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1. Introduction  

Autism Spectrum Disorders (ASD) are a set of complex neurodevelopmental disorders 

defined behaviorally by impaired social interaction, delayed and disordered language, 

repetitive or stereotypic behavior and a restricted range of interest (Fombonne, 1999). ASD 

affect nearly 1 in 110 children, and disproportionally affect four times as many boys as girls. 

Comorbid symptoms often include seizures, sleep problems, gastrointestinal disorders, and 

metabolic deregulation (Coury, 2010). As such, ASD are an enormous challenge for parents, 

medical professionals, and educators. Their treatments put a significant financial strain on 

healthcare systems worldwide. There is no pharmacotherapy proven effective for treating 

the core deficits in ASD. There is also a paucity of biomarkers for autism. Both genetic and 

environmental factors are thought to contribute to autism susceptibility (Courchesne, 2007; 

Geschwind, 2009; Südhof, 2008; Ramocki & Zoghbi, 2008), but because only some of the 

genetic factors have been identified unequivocally thus far (Cook & Scherer, 2008; Levitt & 

Campbell, 2009), finding effective treatments that target the underlying causes of ASD 

remains a major challenge.  

Identifying endophenotypes and biomarkers for complex and heterogeneous disorders such 

as ASD are important not only to elucidate their etiologies, but also to identify suitable 

biochemical molecules and pathways to target the treatment of core deficits. In this review, 

we present a rationale that neuronal nicotinic acetylcholine receptor (nAChR) alterations are 

biomarkers for ASD and that specific nAChRs subtypes are likely to be useful therapeutic 

targets for the treatment of core deficits. This rationale is based on the synthesis of emerging 

evidence from multiple types of studies, including our own, using postmortem, genetic, 

functional, and molecular neurobiological methodologies from two disparate areas of 

research – autism spectrum disorders and nicotine dependence. 
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2. Neuronal nicotinic acetylcholine receptors  

Neuronal nAChRs are a family of ion channels that are permeable to both monovalent (Na+ 
and K+) and divalent (Ca++) cations and are formed by assembly of different combinations of 

subunits termed 2 to 10 and 2 to4. These channels are heteropentamers with the 

exception of the 7 nAChR, which is usually a homopentamer (Lindstrom, 1996; Lindstrom, 
1997; Sargent, 1993). In neurons, nAChRs regulate the release of many different 

neurotransmitters including acetylcholine, dopamine, -aminobutyric acid (GABA), 
glutamate, and serotonin at presynaptic sites (McGehee & Role, 1996) and mediate fast 
synaptic transmission at postsynaptic sites (Zhang et al., 1996; Frazier et al., 1998a; Frazier et 
al., 1998b). These functions have a broad range of physiological effects on reward, analgesia, 
anxiety, affect, locomotion, attention, mood, learning, memory, and executive function 
(Miwa et al., 2011). nAChRs can also modulate neurite growth (Pugh & Berg, 1994; Lipton et 
al., 1988) and cell survival (Pugh & Margiotto, 2000; Messi et al., 1997; Kihara et al., 1997; 
1998; 2001). nAChRs have been intensely studied for many decades not only to understand 
their normal physiological roles, but more importantly to elucidate their pathophysiological 
role in mediating addiction to nicotine in tobacco, because tobacco use among smokers, in 
particular, results in greater than 400,000 deaths per year in the U.S. alone. In addition to 
their role in nicotine addiction, nAChR dysfunctions are also implicated in other disorders, 
including Alzheimer’s disease, Parkinson’s disease, schizophrenia, attention deficit-
hyperactivity disorder, anxiety disorders, Tourette’s syndrome, and depression (Newhouse 
& Kelton, 2000; Newhouse et al., 2004; Mineur & Picciotto, 2010). 

3. Alterations of nAChRs in ASD 

3.1 Changes in 42 nAChR expression  

Examination of postmortem brains of individuals with ASD has identified major nAChR 
abnormalities in multiple postmortem studies. In the first such study to be undertaken, 
postmortem tissue from 7 adults with a mean age of 24 years was examined. High-affinity 
3[H]epibatidine binding was reported to be significantly reduced in the frontal and parietal 
cortex of these individuals with ASD compared to age-matched controls. Furthermore, 
immunohistochemical analyses showed that the loss of 3[H]epibatidine correlated with 

reduced expression of the 4 and 2 nAChR subunits. Notably, the mRNA for these two 
nAChR subunits was not significantly decreased, suggesting that the reduction in nAChR 
subunit levels resulted from an impaired posttranslational mechanism. Also, 
3[H]pirenzepine binding to M1 and M2 muscarinic AChRs (mAChRs) was not significantly 
altered, suggesting that the loss of nAChR expression resulted from deregulation of a 
posttranslational mechanism that specifically affected nAChRs, but not mAChRs (Perry et 
al., 2001). In a subsequent study, postmortem tissue from 8 adults with a mean age of 24 
years was examined. Again, high-affinity [3H]epibatidine binding was reported to be 
significantly reduced by greater than 50% in the cerebellar cortex of individuals with ASD. 
High-resolution analyses of the autoradiographic data indicated that the loss of 
3[H]epibatidine binding occurred in the granule cell layer, the Purkinje layer, and the 
molecular cell layer of the cerebellum of individuals with ASD compared to age-matched 

controls. Significant reduction in the expression of the 4 nAChR subunit, but not its mRNA 

(Lee et al., 2002), was also observed and is consistent with the notion that 42 nAChR loss 
results from an impaired posttranslational mechanism regulating it expression. In a third 
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study, immunohistochemical analysis of postmortem brains from 3 adults with ASD of 

mean age 29 years surprisingly showed no changes in the expression of the 4 nAChR 

subunit in the thalamus compared to age-matched controls. However, reduction of the 2 
nAChR subunit was observed in the paraventricular nucleus and nucleus reuniens of the 
thalamus (Martin-Ruiz et al., 2004).  

3.2 Changes in 7 nAChR expression  

In contrast to the loss of 3[H]epibatidine binding and decreased expression of the 4 and 2 

nAChR subunits, no significant change in the binding of 125I--bungarotoxin to the 7 

nAChR or immunohistological detection of the 7 nAChR (Perry et al., 2001) was reported 

in the frontal and parietal cortex. In the cerebellar cortex, however, binding of -

bungarotoxin to the 7 nAChR and immunohistological detection of the 7 nAChR did 

show a significant increase in the expression of the 7 nAChR in the granule cell layer, but 

not in the Purkinje cells or the molecular cell layer. Interestingly, similar to the 2 nAChR 

subunit, reduction of the 7 nAChR subunit was also observed in the paraventricular 
nucleus and nucleus reuniens of the thalamus. Thus, alterations in the expression of both the 

42 nAChR and the 7 nAChR in individuals with ASD appears to show regional 
specificity (Perry et al., 2001; Lee et al., 2002; Martin-Ruiz et al., 2004), suggesting that these 
changes are compensatory and result from altered homeostasis of neural networks, rather 
than the direct effect of a single molecule in a particular molecular pathway. 
Two recent studies on rare genomic microdeletions and copy-number variations (CNVs) 
revealed a possible involvement of the CHRNA7 gene in some cases of autism. The first 
study investigated segmental duplications at breakpoints (BP4–BP5) of chromosome 
15q13.2q13.3 from 1441 individuals with autism from 751 families in the Autism Genetic 
Resource Exchange (AGRE) repository (Miller et al, 2009). This genomic sequence spans 
over 1.5 Mb and includes CHRNA7. From this cohort 10 patients were identified with 
genomic imbalance at chromosome 15q13.2q13.3, including five with BP4–BP5 
microdeletions. Among the 1420 parents and 132 unaffected/unknown siblings no cases of 
BP4–BP5 microdeletion were found. The second study on genomic CNVs explored the 
genetic contribution to ASD in a large cohort of families (Simons Simplex Collection 
consisting of 915 families) with a single autistic child and at least one unaffected sibling 
(Levy et al., 2011). The contribution of the transmission of ‘‘ultrarare’’ variants to ASD, in 
particular inherited genomic duplications was also estimated. A transmitted duplication 
within the CHRNA7 gene was observed in 8 autistic children and 3 unaffected siblings 
within 6 families. A further network-based analysis of genetic associations (NETBAG) of 
that dataset strengthened the involvement of CHRNA7 as one of the genes affected by rare 
de novo CNVs in autism (Gilman et al., 2011). 

4. nAChRs modulate multiple behaviors deficient in ASD  

ASD is defined by three behavioral deficits, impaired social interactions, repetitive 
behaviors, and delayed language. Multiple studies using animal models implicate a 

functional role for nAChRs in some of these behavioral deficits in ASD. 2-containing 

nAChRs regulate executive and social behaviors in studies using 2 nAChR subunit 

knockout mice (Granon et al., 2003). Knockout 2 nAChR mice show a decrease in slow 
exploratory behavior - a measure of cognitive function during which animals slowly and 
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precisely explore their environment, a lack of sensitization to novel stimuli, and abnormal 
social behavior during aggressive confrontations with other mice (Granon et al., 2003). 
Recovery of the slow exploratory behavior was observed by injecting a lentiviral vector 

expressing the 2 nAChR subunit into the ventral tegmental area (VTA) in the knockout 

mice (Maskos et al., 2005). Re-expressing the 2 nAChR subunit in the prefrontal cortex also 
improves social abnormalities in this knockout mouse. Increased social interaction and 
decreased novel exploration in a social interaction paradigm with concurrent motivation 

was ameliorated after stereotaxically injecting the 2 nAChR subunit into the prelimbic area 
of the prefrontal cortex (PFC) (Avale et al., 2011).  
As previously mentioned, nAChR dysfunction is also implicated in several other 

neurological disorders with repetitive behavior. We suggest here that similarities in 

behaviors across those neurological conditions, as well as high prevalence of simultaneity 

suggest a possible shared underlying mechanism. Moreover, there has been a recent push to 

redefine repetitive behavior in these neuropsychiatric disorders and instead characterize 

stereotypies into disorder-related endophenotypes rather than separate disorder-specific 

symptoms (Kas et al., 2007, Langen et al., 2011). Tourette’s syndrome (TS), obsessive 

compulsive disorder (OCD), and attention deficit hyperactivity disorder (ADHD), all 

involve disordered cortical-basal ganglia circuitry and all can be successfully treated with 

drugs acting on nAChRs. The basal ganglia and orbitofrontal cortex, both regions highly 

innervated by nicotinic acetylcholine receptor rich interneurons are hyperactive during 

PET/SPECT studies of OCD (Baxter et al., 1988) and hypoactive in studies of ADHD 

(Zametkin et al., 1990) and TS (Braun et al., 1995). The orbitofrontal cortex controls inhibition 

and disinhibition of behavior, and lesions in this area are sufficient to cause impulsive and 

inappropriate behavior. Nicotine or an analog alone has demonstrated potential to treat 

repetitive behaviors in these disorders. A transdermal nicotine patch, administered as therapy 

for TS, decreases the severity and frequency of tics, a compulsory symptom of TS (Sanberg, 

1997). Nicotine gum administered to OCD patients previously resistant to other treatment 

clinically improved behavior (Carlsson, 2001; Pasquini et al., 2005). Interestingly, 

clomipramine, an SSRI commonly prescribed for the treatment of OCD, also acts on nAChRs 

(Lopez-Valdes, 2002). Lastly, (-)-Nicotine and ABT-418, an 42 nAChR agonist (Potter et al., 

1999), both successfully treat adults with ADHD (Levin and Simon, 1998; Wilens et al., 1999). It 

is interesting to note that hyperactivity, tics, and obsessive compulsive disorder are all 

common comorbid disorders seen in patients with ASD with approximately 59% of ASD 

patients having impulsivity problems, 8-10% having tics, and 37% having OCD (Levy et al., 

2009). Although it is clear that similar neurocircuitry is involved in several disorders with 

repetitive behavior, further research is needed to determine whether the underlying 

mechanisms causing this dysfunction overlap in TS, OCD, ADHD, and in ASD. 
nAChRs also are involved in several other non-core, but frequently occurring symptoms in 
ASD. The most common comorbid disorders and symptoms associated with ASD are 
psychiatric (e.g., depression and anxiety), neurological (e.g., epilepsy), sleep, and sensory 
(e.g., tactile) disorders. Epilepsy occurs in 5-49% of people with autism (Levy et al., 2009). 

Genetic abnormalities in CHRN4A and CHRNB2, encoding the  and  nAChR subunits 
respectively, are sufficient to cause autosomal dominant nocturnal frontal lobe epilepsy 
(ADNFLE) (De Fusco, 2000; Bertrand, 2002; Steinlein, 2002; Hoda, 2009), however ADNFLE 
is not associated with ASD. 52-73% of patients with ASD experience sleep disruption and 

43-84% experience anxiety disorders. Knocking out the 4 nAChR subunit increases anxiety 
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in mice (Ross et al., 2000) and the 2 nAChR knockout animal shows abnormal sleep pattern 
(Lena et al., 2004). These studies demonstrate that behaviors regulated by nAChRs are 
disparate and commonly aberrant in ASD and suggest the potential for nAChR-acting drugs 
in the treatment of ASD.  
Lastly, there is accumulating evidence that the immune system is disrupted in individuals 
with ASD (Careaga et al., 2010). Elevated levels of chemokines have been detected in the 
brains and cerebrospinal fluid (Chez et al., 2007; Wills et al., 2009) as well as the plasma 
(Ashwood et al., 2011a) of individuals with ASD, and this elevation correlated with more 
impaired behavior (Ashwood et al., 2011b). Furthermore, postmortem studies of individuals 
with autism also detected presence of activated neuroglial cells in their brain (Vargas et al., 
2005). In a recent study, activated microglia were detected in the dorsolateral PFC in 5 out of 
13 samples, 2 of which were under the ages of 6 years (Morgan et al., 2010). These results 
suggest that inflammation of the central nervous system, at least in some individuals, may 
contribute to the neuropathology of ASD. Thus, suppression of neuroinflammation by 

targeting 7 nAChRs in ASD may be potentially beneficial. 

5. Neurexin and neuroligin deficits in ASD 

The neurexins are cell adhesion molecules encoded by three genes corresponding to 

neurexins 1, 2 and 3 (Missler & Südhof, 1998; Lise & El-Husseini, 2006). As a result of 

transcriptional initiation from two different promoters, each neurexin gene encodes a longer 

-neurexin protein and a shorter -neurexin protein. The proteins are identical from their 

intracellular C-termini through their transmembrane domains, glycosylation-rich domains 

and the sixth LNS domain of -neurexin, which corresponds to the only LNS domain in -

neurexin. They have divergent N-terminal extracellular domains, which allow for 

interactions with multiple proteins. Additionally, alternative splicing at multiple splice sites 

within each gene can give rise to more than one thousand different isoforms, which differ 

only in their extracellular domains. Neurexins recruit N- and P/Q-type calcium channels to 

active zones of presynaptic terminals through scaffolding proteins, including calmodulin-

associated serine/threonine kinase (CASK) (Hata et al., 1996; Missler et al., 2003; Zhang et 

al., 2005). -neurexins were reported to specifically induce GABAergic postsynaptic 

differentiation (Kang et al., 2008). The enormous structural diversity of the neurexins 

suggests that they are involved in a multitude of physiological functions yet to be 

elucidated.  

Results from a linkage and copy number variation analysis conducted by the Autism 

Genome Project Consortium (Szatmari et al., 2007) show that neurexin-1 dysfunction is 

associated with ASD. This conclusion has been corroborated in multiple linkage analysis 

studies since (Kim et al., 2008; Marshall et al., 2008) and in analysis of structural variants in 

the - and -neurexin genes (Zahir et al., 2008; Feng et al., 2006; Yan et al., 2008; Gai et al., 

2011; Gauthier et al., 2011). Neurexin knock-out animals have provided insights into the 

functions of the neurexin family. Neurexin 1/2/3- triple knock-out animals die perinatally 

and have reduced spontaneous and evoked neurotransmission at glutamatergic and 

GABAergic synapses, demonstrating that -neurexins are necessary for neurotransmitter 

release at synapses (Missler et al., 2003). Additionally, mice lacking neurexins have impaired 

neuroendocrine secretion (Dudanova et al., 2006), which may mirror some children with 

autism that exhibit dysfunction of the hypothalamic-pituitary-adrenocortical system, 
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possibly due to altered neuroendocrine regulation (Corbett et al., 2006). Similar to the 

neurexin triple knockout animals, mice lacking neurexin1/2 or neurexin2/3 die within 1 

month after birth and have reduced neurotransmission. Analyses of brain morphology in -

neurexin knockouts revealed no major impairments in synapse formation, but minor 

reductions in dendrite branch length and spine numbers were detected, suggesting they are 

important in synapse maturation more so than formation (Dudanova et al., 2007). None of 

the single -neurexin knock-out animals have dramatic phenotypes, with the neurexin-2 

knock-out animals showing the least severe phenotype (Craig & Kang, 2007). In the absence 

of neurexin-1, miniature excitatory postsynaptic currents were reduced in recordings from 

hippocampal slices. Behaviorally, the neurexin-1deficient mice were identical to wild-

type mice in multiple social interactions, but displayed decreased grooming behavior, 

impaired nest building, decreased pre-pulse inhibition, and improved motor learning in 

behavioral studies (Etherton et al., 2009). While the neurexin-1deficient mice display 

behavioral phenotypes similar to what is seen in autism they are not sufficient to explain 

ASD yet they still provide a useful but limited model of ASD. The -neurexin and combined 

- and -neurexin knockout animals have not yet been fully evaluated. 

The neuroligins are encoded by five differentially spliced genes that encode multiple 
neuroligin isoforms (Zhang et al., 2005; Boucard et al., 2005). In complementary roles, 
neuroligins, the postsynaptic binding partners of neurexins, recruit N-methyl-D-aspartate 
(NMDA) receptors and GABAA receptors through their interactions with scaffolding 
proteins such as post-synaptic density 95 (PSD-95) and gephyrin, respectively (Graf et al., 
2004; Nam & Chen, 2005; Chih et al., 2006; Poulopoulos et al., 2009). Thus, bi-directional 
interactions between neurexins and neuroligins appear to serve a critical function in the 
assembly and maturation of both glutamatergic and GABAergic synapses through 
recruitment of the requisite presynaptic and postsynaptic components of neurons (Dean & 
Dreshbach, 2006; Craig & Kang, 2007; Sudhof, 2008).  
Neuroligins are strongly implicated in ASD. Chromosomal rearrangements and copy 
number variations in neuroligin-1 are linked to autism (Konstantareas & Homatidis, 1999; 
Ylisaukko-oja et al., 2005; Glessner et al., 2009). There is also evidence that mutations in 
neuroligin-3 and neuroligin-4 are found in patients with ASD (Laumonnier et al., 2004; 
Jamain et al., 2003). In addition mouse models support a role for neuroligins in ASD. 
Neuroligin-1 knock-out mice are viable and fertile, but also have synaptic dysfunctions 
(Chubykin et al., 2007). At the molecular level, the NMDA/AMPA ratio at corticostriatal 
synapses is reduced, which is associated with repetitive grooming that may mirror some of 
the repetitive behaviors seen in autistic patients (Blundell et al., 2010). In contrast to 
neuroligin-1-deficient mice, which show impaired NMDA receptor signaling, neuroligin-2 
knock-out animals have deficits in inhibitory synaptic transmission (Chubykin et al., 2007). 
Behaviorally, neuroligin-2 knock-out mice exhibit increased anxiety, but normal social 

interactions (Blundell et al., 2009), similar to the neurexin-1-deficient mice. Mutations in 
neuroligin-3 and neuroligin-4 lead to intracellular retention of the mutant proteins (Chih et 
al., 2004; Comoletti et al., 2004). The neuroligin-3 R451C mutation is a gain of function 
mutation. Mice with this point mutation exhibited impaired social interactions and 
increased inhibitory synaptic transmission (Tabuchi et al., 2007). Mice lacking neuroligin-4 
correspond to loss-of-function mutations in human neuroligin-4 and show deficits in 
reciprocal social interactions and ultrasonic communication (Jamain et al., 2008). Neuroligin 

1/2/3 triple knock-out animals die at birth, but similar to their -neurexin-deficient 
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counterparts, do not show dramatic reductions in synapse numbers or brain architecture, 
but do have severely impaired synaptic transmission (Varoqueaux et al., 2006). 
The studies of the neurexin and neuroligin functions indicate a role for them in proper 
synaptic function but not synapse formation. Although it is clear that the deficits of 
neurexins and neuroligins play a role in ASD, understanding their interactions with 
receptors will provide additional insight into their functions.  

6. Neurexins associate with multiple receptors, including nAChRs 

Accumulating evidence indicates that neurexins interact directly with more than the 
neuroligins. Our laboratory was the first to provide experimental evidence for direct 
interactions between neurexins and receptors by showing that neurexin-

1coimmunoprecipitates with recombinant 42 nAChRs when expressed in heterologous 

cells (Cheng et al., 2009). Functionally, the neurexin-1 regulates targeting of 42 nAChRs 
to pre-synaptic terminals in neurons (Cheng et al., 2009). Complementary studies report a 

role for neurexin-1 and neuroligin-1 in recruitment of 3-containing nAChRs to the post-
synaptic density (Conroy et al., 2007; Ross & Conroy, 2008). In addition, recent studies show 

that neurexins interact with multiple receptors. First, neurexin-1 interacts with GABAA 
receptors; this interaction modulates the cell surface expression levels of the GABAA 
receptors but not its functions per se (Zhang et al., 2010). Second, leucine-rich repeat 

transmembrane protein (LRRTM2) binds trans-synaptically to both neurexin-1 and-1 and 
induces presynaptic differentiation at excitatory synapses (Ko et al., 2009; de Wit et al., 2009; 
Siddiqui et al., 2010). Knock-down of LRRTM2 in the rat dentate gyrus shows a large 
reduction in AMPAR-mediated EPSCs in in vivo recordings from granule cells in 
hippocampal slices. Furthermore, the association between neurexin-1 and LRRTM2 is a 
functional interaction. When neurexin-1 is knocked-down in hippocampal neurons, 
LRRTM2 is unable to induce presynaptic differentiation (de Wit et al., 2009). Finally, 

neurexins associate with GluR2 receptors via a soluble protein called cerebellin -1 
precursor protein (Cbln1) (Uemura et al., 2010). In the Cbln1 knockout mice, the 

synaptogenic activity of GluR2 receptor is lost. Thus, GluR2 mediates cerebellar synapse 
formation by interacting with presynaptic neurexins via Cbln1.  

7. Genetic variants of neurexin-1 are linked to nicotine dependence 

A recent high-density genome-wide association study for nicotine dependence linked single 
nucleotide polymorphisms (SNP) in the neurexin-1 gene to the development of nicotine 
dependence and thus smoking behavior (Bierut et al., 2007). A second independent study 
also showed linkage between a variant of the neurexin-1 gene and nicotine dependence in 
smokers of European and African-American ancestry (Nussbaum et al., 2008). These results, 

along with the fact that neurexins functionally target 42 nAChRs to synapses, implicate 
neurexins in the etiology of other neurological diseases typically associated with 

pathophysiological functions of nAChRs. 42 nAChRs mediate essential features of 
nicotine addiction including reward, tolerance, and sensitization (Tapper et al., 2004). Thus, 
functions are likely to be affected by changes in the expression levels of neurexin-1. The 

exact mechanism by which neurexin-1 and -1 splicing is regulated to generate the 
predicted hundreds of neurexin-1 isoforms remains to be elucidated. It is possible that a 
regulatory SNP in the intron of the neurexin-1 gene could modulate neurexin-1 expression 
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or splicing efficiency and thus influence nAChR functions by regulating their synaptic 

targeting efficiency. Because there are hundreds of neurexin-1 isoforms, the linkage 

between neurexin-1 gene variants, 42 nAChR synaptic targeting, and nicotine 
dependence requires additional studies. Nevertheless, the functional linkage between 

neurexin-1 and 42 nAChR and their converging roles in nicotine dependence suggests 

that 42 nAChR activity may regulate neurexin-1 gene expression. 

8. nAChR modulate excitation-inhibition balance  

There is strong evidence that some forms of ASD are caused by an imbalance of excitatory 
and inhibitory synaptic transmission in neuronal circuits that are responsible for the 
establishment of language processing and social behavior during prenatal and postnatal 
brain development. Increased glutamatergic (excitatory) signaling or suppressed 
GABAergic (inhibitory) signaling is sufficient to disrupt the excitatory/inhibitory balance in 
local circuit-plasticity (Rubenstein & Merzenich, 2003). A hyperexcitable cortex is poorly 
differentiated functionally and therefore inherently unstable and susceptible to epilepsy. 
This might explain why, in addition to the autistic core symptoms, an average of ~30% of 
individuals with ASD develop clinically apparent seizures (Gillberg & Billstedt, 2000). In 
several mouse models of autism this lack of homeostasis of excitatory and inhibitory 
signaling was observed (Tabuchi et al., 2007; Gogolla et al., 2009). In the frontal cortex, 
cholinergic transmission can modulate cortical tone establishing a homeostasis of excitatory 
and inhibitory signals (Aracri et al., 2010). In layer V of the prefrontal cortex, nAChR 
activation increases the threshold for activating glutamatergic synapses (Couey et al., 2007), 
whereas GABA release is stimulated in several cortical layers by nAChR activation 
(Alkondon et al., 2000).  
We posit that some of the regulatory effects of balancing inhibitory and excitatory synaptic 
transmission are mediated by synaptic targeting of nAChRs by neurexins. This results in the 
change of expression levels of nAChRs in various brain regions of autistic individuals. 
Therefore allosteric modulators or direct agonists targeting nAChRs by might be useful to 
restore the imbalance of excitatory and inhibitory synaptic transmission caused by 
deregulated expression of neurexin-1. 

9. Nicotinic receptors as biomarkers for ASD 

9.1 Positron Emission Tomography ligands for 42 nAChRs 

The alterations in nAChRs in ASD may also serve as an early molecular biomarker, 
detectable by imaging tools such as positron emission tomography (PET), the most 
advanced modality for non-invasive study of receptors. Monitoring the reversal of the loss 

of 42 nAChR in the frontal, parietal, and cerebellar cortex and the upregulation of 7 
nAChR in the cerebellar cortex by PET imaging in the brains of individuals with ASD might 
provide a clinical tool to complement behavioral tests needed to assess the effectiveness of 
novel pharmacotherapies for autism.  
Three radiotracers, [11C]nicotine, (S)-3- (azetidin-2-ylmethoxy)-2-[18F]fluoropyridine (2-
[18F]FA) and (S)-5- (azetidin-2-ylmethoxy)-2-[18F]fluoropyridine (6-[18F]FA), have been used 

for studying 42 nAChRs in the human brain using PET. The PET imaging properties of 
these radioligands are not perfect however. Poor signal-to-noise ratios and other drawbacks 
of [11C]nicotine suggest that this radiotracer is not well suited for quantitative imaging in 
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animals and humans. 2-[18F]FA is the only currently available radioligand for quantitative 
imaging nAChR in humans. The “slow” brain kinetics of 2-[18F]FA and 6-[18F]FA hamper 
mathematical modeling and reliable kinetic parameter estimation since it takes many hours 
of PET scanning (5–7 h) for the tracer radioactivity to reach a spatial-temporal steady state 
(Horti et al., 2010). Another crucial problem with 2-[18F]FA and 6-[18F]FA is relatively low 
binding potential (BP) in extrathalamic regions (BP ≤ 0.6–0.8), including the cortex, which 
has a lower nAChR density. Altered densities of cortical and striatal nAChRs in 
neurodegenerative diseases (Pimlott et al., 2004) and schizophrenia (Ochoa & Lasalde-
Dominicci, 2007) illustrates the importance of imaging extrathalamic nAChRs. 
A variety of radioligands with fast regional brain kinetics have been presented in non-
human primates and pigs. Analogs of epibatidine showed “rapid” brain kinetics and 
improved BP (Gao et al., 2007, 2008). One compound of the series, (-)-2-(6-[18F]fluoro-2,3'- 
bipyridin-5'-yl)-7-methyl-7-aza-bicyclo[2.2.1]heptane ([18F]JHU87522 or [18F]AZAN) 
exhibited better imaging properties in animal studies than those of 2[18F]FA and 6-[18F]FA 
including a greater BP value and faster brain kinetics. In addition, the brain uptake of 
[18F]AZAN is greater and its acute toxicity is lower. Most available PET and single photon 
emission computed tomography (SPECT) imaging agents for nAChR are agonists and these 
nAChR-agonists are toxic when injected at high doses. Unlike 2-FA that is nAChR agonist, 

AZAN displays properties of functional antagonist of 42 nAChR. Currently, AZAN is 
undergoing toxicological studies that will determine if this radioligand is sufficiently safe 
for clinical application as a PET radiotracer. If [18F]AZAN is safe for human PET studies, 
there are strong indications that it could become the radiotracer of choice for PET imaging of 
nAChR in human brain (Horti et al., 2010).  

9.2 Positron Emission Tomography ligands for 7 nAChRs  

Several radiotracers were developed for selective imaging of the 7 nAChRs in the human 
brain for PET and SPECT (Dolle et al., 2001; Pomper et al., 2005; Ogawa et al., 2006). Despite 

these efforts, there have been no clinical studies using these radioligands for 7 nAChRs in 
the human brain. 
Very recently, 4-[11C]methylphenyl 2,5-diazabicy- clo[3.2.2]nonane-2-carboxylate ([11C]CHIBA-

1001) was developed as a novel PET ligand for 7 nAChRs in the conscious monkey brain. 

An in vitro binding study showed that the IC50 value of CHIBA-1001 for [125I]-bungarotoxin 

binding to the rat brain homogenates was 45.8 nM. [11C]CHIBA-1001 distribution in the 

monkey brain measured by PET was consistent with the regional distribution of 7 

nAChRs. Moreover, brain uptake of [11C]CHIBA-1001 was dose-dependently blocked by 

pretreatment with the selective 7 nAChR agonist SSR180711, but was not altered by the 

selective 42 nAChR agonist A-85380 (Hashimoto et al., 2008). 

In the human brain, [11C]CHIBA-1001 was found widely distributed in all brain regions. The 
regional distribution pattern of [11C]CHIBA- 1001 is consistent with what is expected in vitro 

(Falk et al., 2003; Court et al., 1999; 2001; Marutle et al., 2001), but different from that of 42 
nAChRs (Clementi, 2004). However, it is slightly different from the regional distribution in 
the monkey brain (Hashimoto et al., 2008). In the human brain, remarkable radioactivity 
accumulation was observed in the cerebellum. These findings suggest that [11C]CHIBA-1001 

is a suitable radioligand for imaging 7 nAChRs in the human brain, as it offers acceptable 
dosimetry and pharmacological safety at the dose required for adequate PET imaging 
(Toyohara et al., 2009). 
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These recent advances in the development of new nAChR PET radioligands, like 

[18F]AZAN for 42 nAChRs and [11C]CHIBA-1001 for 7 nAChRs with fast kinetics and 
low toxicity will provide promising tools for monitoring alterations of brain nAChR 
especially in young patients with ASD. The principal downside to the use of PET is the 
unknown risk of using radioactive ligands and sedatives, especially in younger 
individuals, to perform PET scans. 

10. Nicotinic drugs as therapeutic agents for ASD 

10.1 Agonists 

10.1.1 42 nAChRs  

The extensive loss of 42 nAChRs in some individuals with ASD provide a rationale for 

exploratory trials of drugs that can upregulate and activate 42 nAChRs and thus 

compensate for their loss both physically and functionally. The panoply of drugs developed 

over the last few decades for smoking cessation therapy as well as other disorders with 

pathophysiological roles for nAChRs (Taly et al., 2009), offers a large selection of drugs that 

are likely to be specific for 42 nAChRs and capable of upregulating them. Varenicline 

(Chantix), one such drug that has FDA approval for use in smoking cessation therapy is a 

partial agonist of the 42 nAChRs (Coe et al; 2005) and of interest for treatment of ASD. 

Although varenicline is also a full agonist of the 7 AChR (Mihalak et al., 2006), its relative 

specificity for 42 nAChRs is thought to be due to differences in its EC50 for activation of 

42 nAChRs versus 7 nAChRs, as well as a function of the low concentrations at which it 

is used clinically for anti-smoking therapy (Niaura et al., 2006). Thus it has become one of 

the most widely used smoking cessation drugs with millions of users worldwide and shows 

little sympathetic and parasympathetic complications from cross activation of ganglionic 

nAChRs (34 nAChRs). Interestingly, much like nicotine, varenicline can upregulate 42 

nAChRs in vitro. Finally, as a partial agonist, it has the additional benefit of providing 

chronic low-level activation of 42 nAChRs (Papke et al., 2011) and possibly associated 

downstream intracellular signaling pathways. Varenicline has been shown to change 

behaviors in some smokers, and a public health advisory from the FDA includes warnings 

of increased suicidal thoughts and actions. It is important to note, however, that the increase 

in suicidal thoughts and actions may occur in only a subpopulation of individuals taking 

varenicline as there is ample evidence that smoking may be more prevalent in those 

individuals with comorbid neuropsychiatric conditions, including schizophrenia (Adler et 

al., 1993; Dalack et al., 1999). This may explain behavioral changes reported among smokers 

using varenicline if individuals have subclinical neuropsychiatric conditions. This idea has 

been supported by a recent study reporting that there was no clear evidence that varenicline 

use in itself was associated with an increased risk for depression or suicidal thoughts 

(Gunnell et al., 2010). Also, unlike in schizophrenia, the prevalence of smoking in 

individuals with ASD is low (Bejerot & Nylander, 2003), possibly because the loss of 42 

nAChRs occurs early in development – a clinical feature further strengthening the utility of 

using 42 nAChRs loss as a biomarker for ASD. Nevertheless, any clinical trial of 

varenicline for individuals with ASD should require close monitoring of possible suicidal 

ideation given the heterogeneity of causes expected for ASD, some of which may overlap 

with schizophrenia (Kirov et al., 2009). 
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10.1.2 7 nAChRs 

It is possible to use 7 nAChR agonists to treat neuroinflammation in ASD. There is strong 

evidence that activation of the 7 nAChR expressed on monocytes and macrophage, by 

inhibiting NF-kappaB nuclear translocation, suppresses cytokine release by them (Wang et 

al., 2003), and that this cholinergic anti-inflammatory pathway that provides a bidirectional 

link between the nervous and immune system, inhibits the innate immune response (Rosas-

Ballina & Tracey, 2009). Hence, a reasonable case can be made for the use of 7 nAChR 

agonists to treat neuroinflammation in ASD. Individuals could be stratified by monitoring 

brain inflammation by the uptake of the microglial marker, [11C]PK11195, a PET ligand 

useful for detecting peripheral benzodiazepine receptors expressed in high amounts in 

activated microglia (Rojas et al., 2007). However, given that 7 AChR appears to be 

pathologically upregulated in cerebellum of some individuals with ASD, caution is 

advocated in the use of 7 AChR agonists to treat ASD. The primary challenge is that the net 

behavioral benefit from suppressing neuroinflammation mediated by microglia versus over 

stimulating upregulated 7 AChRs in the granule cell layer, cannot be predicted a priori. 

Two different 7 nAChR agonists have been used to treat schizophrenia; drugs that might 

be repurposed for use in individuals with ASD and detectable neuroinflammation.  

One of these drugs, GTS-21, or 3-(2,4-dimethoxybenzylidene)-anabaseine (DMXB-A) is a 

partial agonist of 7 nAChRs may have beneficial effects in ASD patients. In healthy control 

subjects, DMXB-A improves attention, working memory, and episodic memory (Kitagawa 

et al., 2003). The default network, which has been widely reported to be abnormal in 

schizophrenia (Garrity et al., 2007), is a functionally connected network of brain regions that 

includes the posterior cingulate cortex, cuneus/precuneus, medial prefrontal cortex, medial 

temporal lobe, and inferior parietal cortices (Buckner et al., 2008; Tregellas et al, 2011). 

Altered default network activity has been shown to be a result of DMXB-A administration to 

patients with schizophrenia (Tregellas et al., 2011), with decreased expression of 7 nAChRs 

(Freedman et al., 1995).  

A second candidate drug, Tropisetron is a partial agonist of the 7 nAChR. Auditory 

sensory gating P50 deficits are correlated with neuropsychological deficits in attention, one 

of the principal cognitive disturbances in schizophrenia. In a clinical trial with 33 

schizophrenic patients administration of tropisetron, without placebo, significantly 

improved auditory sensory gating P50 deficits in non-smoking patients with schizophrenia 

(Shiina et al., 2010). In mice, the early postnatal period represents a critical time window 

essential for brain development. The administration of tropisetron from postnatal days 2-12 

(P2-P12) in mice did not induce significant cognitive, schizophrenia-like or emotional 

alterations in tropisetron-treated animals as compared to controls, when tested in multiple 

behavioral assays (Inta et al., 2011). 

10.2 Positive allosteric modulators 

Galantamine is an acetylcholinesterase inhibitor that also acts as a positive allosteric 

modulator at the 42 and 7 nAChRs (Dajas-Bailador et al., 2003; Samochocki et al., 2003; 

Schilström et al., 2007). In two studies with small numbers of subjects it has been reported 

that galantamine showed potential benefits for attention, memory, and psychomotor speed 

in schizophrenia (Schubert et al., 2006; Lee et al., 2007). An unpublished study from Johnson 

and Johnson failed to find an advantage for galantamine on a measure of global cognition 
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(clinicaltrials.gov, trial number: NCT 00077727). In a 12-week open-label trial of 

galantamine, thirteen children with autism, previously unmedicated, (mean age, 8.8 +/- 3.5 

years) showed a significant reduction in parent-rated irritability and social withdrawal on 

the Aberrant Behavior Checklist (ABC), as well as significant improvements in emotional 

lability and inattention on the Conners' Parent Rating Scale—Revised (Nicolson et al., 2006). 

Similarly, clinical ratings showed reductions in the anger subscale of the Children's 

Psychiatric Rating Scale. Eight of 13 participants were rated as responders on the basis of 

their improvement scores on the Clinical Global Impressions scale. The allosteric properties 

of galantamine could directly lead to increased release of acetylcholine and activation of 

postsynaptic nAChRs (Samochocki et al., 2003) or act indirectly through its effects on the 

release of other neurotransmitters, especially glutamate and dopamine (Schilström et al., 

2007; Wang et al., 2007).  

It has been demonstrated that amyloid- precursor protein (APP) is upregulated in a mouse 

model for Fragile X mental retardation (FXS) (Westmark et al., 2008) and two clinical studies 

have reported higher levels of APP in children with autism. In the first study, affected 

children expressed sAPP at 2 or more times the levels of children without autism and up to 

4 times more than children with mild autism (Sokol et al., 2006). In the second study, 

elevated plasma sAPPα was found in 60% of known autistic children (n = 25) compared to 

healthy age-matched controls (Bailey et al., 2008). Recent studies showed that galantamine 

allosterically modulates microglial nAChRs and increases microglial beta-amyloid (A) 

phagocytosis (Wang et al., 2007; Takata et al., 2010).  

Collectively, these studies suggest that positive allosteric modulators of 42 nAChRs, 

when used by themselves or in conjunction with agonists, may be beneficial in correcting 

deficits in the functions of 42 nAChRs and thereby core deficits of ASD. 

11. Conclusions 

This review presents a reasonable rationale based on synthesis of the literature that nAChRs 

are suitable biomarkers as well as therapeutic targets for addressing core deficits in ASD. 

Multiple lines of evidence show that nAChRs can modulate many of the functions deficient 

in individuals with ASD. Furthermore, neuropathological findings, albeit small in numbers, 

show significant alterations in both 42 nAChRs and 7 nAChRs. In the cerebellum, an 

anatomical area contributing significantly to the etiology of ASD, 42 nAChRs are 

deficient, and 7 nAChRs are upregulated. These findings suggest that well developed PET 

ligands for both these nAChR subtypes can be used to monitor changes in their expression 

in response to treatment, behavioral or pharmacological. A novel functional linkage 

between neurexin-1 and 42 nAChR and their converging roles in nicotine dependence 

suggests that 42 nAChR activity may regulate neurexin-1 gene expression. Additionally, 

agonists and positive allosteric modulators of the 42 AChRs are likely to be therapeutic 

agents that can help restore 42 nAChRs expression levels in the brains of individuals with 

ASD, based on known effects of these agents. A case can be made for the use of 7 nAChRs 

to reduce neuroinflammation in the brain in those ASD individuals with such clinical 

pathology. The ultimate hope is that these agents, when administered early in development, 

by their presumed ability to modulate a number of different neurotransmitter systems and 

associated signaling pathways, could help correct core deficits associated with ASD.  
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