific architectural attribute, which is the error propagation probability throughout the
architecture, e.g. the probability that an error arising in one component propagates to other
components. Formulas for estimating these probabilities using architectural level
information are introduced, analysed, and validated.
In (Voas, 1997), error propagation between commercial-off-the-shelf (COTS) components is
analysed using an approach termed interface propagation analysis (IPA). IPA is a fault-
injection based technique for injecting ’garbage’ into the interfaces between components and
then observing how that garbage propagates through the system. An example, if component
A produces information that is input to component B, then the information is corrupted
using fault injection techniques. This simulates the failure of component A. After this
corrupt information is passed into B, IPA analyses the behaviour of B (or components

www.intechopen.com

Analysis of Error Propagation Between Software Processes

73

executed after B) to the information. IPA analyses the behaviour of a component by looking
for specific outputs that the user wants to be on the lookout for.
(Michael & Jones, 1997) presents an empirical study of an important aspect of software
defect behaviour: the propagation of data-state errors. A data-state error occurs when a fault
is executed and affects a program’s data-state, and it is said to propagate if it affects the
outcome of the execution. The results show that data-state errors appear to have a property
that is quite useful when simulating faulty code: for a given input, it appears that either all
data state errors injected at a given location tends to propagate to the output, or else none of
them do. These results are interesting, because of what they indicate about the behaviour of
data-state errors in software. They suggest that data state errors behave in an orderly way,
and that the behaviour of software may not be as unpredictable as it could theoretically be.
Additionally, if all faults behave the same for a given input and a given location, then one
can use simulation to get a good picture of how faults behave, regardless of whether the
simulated faults are representative of real faults.
Goradia (Goradia, 1993) addresses test effectiveness, i.e. the ability of a test to detect faults.
This thesis suggests an analytical approach, introducing a technique of dynamic impact
analysis using impact graphs to estimate the error propagation behaviour of various
potential sources of errors in the execution. The empirical results in the thesis provide
evidence indicating a strong correlation between impact strength and error propagation.
The time complexity of dynamic impact analysis is shown to be linear with respect to the
original execution time and experimental measurements indicate that the constant
proportionality is a small number ranging from 2.5 to 14.5. Together these results indicate
that they have been fairly successful in their goal of designing a cost effective technique to
estimate error propagation. However, they also indicate that to reach the full potential
benefits of the technique the accuracy of the estimate needs to be improved significantly. In
particular, better heuristics are needed for handling reference impact and program
components tolerant to errors in control paths.
Research on error propagation has identified frameworks and techniques for estimating
error propagation, e.g. in (Jhumka et al., 2001; Goradia, 1993). In difference, our goal is to
identify sources and mechanisms for error propagation in order to identify potential error
propagation scenarios and remove the failures to improve software.

3. Method of analysis

A method for analysing the interfaces between processes and their shared resources in the
search for mechanisms for error propagation is provided in (Sarshar, 2007; Sarshar et al.,
2007). This section describes this method which starts out by investigating how processes
are managed in the relevant operating system, enabling us to identify process characteristics
relevant to error propagation. The output of this step includes a list of system calls in the
system call interface of the operating system. Secondly, the identified interaction methods
are analysed using Failure Mode and Effect Analysis (FMEA) (Stamatis, 1995). This
approach helps to identify types of code characteristics that might be a concern in relation to
error propagation. The method of analysis can be summarized in three steps:
1. Examination of the operating system for how it interacts with and manages processes to

obtain an overview of e.g. a list of system calls and common resources;
2. Analysis of the interaction methods using Failure Mode and Effect Analysis (FMEA) to

identify possible faults that can cause error propagation to occur; and

www.intechopen.com

Nuclear Power - System Simulations and Operation

74

3. Determination of how the mechanisms can be recognized in source code.
The method was developed for C code under the Linux operating system as a case. C was
chosen because it is a widely used programming language and Linux because it is an open
source operating system. In section 4, the method is applied on one module of the SCORPIO
framework.

3.1 How processes run in operating systems

Processes are managed by the operating system. An operating system provides a variety of
services that programs can utilise using special instructions called system calls. The typical
functions of an operating systems kernel are: process management, memory management,
input and output management, and support functions. In Linux, the kernel components
managing processes are the following:

• Signals: the kernel uses signals to call into a process.

• System calls (explained below).

• Process manager and scheduler: creates, manages and schedules processes.

• Virtual memory: allocates and manages virtual memory for processes.
A process interface to the operating system is either a result of the use of system calls or
through direct memory access. Use of a pointer in the C language is an example of accessing
memory without the use of the system call interface. In Linux, system calls are implemented
in the kernel. When a program makes a system call, the arguments are handled in the
kernel, which takes over the execution of the program until the call completes (Mitchell et
al., 2001). System calls are usually wrapped in the standard C library and may require some
parameters and return a value. Examples of system calls are low-level input and output
functions, such as open() and read(). The system calls of Linux can be grouped into the
following categories (Silberschatz et al., 2005; Bic & Shaw, 2003):

• Process management: create/terminate process, load, execute, end, abort, get/set
process attributes, wait for time, wait/signal event, allocate and free memory.

• File management: create/delete file, open, close, read, write, reposition, get/set file
attributes.

• Device management: request/release device, read, write, reposition, get/set attributes,
logically attach or detach device.

• Inter-process communication: the transfer of data among processes.

• Communications: create, delete connection, end, receive messages, transfer status
information, attach or detach remote device.

• Miscellaneous services: get/set time or date, system data.
The essence of our approach is to identify mechanisms for error propagation that have
characteristics detectable when analysing source code. We can therefore narrow down our
scope to include those parts of the operating system which fulfil this requirement. The
kernel components that allow interaction directly in source code of a program include the
system call interface and signals. Language specific traps and pitfalls (Hatton, 1995; Koenig,
1989) might also open ways for an error to propagate. Programming errors can give
variables incorrect values that can lead to failures. Our analysis does not specifically address
general programming errors, but errors related to invoking system calls.
We focus here on programs written to run in user space, and exclude programs written for
kernel space, as they have their own kernel API which provide services for kernel
programming.

www.intechopen.com

Analysis of Error Propagation Between Software Processes

75

Figure 1 shows a simple illustration of the channels available in source code of a program
for interaction with the operating system and its resources. These include the system call
interface, signals, and traps and faults, with arrows indicating the interactions.

Hardware

Operating system

System call interface Signals

CPU

Traps & Faults

Exceptions

ReturnSystem call Signal

Source code of a program

Language faults

I/O

Interrupts

Interrupt
handler

Event

Fig. 1. Illustration of the interaction methods of the operating system on processes

An interrupt is a condition that can cause the normal execution of instructions to be altered.
Interrupts and exceptions are known as signals and are used to notify a process of certain
faults by the kernel (Pinkert & Wear, 1989):

• Completion of an input or output operation.

• Division by zero.

• Arithmetic overflow or underflow.

• Arrival of a message from another system.

• Passage of an amount of time.

• Power failure.

• Memory parity error.

• Memory protect violation.
A signal might also be altered from another program using the system call interface.
In source code, interaction with the operating system is only available through the system
call interface. It is therefore not necessary to examine how processes are handled and
managed at deeper levels.

3.2 Identify system call failures causing error propagation

In the proposed method, each system call is analysed using FMEA. The purpose is to
identify failure modes that can cause errors to propagate to other processes or the operating
system. The focus in this analysis is on failure modes that have characteristics in the source
code of a program.
FMEA is a well-known analysis method for risk and reliability analysis. The basis for this
analysis is a description of a system in terms of its components and the communication
between them. For each of the components in the system, the aim is to identify all potential

www.intechopen.com

Nuclear Power - System Simulations and Operation

76

modes of failure, by investigating the following questions for each component and
communication unit, based on the FMEA framework:

• What can go wrong? (failure mode)

• How can this occur? (failure cause/mechanism)

• Which consequences will this have on the further actions and messages? (failure effects
via error propagation)

In our method, the FMEA is targeted on the system call as a component and the focus is on
its usage in source code of a program. Once the failure modes have been identified, we
determine their potential effects on local and system processes to determine whether any of
these can cause error propagation. This can be done in two ways:

• The effect is described in the system call documentation as an error the function can
return.

• The effect is determined using fault injection in test programs.
The failure effects will provide information on the severity of failures and help us provide
possible mitigation actions.

3.3 Identify the failure mode characteristics in source code

The aim of step three of the method is to determine whether the failure modes identified in
the previous step are present in the source code of a program. For each failure mode that can
cause error propagation, we determine its characteristics in code so it can be detected when
analysing an application’s source code. We then examine some existing code analysis tools
to check whether any of these will recognise the failure modes, and if they do, determine
whether they identify all of them. The next step is to develop an algorithm for identifying
the failure modes in source code, including how to traverse and check the code for the
identified failures. The result is a prototype tool which demonstrates that failures causing
error propagation can be detected by analysing source code.
The steps of the method are performed only once for an operating system and programming
language combination. The prototype tool is run for each application source code we wish
to analyse for error propagation.

4. Case on SCORPIO

SCORPIO (Surveillance of reactor CORe by Picture On-line display) is a core surveillance
framework for nuclear power plants, and is developed at the Institute for Energy
Technology (IFE). The framework is a support system for the monitoring and prediction of
pressurized water reactors (PWR), boiling water reactors (BWR) and VVER (Russian design
series of PWRs) core conditions and is running on several reactors worldwide (Barmsnes et
al., 1997). The framework has passed established system tests including factory acceptance
testing and site acceptance testing.
The general SCORPIO framework is illustrated in Figure 2. The module administrator is a
program that connects the modules to the graphical user interface made using ProcSee (IFE,
2010). ProcSee is a versatile software tool for developing and displaying dynamic graphical
user interfaces, particularly aimed at process monitoring and control. All data exchanged
between the modules and the operator is transmitted through this program. The Software
Bus handles the communication between all modules. In the case study, the input data
processing (IDATP) module of the framework has been assessed. The IDATP module
consists of 30 files and approximately 5300 lines of code.

www.intechopen.com

Analysis of Error Propagation Between Software Processes

77

Module
Administrator

Graphical
User Interface

ProcSee

Module 1:
IDATP

Software
Bus

Software
Bus

Module n

Software
Bus

Module ...

Fig. 2. The general SCORPIO framework

The source code of the IDATP module is first examined to identify which calls it performs to
system and library functions. The attributes passed to these external functions and the
values retrieved are stored for later analysis.

Function System call Library call Description

close x Close a file descriptor

execvp x Execute file

fclose x Close a stream file

fopen x Open a stream file; convert file to stream

fprintf x
Formatted output conversion to a given
stream

fscanf x Input format conversion

memcpy x
Copies n bytes from memory area source
to memory area destination

memset x Fill memory with a constant byte

pipe x Creates a pair of file descriptors

printf x
Formatted output conversion to
standard out stream

shmget x Allocate a new shared memory segment

signal x Signal handling

sprintf x
Formatted output conversion to a given
character string

sscanf x Input format conversion

strcat x Concatenate two strings

strcmp x Compare two strings

strlcpy x Copy string

strlen x Calculate length of string

strncmp x Compare two strings

Table 1. Analysed system and library calls

www.intechopen.com

Nuclear Power - System Simulations and Operation

78

4.1 Applying the analysis

Each system and library function of the IDATP module is analysed using FMEA with focus
on identifying failure modes that can cause the module or the system itself to encounter
failure. A failure mode specifies how an entity may fail. An entity may be e.g. a variable,
used as either an argument passed to a function or used as a return variable.
The system manuals for these calls form the basis for this analysis. The IDATP module
makes use of several system and library calls. A subset of 19 of these functions, listed in
Table 1, were analysed using FMEA.
To exemplify the analysis, we focus on the shmget() system call to demonstrate the usage of
the method in the following. Thus emphasis is on the steps involved in performing the
analysis and understanding the analysis object.
The shmget() system call creates or allocates a new shared memory segment for inter-
process communication (IPC) between processes. This IPC provides a channel for
communication between processes using the memory. The main services related to shared
memory are shmget(), shmat(), shmctl(), and shmdt(). Other calls related to shared memory
include services for managing semaphores. The relation between these calls are as follows:
A process starts by issuing a shmget() system call to create a new shared memory with the
required size. After obtaining the IPC resource identifier, the process invokes the shmat()
system call, which returns the starting address of the new region within the process address
space. When the process wishes to detach the shared memory from its address space, it
invokes the shmdt() system call.
We begin with an examination of the system call documentation and then perform FMEA
on the function. When performing the analysis, the aim is to identify failure modes caused
by wrong usage of the service in source code, and determine their effects on local and
system processes. The focus is on those failure modes causing error propagation.
The synopsis for the shmget() function:

include <sys/types.h>
int shmget(key_t key, size_t size, int shmflg);

The shmget() function returns the identifier of the shared memory segment associated with
the value of the argument key. A new shared memory segment, with size equal to the value
of size rounded up to a multiple of PAGE_SIZE, is created if:

• key has the value IPC_PRIVATE, or

• key is not IPC_PRIVATE, no shared memory segment corresponding to key exists, and
IPC_CREAT is specified in shmflg

PAGE_SIZE, IPC_PRIVATE and IPC_CREAT are definitions within the operating system.
IPC_PRIVATE is not a flag field but a key_t type. If this special value is used for key the
system call ignores everything but the least significant 9 bits of shmflg and creates a new
shared memory segment, on success. The value of shmflg’s least significant 9 bits specify the
permission mode, the permissions granted to the owner, group, and world.
The FMEA process starts with identifying failure modes. Table 2 illustrates identified failure
modes for the shmflg parameter of shmget(). This is an excerpt from the complete FMEA
sheet for this function.
For each identified failure mode, we now examine its effects on the process itself (indicates
“local effect” in the FMEA sheet) and on other processes (indicates “system effect” in the
FMEA form). Some of these failure modes are detected by the system call; the function exits

www.intechopen.com

Analysis of Error Propagation Between Software Processes

79

with return value equal to -1, which indicates an error, and the external variable errno is set
appropriately. Many of these are described in the manual pages and can be identified as the
failure effect on the local process. However, not all failure modes are represented as error
cases in the manual pages. We make use of test programs to identify these.

Reference Variable Failure mode

F.29.3.A Parameter shmflg Not specified at all

F.29.3.B Parameter shmflg
Is not one of IPC_CREAT, IPC_EXCL, SHM_HUGETLB
or SHM_NORESERVE

F.29.3.C Parameter shmflg Is of wrong type

F.29.3.D Parameter shmflg No permission mode is set

F.29.3.E Parameter shmflg
Access permission is given to all users, instead of user
only

F.29.3.F Parameter shmflg Permission mode is write when it should have been read

F.29.3.G Parameter shmflg Permission mode is read when it should have been write

F.29.3.H Parameter shmflg Permission mode is set without user access

F.29.3.I Parameter shmflg IPC_EXCL specified without IPC_CREAT

F.29.3.J Parameter shmflg
Wrong flag specified i.e. IPC_CREAT | IPC_EXCL when
not intended

Table 2. Failure modes for parameter shmflg for the shmget() system call

A test program is written to execute a failure mode while the failure effect is monitored.
Such test programs have the possibility to execute an injected failure mode.
Based on such test programs one can determine the effect of failure modes. E.g. the effect for
failure mode F.29.3.D ”no permission mode is set” was determined to be: no processes can
access the shared memory segment unless they are privileged. Checking the value of the
parameter shmflg to identify whether the permission mode is set is easily done performing
static analysis, thus this failure mode can be detected in source code.
Table 3 shows the complete FMEA for the failure modes related to the shmflg parameter of
shmget() from Table 2.
Similarly, the remaining system and library calls are analysed. The failure modes identified
in the analysis of these calls are related to passing of arguments and handling return values,
and can be grouped as follows:

• Argument refers to uninitialized variable/pointer.
• Argument is of different type than specified in function definition.
• Argument refers to null-pointer.
• Argument is freed.

• Argument refers outside an arrays size.
• Argument is an array of chars which is not null-terminated when required.
• Return value is not retrieved from a non-void function.
• Return value is not checked to determine successful call.

• Return value is not used in scope.
These failure modes are then compared with the checks that existing tools perform to
determine whether any of these are present in their checks.

www.intechopen.com

Nuclear Power - System Simulations and Operation

80

Ref. Failure mode Local effect System effect Conclusion

F.29.3.A Not specified at all - - Does not compile

F.29.3.B Is not one of
IPC_CREAT,
IPC_EXCL,
SHM_HUGETLB or
SHM_NORESERVE

Unknown flag and
permission is set

Segment may not
be created or
accessed

Detectability in
source code must
be determined

F.29.3.C Is of wrong type Uses the int value
of the type if
possible, unknown
flag and
permissions are
set on segment

Segment may not
be created or
accessed

Detectable in
source code

F.29.3.D No permission mode is
set

The process
cannot access the
shared memory
segment unless it
is run in
privileged mode

Other processes
cannot access the
shared memory
segment unless
they are run in
privileged mode

Detectable in
source code

F.29.3.E Access permission is
given to all users,
instead of user only

- Other users can
access the shared
segment

Detectability in
source code must
be determined

F.29.3.F Permission mode is
write when it should
have been read

Can write to
segment when not
intended

Other processes
can write to
segment when
not intended

Detectability in
source code must
be determined

F.29.3.G Permission mode is
read when it should
have been write

Cannot write to
segment

Other processes
cannot write to
segment

Detectability in
source code must
be determined

F.29.3.H Permission mode is set
without user access

The process
cannot access the
shared segment
unless it is run in
privileged mode

- Detectable in
source code

F.29.3.I IPC_EXCL specified
without IPC_CREAT

Exits with error if
segment already
exists

- Detectable in
source code

F.29.3.J Wrong flag specified
i.e. IPC_CREAT |
IPC_EXCL when not
intended

Tries to create
instead of getting
identifier for the
shared segment

- Detectability in
source code must
be determined

Table 3. Example of FMEA for the parameter shmflg of the shmget() system call

www.intechopen.com

Analysis of Error Propagation Between Software Processes

81

4.2 Analysis tools

There are several existing analysis tools which identify different types of errors. These tools
include both static and dynamic analysis methods. In (Sarshar, 2007), over 20 tools were
examined and compared to determine what kind of errors they detect. Of these tools, one
group performs checks on passing of arguments, another group warns if a return value is
not retrieved and a third group warns about sequential issues. The tool Splint (Secure
Programming Lint, 2008) was the only tool which gave warnings on all three groups.
Therefore, Splint was chosen for assessment of our source code in part three. None of the
tools performed checks on argument values and they did not check all argument types to be
correct.
Based on the available documentation on existing analysis tools, we assume that some

tools can check arguments and some tools can check the return value for the following

issues:

• Types – assignment of variables, passing arguments of different type than function

expects.

• Null pointers – a common cause of failures is when a null pointer is dereferenced.

• Definitions – all function parameters and global variables used by a function must be

defined before a call, and the return value must be defined after the call.

• Allocations – concerns: reallocating storage when there are other live references to the

same storage, or failing to reallocate storage before the last reference to it is lost.

• Aliasing – program errors often result when there us unexpected aliasing between

parameters, return value, and global variables.

An important difference between the identified failure modes from the FMEA and the

checks existing tools perform is to check a variable value in the context of the relevant

function it is passed to. E.g. the system call shmget() has an argument of type size_t; As a

data type, the variable must be checked to be of correct type and its value must be checked

to be within the variable limits. Most existing analysis tools do these checks. But, in the

context of the function the argument is passed to, the variable must be checked to determine

e.g. whether its value is smaller than the maximum size of a shared memory segment (set by

the operating system).
The next step was to assess the source code for the identified failure modes that existing
tools do not check for. To automate this process, we made use of a prototype tool described
in (Sarshar & Winther, 2008). The tool was modified for this study and its purpose was to
identify different attributes for each argument that was passed to a given function. If
statically detectable, the following attributes were determined; the argument type, value,
name, whether it was an array and if so, its size. This information was used as input to
check the arguments for the potential failure modes. Several of these checks were
automated; however, a majority was done manually by examination of the argument
attributes against the FMEA sheets for each function.
Splint was also applied on the source code of our case study with the checks described in the
list above. However, the tool can also do more powerful checks enabled by source code
annotations. Annotations are stylized comments that documents assumptions about
functions, variables, parameters and types and follow a predefined syntax. To use the more
powerful checks, the source code must be edited to add notations. This requires time and
effort and was not applied in this case study. The use of annotations for more powerful
checks applies to most static analysis tools.

www.intechopen.com

Nuclear Power - System Simulations and Operation

82

5. Results

A subset of 19 external calls has been analysed using FMEA to identify potential failure

modes that can cause a process to fail or propagate error. The examined functions were

called 309 places in the source code.

In 242 of the cases, the return value from an external call was not retrieved or checked. In

general, the return value often indicates whether a function succeeded or failed for some

reason. If such failure is not handled, unexpected runtime errors can occur in a software

system. As an example, consider an application which writes some data to a file regularly.

The file is opened for reading successfully and the write function is called without checking

its return value. If the file was inaccessible (e.g. lost connection to server) the write function

would return a value indicating an error. If the error is not handled explicitly, a runtime

error may occur. Such an error often causes the operating system to give an error message to

the user and then terminates the application that caused the error. All unsaved data will be

lost in such events. However, not all calls are this crucial; it is more vital that the return

value from an open or write function is handled than the return value of a print to screen

function. 76 of the ignored return cases were for a print function.

Several of the examined functions had potential failure modes regarding the content of

arguments they receive. In example, char arrays passed to a group of functions must be null-

terminated and for another group they must not contain a given character. Our assessment

of the code did not identify any of these failure modes in the module.

The source code was also assessed using the tool Splint which gave near 2000 warnings on

the source code of the module. Table 4 (Sarshar, 2009) presents warnings given by Splint

and number of instances. In general, the tool reports many false positive warnings (which

add noise to the results and make it harder to spot the real problems). Though the number

of cases for the warnings on incompatible types and dangerous comparison are equal, there

is no relation between them.

Warning on Cases

Incompatible types 444

Dangerous comparison 444

Variable declared but not used 50

Value used before definition 160

Variable initialized to null value 14

Dangerous assignments 237

Test expression issues 163

Storage not released before return 37

Return value ignored 212

Possible buffer overflow with sprintf() 23

Arrow access of non-pointer 54

Other warnings 162

Table 4. Group of warnings given by the tool Splint

www.intechopen.com

Analysis of Error Propagation Between Software Processes

83

Assessment of many existing systems in the industry can only be performed on the available
source code, and often, the specification is not available. This is where static analysis is
useful, some tools only need the source code to perform their analysis. However, if
annotations are necessary to perform an assessment, expertise on the system is required.
The method proposed to use FMEA on system calls to identify potential failure modes and
then assess the source code for these potential failures. The intention was not to develop yet
another tool, therefore the identified failure modes were checked against the ones that
existing tools check. An interesting approach would be, if possible, to write these failure
modes as additional checks for existing tools. A disadvantage of the FMEA analysis is that it
only identifies a small fraction of the potential failure modes and it requires expert
knowledge on the system calls.
System and library calls are complex functions which interact with the kernel of the
operating system. The process of analysing such functions takes time and effort, but it only
needs to be performed once for each function. The result from this analysis indicates that it
is necessary to examine the source code of applications for failures related to system call
usage.
The source code of the input data processing module of the SCORPIO framework was
assessed using our approach and using the tool Splint. The user of analysis tools must be
critical to the results as all vulnerabilities are not guaranteed to be found, and identified
vulnerabilities are not all real problems. Splint gave a lot of warnings which were false
positives while the checks from the FMEA performed by us gave few false positives. The
reason for this is that we used a prototype tool to help us identify variable attributes, but the
checks were done manually. Performing manual checks is time consuming, but reduces the
chance of false positives since the analyser is required to have insight of the application.
Furthermore, it is difficult, if not impossible, to control and check the value of variables that
are passed to system services when performing static analysis.
Through the process of analysing the source code of the module, failure modes with the
potential to cause harm at runtime as an effect of fault triggering and error propagation
have been identified. These failure modes are related to usage of services provided by the
underlying operating system. Though the arguments sent to such functions are valid and in
accordance with the documentation, the majority of the potential failure modes detected in
the code were related to handling of return values from these functions.
We did not expect that this assessment would identify any serious failures in the code, and
the result demonstrates that this expectation is valid. Potential failures related to usage of
operating system services would have been identified using our method and none of the
potential failures identified is likely to cause the module to fail. However, taking these
results into account in new releases of the module will reduce its vulnerability.

6. Discussion

The methodology was applied on a subset of system calls, some of them related to shared
memory. This target was found to be suitable because it involved an intended channel for
communication between processes through a shared resource; the memory. We also
performed FMEA on other system calls to evaluate whether the method is applicable to a
wider class of functions and not restricted to those related to shared memory. The errors
identified in this approach are erroneous values in the variables passed to the system call
interface and errors caused when return, or modified, pointer variables are not handled

www.intechopen.com

Nuclear Power - System Simulations and Operation

84

properly. From the analysis we know not only which functions behave non-robustly, but
also the specific input that results in errors and exceptions being thrown by the operating
system. This simplifies identification of the characteristics an error has in code, making it
easier to locate errors.
The method for analysing error propagation between processes primarily focuses on how
the process of interest can interact with and affect the environment (the operating system
and other processes). A complementary approach could be to analyse how a process can be
affected by its (execution) environment. In (Johansson et al., 2007), the authors inject faults
in the interface between drivers and the operating system, and then monitor the effect of
these faults in the application layer. This is an example where processes in the application
layer are affected by their execution environment. Comparing this method to our approach,
it is clear that both methods make use of fault injection to determine different types of
failure effects on user programs. However, the examination in (Johansson et al., 2007) only
concerns incorrect values passed from the driver interface to the operating system. Passing
of incorrect values from one component to another is a mechanism for error propagation
and relates to problems for intended communication channels. Fault injection is just one
method to evaluate process robustness in regards to incorrect values in arguments. In our
work, we examine the failure effects of several mechanisms: passing of arguments and
return values, usage of return values, system-wide limitations, and sequential issues. These
methods complement each other.
Understanding the failure and error propagation mechanisms in software-based systems
will provide the knowledge to develop defences and avoid such mechanisms in software. It
is therefore important to be aware of the limitations for the proposed approach. This
analysis only identifies failure modes related to the usage of system calls in source code.
Other mechanisms for error propagation that do not involve usage of the system call
interface will not be covered by this approach. This approach, however, complements
existing methods and static analysis tools. An infinite loop structure in code is one example
of a failure mode that does not make use of system calls. This failure mode can cause error
propagation because it uses a lot of CPU time/resources.
The FMEA method worked well on system calls and identified failure modes that could
cause error propagation between processes. However, the identified failure modes from the
FMEA do not apply directly to other operating systems. A new analysis must be performed
for a new programming language and operating system combination. Even though several
operating systems provide the same functionality, e.g. usage of shared memory, the
implementation of the service will be different. Thus, some of the failure modes may be
similar, yet their effects may not. And, in contrast to general FMEA approaches which
analyse functionality of software systems, our aim was to identify failure modes related to
the interaction of a program with operating system services.

7. Conclusion

The analysis and results from this case shows that the approach facilitates the detection of
potential failure modes related to the use of the system calls in operating systems. However,
this is without further analysis about their actual impact in the SCORPIO framework. Future
extension of the work can include examining the potential impact of these failure modes.
With so many potential failure modes it also seems that there needs to be some way to
prioritize or target the “important” failures that should be fixed based on the study. For

www.intechopen.com

Analysis of Error Propagation Between Software Processes

85

example, the missing return values seem to become critical errors only under maintenance,
if the return values can change. Even though this is valuable to uncover, it would be more
valuable to quantify which potential failures would be critical if they occurred under the
current operational mode and which would not. This would help to indicate the usefulness
of the technique and provide some evidence that the failures occur with sufficient frequency
to justify the definition of a technique that targets them. Further extension of the work can
include exploring alternative techniques or quantify effort required to conduct this type of
analysis to make it easier to determine the trade-offs of using this technique in practice,
providing a quantitative analysis of the types of failure modes the analysis uncover and
providing usage guidelines to the practitioner.

8. References

Abdelmoez, W.; Nassar, D.; Shereshevsky, M.; Gradetsky, N.; Gunnalan, R.; Ammar, H. H.;
Yu, B. & Mili, A. (2004). Error Propagation in Software Architectures, metrics,
Proceedings of International Symposium on Software Metrics No10, pp. 384-393, Chicago
IL, ETATS-UNIS, USA, September 11, 2004.

Bacon, J. & Harris, T. (2003). Operating Systems – Concurrent and distributed Software Design,
1st ed., Great Britain: Pearson Education Limited, 2003.

Barmsnes, K. A.; Johnsen, T. & Sundling, C-V. (1997). Implementation of Graphical User
Interfaces in Nuclear Applications, Proceedings of Topical Meeting on I&C of VVER,
Prague, April 21-24, 1997.

Beck, H.; Bohme, H.; Dziadzka, M.; Kunitz, U.; Magnus, R.; Schroter, C. & Verworner, D.
(2002). Linux Kernel Programming, 3rd ed., Great Britain: Pearson Education Limited,
2002.

Bic, L. F. & Shaw, A. C. (2003). Operating Systems Principles, USA: Pearson Education, Inc., 2003
Bovet, D.P. & Cesati, M. (2003). Understanding the Linux Kernel, 2nd ed., USA: O’Reilly &

Associates, Inc., 2003.
Chou, A.; Yang, J.; Chelf, B.; Hallem, S. & Engler, D. R. (2001). An Empirical Study of

Operating Systems Errors, Proceedings of the 18th Symposium on Operating System
Principles (SOSP), Chateau Lake Louise, Banff, Canada, October, 2001.

Engler, D.R.; Chelf, B.; Chou, A. & Hallem, S. (2000). Checking System Rules Using System-
Specific, Programmer-Written compiler Extensions, Proceedings of Operating systems
Design and Implementation (OSDI), San Diego, California, USA, October, 2000.

Fredriksen, R. & Winther, R. (2007). Challenges Related to Error Propagation in Software
Systems, Proceedings of Risk, Reliability and Societal Safety (ESREL), pp. 83-90, ISBN
978-0-415-44783-6, Stavanger, Norway, June 25-27, 2007.

Goradia, T. (1993). Dynamic Impact Analysis: A Cost-Effective Technique to Enforce Error
Propagation, Proceedings of the International Symposium on software Testing and
Analysis, pp. 171-181, 1993.

Hatton, L. (1995). Safer C: Developing for High-Integrati and Safety-Critical Systems, Great
Britain: Mcraw-hill, 1995.

Hiller, M.; Jhumka, A. & Suri, N. (2001). An Approach to Analysing the Propagation of Data
Errors in Software. Dependable Systems and Networks (DSN), 2001.

IFE (Institute for Energy Technology) (2010). ProcSee, available from:
 http://www.ife.no/departments/visual_interface_technologies/products/procsee
Jhumka, A.; Hiller, M. & Suri, N. (2001). Proceedings of 20th IEEE Symposium on Reliable and

Distributed Systems, pp. 152-161, New Orleans, LA, USA, October 23-31, 2001.

www.intechopen.com

Nuclear Power - System Simulations and Operation

86

Johansson, A.; Suri, N. & Murphy, B. (2007). On the Impact of Injection Triggers for OS
Robustness Evaluation, Proceedings of the 18th International Symposium on software
Reliability Engineering (ISSRE), pp. 127-136, 2007.

Koenig, A. (1989). C Traps and Pitfalls, USA: Addison-Wesley, 1989.
Kropp, N. P.; Koopman, P. J. Jr. & Siewiorek, D. P. (1998). Automated Robustness Testing of

Off-the-Shelf Software Components, Proceedings of the Symposium on Fault-Tolerant
Computing, pp. 230-239, 1998.

Michael, C. & Jones, R. (1997). On the Uniformity of Error Propagation in Software,
Proceedings of the 12th Annual Conference on Computer Assurance (COMPASS), pp. 68-
76, 1997.

Mitchell, M.; Oldman, J. & Samuel, A. (2001). Advanced Linux Programming, 1st ed., USA:
New Riders Publishing, pp. 45-55, 2001.

Nassar, D.; Rabie, W.; Shereshevsky, M.; Gradetsky, N. & Ammar, H. (2004). Estimating
Error Propagation Probabilities in Software Architectures, Proceedings of
International Symposium on Software Metrics No10, pp. 384-393, Chicago IL, ETATS-
UNIS, USA, September 11, 2004.

Nutt, G. (2004). Operating Systems, 3rd ed., USA: Pearson Education, Inc., 2004.
Pinkert, J. R. & Wear, L. L. (1989). Operating Systems – Concepts, Policies, and Mechanisms,

USA: Prentice-Hall, Inc., 1989.
Sarshar, S.; Simensen, J.E.; Winther, R. & Fredriksen, R. (2007). Analysis of Error

Propagation Mechanisms between Software Processes, Proceedings of Risk, Reliability
and Societal Safety (ESREL), pp. 91-98, Taylor & Francis, ISBN 978-0-415-44783-6,
Stavanger, Norway, June 25-27, 2007.

Sarshar, S. (2007). Analysis of Error Propagation between Software Processes in Source
Code, Master thesis at Østfold University College, Norway, 2007.

Sarshar, S. & Winther, R. (2008). Automatic Source Code Analysis of Failure Modes Causing
Error Propagation, Proceedings of Risk, Reliability and Societal Safety (ESREL), pp. 183-
190, Taylor & Francis, ISBN 978-0-415-48514-2, Valencia, Spain, September 22-24, 2008.

Sarshar, S. (2009). Performing Code Interface Analysis on the SCORPIO Core Surveillance
Framework”, Proceedings of the 6th American Nuclear Society International Topical
Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface
Technologies (NPIC&HMIT), American Nuclear Society, LaGrange Park, IL,
Knoxville, Tennessee, April 5-9, 2009.

Secure Programming Lint (2008). Annotation-Assisted Lightweight Static Checking,
Available from: http://www.splint.org, 2008.

Silberschatz, A.; Galvin, P. B. & Gagne, G. (2005). Operating System Concepts, 7th ed., USA:
John Wiley & Sons, Inc., pp. 43-55, 2005.

Stallings, W. (2005). Operating Systems – Internals and Design Principles, 5th ed., USA: Pearson
Education, Inc., 2005.

Stamatis, D. (1995). Failure Mode and Effect Analysis: FMEA from Theory to Execution,
American Society for Quality, USA, 1995.

Storey, N. (1996). Safety-Critical Computer Systems, Britain: Pearson Education Limited, 1996
Tanenbaum, A. S. & Woodhull, A. S. (2006). Operating Systems – Design and Implementation,

3rd ed., USA: Pearson Education, Inc., 2006
Voas, J. (1997). Error Propagation analysis in COTS Systems, IEEE Computing and Control

Engineering Journal, 8(6):269-272, December, 1997.

www.intechopen.com

Nuclear Power - System Simulations and Operation

Edited by Dr. Pavel Tsvetkov

ISBN 978-953-307-506-8

Hard cover, 192 pages

Publisher InTech

Published online 06, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a

potential to support growing economies developing at accelerated growth rates, technology advances

improving quality of life and becoming available to larger and larger populations. The quest for robust

sustainable energy supplies meeting the above constraints leads us to the nuclear power technology.

Todayâ€™s nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude

of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic

earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our

approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand

natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear

power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our

book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at

existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas

and directions can potentially be developed focusing on operational characteristics of nuclear power plants.

The consistent thread throughout all chapters is the â€œsystem-thinkingâ€ approach synthesizing provided

information and ideas. The book targets everyone with interests in system simulations and nuclear power

operational aspects as its potential readership groups - students, researchers and practitioners.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Sizarta Sarshar (2011). Analysis of Error Propagation Between Software Processes, Nuclear Power - System

Simulations and Operation, Dr. Pavel Tsvetkov (Ed.), ISBN: 978-953-307-506-8, InTech, Available from:

http://www.intechopen.com/books/nuclear-power-system-simulations-and-operation/analysis-of-error-

propagation-between-software-processes

www.intechopen.com

Fax: +385 (51) 686 166

www.intechopen.com

Fax: +86-21-62489821

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

