
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

A Metaheuristic Approach to Solve the
Alternative Subgraphs Assembly

Line Balancing Problem

Liliana Capacho1 and Rafael Pastor2
1University of Los Andes

2Technical University of Catalonia
1Venezuela

2Spain

1. Introduction

Nowadays, assembly line balancing problems are commonly found in most
manufacturing and production systems. In its basic form, an assembly line balancing
problem consists of finding an assignment of tasks to a group of workstations in such a
way that the precedence constraints among the tasks are maintained and the sum of the
times of the task assigned to each workstation does not exceed the maximum workstation
time (i.e. the cycle time). According to the objective considered, two variants of the
problem are distinguished: (1) the problem aims at minimizing the number of
workstations for a given cycle time and (2), given the number of workstations, the
problem seeks to minimize the cycle time. Over the last years a significant amount of
research work has been done towards solving assembly line balancing problems
efficiently. Finding the best solution is a crucial task for maintaining the competitive
advantage of industries and, in some cases, for their survival. Falkenauer (2005), pg. 360,
argues that the efficiency difference between an optimal and a sub-optimal assignment
can yield economies reaching millions of dollars per year. However, solving real life
problems is a very difficult task for decision makers and practitioners since even the
simple case is NP-hard by nature. For this reason, most assembly line balancing problems
involve only a few aspects of the real systems (see, for example, (Becker & Scholl, 2006)).
In order to deal with the complexity of industrial problems, a great variety of problem

definitions (i.e. generalized assembly line balancing problems) have arisen, which consider

other restrictions apart from the technological ones. Most common, these include mixed

models, multiple products, different line layouts, parallel workstations and multiple

objectives. However, real problems require tackling many of those generalizations

simultaneously (Falkenauer, 2005). Such a consideration must also be taken into account

when alternatives processes are involved. Alternatives may appear when, for example, new

technologies are taking place in a production system, in which different procedures are

available to complete a production unit, or when the processing order affects the processing

times of certain tasks; i.e., the realization of one task facilitates, or makes more difficult, the

completion of other tasks (see, for example, (Scholl et al., 2008) and (Das & Nagendra, 1997)).

www.intechopen.com

Assembly Line – Theory and Practice

38

A novel generalized assembly line balancing problem, entitled ASALBP: the Alternative
Subgraphs Assembly Line Balancing Problem, is addressed here. In this problem alternative
variants for different parts of an assembly or manufacturing process are considered. Each
variant is represented by a subgraph that determines the tasks required to process a
particular product and the task precedence relations. Thus, alternative assembly sub-
processes for a sub-assembly may involve completely different set of tasks. Consequently, in
addition to cycle time or workstations requirements, subgraph constraints must also be
taken into account to ensure that tasks belonging to a particular subassembly are processed
considering its corresponding assembly subgraph. Furthermore, it is also considered that
task processing times are not fixed, but instead are dependent on the assembly subgraph.
Therefore, total processing time may vary from one processing alternative to another (even
when the alternatives involve the same set of tasks). Similarly to the simple case, the ASALB
problem aims at minimizing the number of required workstations for a given bound on the
cycle time (i.e., ASALBP-1), or minimizing the cycle time for a given number of workstations
(i.e., ASALBP-2). This work focuses on ASALBP-1. As previously discussed, to solve the
ASALBP efficiently, two problems must be solved simultaneously: the decision problem,
which involves selecting a single assembly subgraph for each subassembly that allows
alternatives, and the balancing problem to assign the tasks to the workstations.
In practice, due to the complexity of assembly problems, a two-stage approach is usually
used to solve assembly balancing problems that involve alternatives. In a first stage, an
assembly variant is selected considering a given criterion, such as, for example, shortest total
processing time. When the production alternative has been selected (i.e., the complete
assembly process has been defined) and a single precedence graph is available, the problem
is then balanced in a second stage. (Capacho & Pastor, 2008) illustrated, by means of
numerical examples, how by selecting a priory an alternative, it cannot be guaranteed that
an optimal solution of the global problem will be obtained, because the best solution of a
problem can be discarded if it does not meet the selection criteria. For instance, it was shown
that the alternative assembly variant with the longest processing time required the smallest
number of workstations for a given cycle time.
The Alternative Subgraphs Assembly Line Balancing Problem was introduced by (Capacho
& Pastor, 2006) and was optimally solved by means of two mathematical programming
models. The computational experiment carried out with the models showed that only small-
and medium-scale problems could be solved optimally in significantly small computing
times. Other attempts have also been done to solve the ASALBP optimally, see for example
(Scholl et al., 2006). In order to solve ASALBP for practical sizes, (Capacho et al., 2006, 2009)
proposed a group of heuristic methods based on adapting well-known priority rules (e.g.
(Talbot et al., 1986), most of which are based on the precedence relations and the cycle time.
Solutions of good quality were obtained for problems involving up to 305 tasks and 11
assembly subgraphs. In this work the use of weighted, rather than nominal, values for the
priority rules is explored. In particular, it is considered an adaptation of a class of
metaheuristic methods, namely GRASP (Greedy Randomized Adaptive Search Procedure),
which has been successfully applied to hard combinatorial problems (Delorme et al., 2004).
A GRASP overview and literature reviews can be found in (Festa & Resende, 2008a, 2008b).
The former research work discusses the algorithmic aspects of this type of procedures; the
second one presents GRASP applications covering a wide range of optimization problems,
including scheduling, routing, graph theory, partitioning, location, assignment, and
manufacturing. Other examples of GRASP can be found in (Dolgui et al., 2010), which

www.intechopen.com

A Metaheuristic Approach to Solve the Alternative Subgraphs Assembly Line Balancing Problem

39

propose an algorithm for balancing transfer lines with multi-spindle machines; (Andrés et
al., 2008) and (Martino & Pastor, 2007), both of which tackle problems involving setup times.
Basically, a GRASP is an iterative process in which each iteration consists of two phases: the
construction phase, which generates a feasible solution, and the search phase that uses a
local optimization procedure to find a local optimum in the neighbourhood of the
constructed solution (Resende & Ribeiro, 2003). Feasible solutions are generated by
iteratively selecting the next element to be incorporated to a partial solution. The best element
is selected by ordering all candidate elements according to a greedy function. In this work, the
adaptation to the ASALBP of thirteen well-known priority rules are used for selecting tasks
and three priority rules are use for selecting the subgraphs (see (Capacho et al., 2009)). This
resulted in a total of 39 construction methods, which are used to generate the initial feasible
solutions. Furthermore, the application of two neighbourhood search strategies produces a
total of 78 GRASP algorithms that are proposed, implemented and tested here. The
performance of such algorithms is evaluated by considering a set of 150 medium- and large-
scale problem instances; and compared with the results obtained in (Capacho et al., 2009) and
with known optimal solutions (see (Capacho & Pastor, 2006, 2008)).
The remainder of this chapter is organized as follows: Section 2 describes the metaheuristic
procedures (i.e., GRASP) that are designed and implemented here; Section 3 presents the
computational experiment carried out to evaluate and compare the proposed algorithms;
Section 4 presents the conclusions and proposes future research work; and, finally, Section 5
lists the References.

2. Grasp procedures for solving the ASALBP

As mentioned above, a GRASP involves a construction phase and a local search phase. In
the proposed procedures (see (Capacho, 2007)), the construction phase generates a feasible
solution by applying a construction method in which both the subgraphs and the assembly
tasks are randomly selected following probability distributions based on weighted priority
rule values. Weighted values are proportional or inversely proportional (when using a
maximizing or minimizing criterion, respectively) to the values obtained considering a
given priority rule. The local search phase generates and evaluates all neighbours of the
current solution and maintains the best neighbour solution (i.e., the one that requires the
fewest number of workstations). This process is repeated for a given length of time. The best
overall solution generated is the final solution.
A solution for the Alternative Subgraphs Assembly Line Balancing Problem consists of a
task sequence, a number of required workstations and a set of assembly subgraphs (i.e., one
subgraph for each subassembly that allows alternatives).

2.1 The construction phase

To construct an initial solution, one subgraph is randomly selected for each available
subassembly following a distribution (also referred to as an assembly route), following a
probability function based on a priority rule for subgraphs. Once the subgraphs have been
chosen, the set of available assembly tasks (AVT) is defined. The set of available tasks is
formed with the tasks that belong to the selected subgraphs and those tasks that do not
allow assembly variants. The assignable tasks are determined to form the list of candidate
tasks (LCT). A task is assignable if all of its predecessors have already been assigned and the
sum of its time and the time of the tasks assigned to the current workstation does not exceed

www.intechopen.com

Assembly Line – Theory and Practice

40

the cycle time. For each task in the candidate list LCT, the priority rule value is computed to
construct a probability distribution, which is then used to randomly select the next task to be
assigned to the current workstation. Once a task has been assigned it is removed from AVT.
New lists LCT are generated and tasks are systematically assigned until all assembly tasks
have been assigned (i.e., the sets AVT and LCT are empty) and the solution has been
completed. The probability distributions used for selecting subgraphs and tasks are built
using weighted values of the following priority rules.

2.1.1 Priority rules for subgraphs

The priority rules used for selecting subgraphs are the following:
a. Minimum NP: this rule ranks the subgraphs of the same subassembly according to

ascending number of precedence relations involved in each subgraph, which is the total
number of arcs entering into and within the subgraph.

b. Minimum TT: subgraphs are ranked according to ascending total processing time (i.e.,
the sum of the times of all tasks belonging to the subgraph).

c. Minimum NT: subgraphs are ranked according to ascending number of tasks.
Let consider, for example, a subassembly of a given manufacturing process that allows three
alternative subgraphs, S1, S2 and S3, with total processing time of 30, 35 and 35 time units,
respectively. Considering the priority rule TT, the cumulative probability distribution for

selecting a subgraph s is as follows (r [0, 1) is a random value):

1 if

2 if

3 if

0 0.30

0.30 0.65

0.65 1

S

S

S

r

s r

r

 (1)

2.1.2 Priority rules for tasks

Table 1 lists the priority rules considered to build the probability distribution to select the
next tasks to be assigned. It is valid to mention that priority rules 3, 4, 5, 6 and 13 of Table 1
are minimization rules while all others are maximization ones. These rules are thirteen well-
known priority rules that have been adapted to the ASALBP (see (Capacho et al., 2009)) and
random choice assignment. Basically, these rules are determined by considering the cycle
time and task precedence relations and by measuring tasks processing times.
The following notation is considered:

n Number of tasks
ct Cycle time
mmax Upper bound on the number of workstations
tir Duration of task i when processed through route r (i = 1,…,n ; r Ri)
Pir Set of immediate predecessors of task i, if processed through route r (i=1,…,n ;
 rRi)
Sir Set of all successors of task i, if it is processed through route r (i=1,…,n; r Ri)
Once the set of selected routes SR is known, the following values can be defined:
sub(i) Subgraph chosen for task i (i AVT); in this way it is possible to know the
 duration of task i (ti,sub(i)).
Ei,Li Earliest and latest workstation to which task i can be assigned, respectively
 (i AVT).
SIi, Si Set of immediate and total successors of task i, respectively (i AVT).

www.intechopen.com

A Metaheuristic Approach to Solve the Alternative Subgraphs Assembly Line Balancing Problem

41

No. Label Priority rule Computation procedure

1 RPW Rank Positional Weight , (), ()
, ()

RPW t ti j sub ji sub i j S
i sub i

 (2)

2 T Task Time , ()
t
i sub i

3 EW Earliest Workstation () /, (), ()
, ()

EW t t cti j sub ji sub i j P i sub i

 (3)

4 LW Latest Workstation
, ()

, ()1 () /, ()
i sub i

i sub iLW m t t cti j sub jj S

max (4)

5 N Task Number i

6 Sk Slack Sk LW EWi i i (5)

7 TLW
Task Time divided by

Latest Workstation
/, ()TL t LWi i isub i (6)

8 IS
Number of Immediate

Successors
i iS II S (7)

9 TS
Number of Total

Successors
i iST S (8)

10 TTS
Task Time plus Total

Number of Successors , ()TTS t TSi i isub i (9)

11 STS
Average Time of

Successors , ()

() /, ()
i sub i

STS t TSi ij sub jj S

 (10)

12 TSSk
Number of Total

Successors divided by the
Slack

 / 1TSSk TS Ski i i (11)

13 LWTS
Average Latest

Workstation / 1LWTS LW TSi i i (12)

Table 1. Priority rules used to form the probability distributions for tasks

The combination of the resulting probability distributions, based on the various priority
rules used for tasks and subgraphs, produced 39 constructive methods, which are presented
in Table 2.

2.2 The local search phase
Two different neighbourhood search strategies based on task exchange movements are
considered. At this point, it is valid to recall that a solution to the problem is represented by
a sequence of tasks.
The following notation is used to describe such strategies:
mk Number of workstations required for a given sequence (solution) k
IS Initial tasks sequence generated in the construction phase
WS Working sequence (the first WS is IS)
SS Stored sequence (the first SS is IS)
NS Neighbour sequence
Slkj Slack of workstation j (i.e., cycle time minus workstation time)
α Weight parameter

www.intechopen.com

Assembly Line – Theory and Practice

42

Weighted
rules

for tasks

Weighted rules for subgraphs
NP TT NT

No.
Heuristic

Name
N
o.

Heuristic
Name

N
o.

Heuristic
Name

RPW 1 W-NP_RPW 14 W-TT_RPW 27 W-NT_RPW

T 2 W-NP_T 15 W-TT_T 28 W-NT_T

EW 3 W-NP_EW 16 W-TT_EW 29 W-NT_EW

LW 4 W-NP_LW 17 W-TT_LW 30 W-NT_LW

N 5 W-NP_N 18 W-TT_N 31 W-NT_N

Sk 6 W-NP_Sk 19 W-TT_Sk 32 W-NT_Sk

TLW 7 W-NP_TLW 20 W-TT_TLW 33 W-NT_TLW

IS 8 W-NP_IS 21 W-TT_IS 34 W-NT_IS

TS 9 W-NP_TS 22 W-TT_TS 35 W-NT_TS

TTS 10 W-NP_TTS 23 W-TT_TTS 36 W-NT_TTS

STS 11 W-NP_STS 24 W-TT_STS 37 W-NT_STS

TSSk 12 W-NP_TSSk 25 W-TT_TSSk 38 W-NT_TSSk

LWTS 13 W-NP_LWTS 26 W-TT_LWTS 39 W-NT_LWTS

Table 2. Heuristic methods used in the construction phase

The proposed local optimization procedures generate the neighbourhood of the working
sequence WS by using a transformation or exchange movement (which are described
in what follows). Each exchange generates a neighbour sequence NS, which is evaluated
and compared with the stored sequence SS. If NS improves the stored sequence SS
(i.e., it requires fewer workstations) the neighbour sequence becomes the stored
sequence SS.
When a neighbour sequence requires the same number of workstations as the store
sequence (situation that may frequently occur in line balancing problems), a secondary
objective function (13) is used as tie-breaker. This function creates solutions by attempting to
load the first workstations at maximum capacity and the last ones at minimum capacity. To
achieve this objective, the weight parameter α of f has been set to 10. It was verified that

equivalent results can be obtained by using α=10e, being e an integer greater than 1.

1

km
j

j

f

 jmin Slk (13)

The local search ends when, for each task in WS, all feasible exchanges have been made; i.e.,
all neighbours have been generated and evaluated. For the next iteration, the stored
sequence SS is assigned to the working sequence WS. The entire procedure is repeated until
a predetermined computing time has been completed. The final solution is the best of all
solutions that have been generated.

Exchange Movements

An adaptation of two classical transformations (see (Armentano & Basi, 2006)) has been
considered to generate the neighbourhood of a given solution, as follows.
a. The exchange of the positions in WS of a pair of tasks
In this case, the exchange movement tries to exchange the position, in the working sequence
WS, of any two tasks i and k, provided it is feasible; i.e., the precedence relations amongst

www.intechopen.com

A Metaheuristic Approach to Solve the Alternative Subgraphs Assembly Line Balancing Problem

43

the tasks are maintained. Furthermore, both task i and task k should have been assigned to
different workstations. When task i and task k belong to the same subgraph s, new
neighbour sequences are searched by interchanging s with each one of the remaining
subgraphs available for such tasks.
b. The movement of task i to another position of the working sequence WS
In this type of movement a task is yielded to a different workstation. A task i can be moved
to the position of task k when the tasks precedence relations are maintained and when task k
and task i have been assigned to different workstations. In this case, all tasks between the
positions of task i and k, including task k itself, are moved in the sequence one position
backwards. Furthermore, for each movement, neighbour sequences are generated by
interchanging the alternative subgraphs available for the moved task.
When a movement exchange type a is used in the local search phase, the local optimization
procedure is regarded as LOP-1; otherwise, it is regarded as LOP-2.

Examples of exchange movements

Let consider an example (see (Capacho et al., 2009)) of an ASALB problem involving 11 tasks
and 7 alternative subgraphs, which represent the assembly variants that are allowed for
three parts of a manufacturing system: alternative S1 and S2, for subassembly one; S3 and
S4, for the second part; and S5, S6 and S7, for the third subassembly. Then, if the NR (i.e.,
minimum number of tasks) is the rule applied, subgraphs S1, S3 and S5 are selected for
subassembly 1, 2 and 3, respectively. By choosing such subgraphs, the precedence relations
presented in Table 3 are determined.

task 1 2 3 4 5 6 7 8 9 10 11

Immediate
predecessors

- - - 1, 2 3 2, 5 4 6 7 8 9

Table 3. Resulting precedence relations by considering rule NT for selecting subgraphs.

Then, by applying rule RPW for selecting the next task to be assigned, the solution
presented in Table 4 is obtained. Table 4 includes the number of required workstations m,
the tasks assigned to each workstation, and the corresponding workstation time wt.

m=6
workstation

I II III IV V VI

Tasks 2, 1 3 4, 5 6, 7 8, 10 9, 11

wt 11 17 16 16 15 15

Table 4. Task assignment to the workstations by applying rule RPW .

As can be observed in Table 4, tasks are assigned to the workstations in a particular order,
which defines the tasks sequence that is used as the initial sequence ISq, as follows:
ISq = 2, 1, 3, 4, 5, 6, 7, 8, 10, 9, 11.
If a transformation type a is applied, the neighbour solution of Figure 1 is obtained by
interchanging the positions of task 2 and task 3. This movement is possible since, as can be
seen in Table 3, neither task 2 nor task 1 are predecessors of task 3, and neither task 1 nor
task 3 are successors of task 2 (i.e., the precedence constraints are maintained). Moreover, as
shown in Table 4, the tasks are assigned to different workstations: task 2 is assigned to
workstation I and task 3 is assigned to workstation II.

www.intechopen.com

Assembly Line – Theory and Practice

44

Fig. 1. Generation of a neighbour sequence applying transformation a.

If transformation b is considered, the neighbour sequence is generated by moving task 2 to

the position of task 3; and by moving task 1 and task 3 one position backwards in the

sequence. The resulting neighbour sequence is as follows.

Fig. 2. Generation of a neighbour sequence applying transformation b.

3. Computational experiment

To evaluate and compare the performance of the proposed GRASP procedures described in

the previous section, a computational experiment was carried out considering medium- and

large-scale ASALBP. The data sets (see Table 5) used in the computational experiment are

base on the following 10 benchmark problems: Gunther, Kilbrid, Hann, Warnecke, Tongue,

Wee-Mag, Lutz3, Arcus2, Bartholdi and Scholl; with 35, 45, 53, 58, 70, 75, 89, 111, 149 and

297 tasks, respectively. Each benchmark problem is subdivided into two, three and four

subassemblies; involving five, eight and eleven subgraphs, respectively. For each problem

instance five cycle time values were considered. Benchmarks are available online at the web

page for assembly line balancing research: www.assembly-line-balancing.de.

A total of 150 problem instances, involving from 37 to 305 tasks, were solved considering

a computation time of 0.1 second on a Pentium IV, 3GHZ CPU with 512 Mb of RAM

with each of the 78 proposed algorithms. All heuristic methods were implemented

using C++.

4. Analysis of the results

To present the results obtained in the computational experiment, the following notation is

used: NI, number of the tested instances; CT, computation time; NBS, number of best solutions

obtained; PBS, percentage of best solutions; max , av , min, maximal, average and minimal

deviation from the best solution, respectively. For each problem instance, the relative deviation

from the best solution BS, of each heuristic solution HS, is computed as follows:

 100
HS BS

BS

 (14)

2 1 3 4 5 6 7 8 10 9 11 3 1 2 4 5 6 7 8 10 9 11

 Initial Sequence Neighbour Sequence

2 1 3 4 5 6 7 8 10 9 11 1 3 2 4 5 6 7 8 10 9 11

 Initial Sequence Neighbour Sequence

www.intechopen.com

A Metaheuristic Approach to Solve the Alternative Subgraphs Assembly Line Balancing Problem

45

Problem

Cycle time values Number of subgraphs

ct1 ct2 ct3 ct4 ct5
5 8 11

Number of tasks

Bowman 20 - - - - 10 - -

Mansor 48 62 94 - - 11 - -

Mitchell 14 21 35 - - 21 21 -

Buxey 30 36 54 - - 29 29 -

Gunther 41 44 49 61 81 37 37 37

Kilbrid 57 79 92 138 184 45 46 48

Hahn 2004 2338 2806 3507 4676 56 56 63

Warnecke 54 62 74 92 111 63 63 67

Tonge 160 176 207 251 320 73 75 75

Wee-Mag 28 33 39 46 56 77 81 83

Lutz3 75 83 97 118 150 93 98 101

Arcus2 5785 6540 7916 9400 11570 115 121 125

Bartholdi 403 470 564 705 805 151 157 160

Scholl 75 83 97 118 150 299 302 305

Table 5. Data Sets

The overall performance of all methods is evaluated by considering the number of best
solutions provided by the methods. The best solution for a problem instance, the basis
for the comparative analysis, is the best of all solutions found by the proposed heuristic
methods. The results are also compared with previous results obtained by methods
using nominal, rather than weighted, values of the priority rules (e.g., Capacho et al.,
2009).
Table 6 shows the results obtained by applying all proposed procedures to solve all data
sets. As observed in Table 6, better results were obtained by methods using local procedure
LOP-2, which in most cases outperformed methods applying LOP-1; i.e., 24 methods
performed better, in two cases both performed the same, and for 3 procedures it behave
worse that LOP-1. On the other hand, all methods using LOP-2 provided best solutions in
more than 54% of the cases.
The best performance was recorded for the method that employed W-NT_TSSk in the
construction phase and applied LOP-2; which generated best solutions in 85,3% of the cases
(this represents a 3.3% of improvement comparing with the same method when applying

LOP-1). Furthermore, method W-NT_TSSk yielded a comparatively small value of max

(16.7%), and the smallest value of av (1%).
Regarding LOP-1, the method that performed the best was W-NT_TSSk, which generated
best solutions in 82,7% of the cases. Method W-NT_TSSk performed the same, generating
best solutions in 82.7% of the cases regardless of the local optimization procedure
applied.
Other methods that also performed well are those that employed W-TT_LWTS, W-TT_LWTS,
W-NT_TS, W-TT_TS and applied LOP-2, all of which generated the best solutions in 78.7% of

cases. Table 6 also shows that for most methods max is significantly high.
As it can be observed in Table 6, priority rule EW has a very poor performance, regardless of
the rule used for subgraphs and the local optimization procedure applied; generating best
solutions, at best, in 56 % of the cases.

www.intechopen.com

Assembly Line – Theory and Practice

46

Method
LOP-1 LOP-2

NBS PBS max av NBS PBS max av

1 W-NP_RPW 112 74.7 16.7 1.9 114 76.0 16.7 1.8

2 W-NP_T 92 61.3 33.3 3.1 94 62.7 33.3 2.9

3 W-NP_EW 75 50.0 33.3 4.0 85 56.7 33.3 3.7

4 W-NP_LW 74 49.3 33.3 3.8 85 56.7 33.3 3.6

5 W-NP_N 85 56.7 25.0 3.2 90 60.0 25.0 2.9

6 W-NP_Sk 74 49.3 33.3 3.7 83 55.3 33.3 3.4

7 W-NP_TLW 96 64.0 33.3 3.0 98 65.3 33.3 2.8

8 W-NP_IS 87 58.0 33.3 3.3 90 60.0 33.3 3.1

9 W-NP_TS 111 74.0 16.7 1.7 113 75.3 16.7 1.6

10 W-NP_TTS 93 62.0 25.0 2.7 94 62.7 25.0 2.6

11 W-NP_STS 76 50.7 33.3 3.8 81 54.0 33.3 3.5

12 W-NP_TSSk 109 72.7 16.7 1.8 109 72.7 16.7 1.7

13 W-NP_LWTS 111 74.0 16.7 1.9 112 74.7 16.7 1.7

14 W-TT_RPW 113 75.3 16.7 1.4 116 77.3 16.7 1.4

15 W-TT_T 99 66.0 33.3 2.5 100 66.7 33.3 2.3

16 W-TT_EW 80 53.3 33.3 3.3 84 56.0 33.3 3.0

17 W-TT_LW 85 56.7 33.3 3.2 88 58.7 33.3 3.0

18 W-TT_N 94 62,7 25.0 2.6 96 64.0 25.0 2.3

19 W-TT_Sk 83 55.3 33.3 3.3 89 59.3 33.3 3.0

20 W-TT_TLW 102 68.0 33.3 2.3 104 69.3 33.3 2.1

21 W-TT_IS 97 64.7 25.0 2.3 100 66.7 25.0 2.0

22 W-TT_TS 116 77.3 16.7 1.3 118 78.7 16.7 1.1

23 W-TT_TTS 105 70.0 25.0 2.0 106 70.7 25.0 1.8

24 W-TT_STS 88 58.7 33.3 2.8 90 60.0 33.3 2.6

25 W-TT_TSSk 124 82.7 16.7 1.0 124 82.7 16.7 1.0

26 W-TT_LWTS 119 79.3 16.7 1.3 118 78.7 16.7 1.3

27 W-NT_RPW 116 77.3 16.7 1.4 113 75.3 16.7 1.4

28 W-NT_T 99 66.0 33.3 2.5 100 66.7 33.3 2.3

29 W-NT_EW 79 52.7 33.3 3.4 83 55.3 33.3 3.2

30 W-NT_LW 85 56.7 33.3 3.2 88 58.7 33.3 3.0

31 W-NT_N 93 62.0 25.0 2.6 95 63.3 25.0 2.4

32 W-NT_Sk 83 55.3 33.3 3.3 89 59.3 33.3 3.0

33 W-NT_TLW 102 68.0 33.3 2.3 104 69.3 33.3 2.1

34 W-NT_IS 96 64.0 33.3 2.5 99 66.0 33.3 2.2

35 W-NT_TS 116 77.3 16.7 1.3 118 78.7 16.7 1.1

36 W-NT_TTS 105 70.0 25.0 2.0 106 70.7 25.0 1.8

37 W-NT_STS 88 58.7 33.3 2.8 90 60.0 33.3 2.6

38 W-NT_TSSk 123 82.0 16.7 1.0 128 85.3 16.7 1.0

39 W-NT_LWTS 119 79.3 16.7 1.3 118 78.7 16.7 1.3

min= 0 in all cases

Table 6. Results of applying the GRASP procedures (NI = 150)

www.intechopen.com

A Metaheuristic Approach to Solve the Alternative Subgraphs Assembly Line Balancing Problem

47

On the other hand, Table 6 also shows that methods employing different local search

procedures behave very similarly when the same heuristic method is used to build the

initial solution. This means that when a constructive method performs well when applying

LOP-1, it also performs well (or better) when applying LOP-2. This behaviour can also be

observed in Figure 3, which shows the percentage of improvement (in one workstation) of

the proposed procedures comparing with other multi-pass methods.

0

5

10

15

20

25

30

35

40

N
P

_
R

P
W

N
P

_
T

N
P

_
E

W

N
P

_
L

W

N
P

_
N

N
P

_
S

k

N
P

_
T

L
W

N
P

_
IS

N
P

_
T

S

N
P

_
T

T
S

N
P

_
S

T
S

N
P

_
T

S
S

k

N
P

_
L

W
T

S

T
T

_
R

P
W

T
T

_
T

T
T

_
E

W

T
T

_
L

W

T
T

_
N

T
T

_
S

k

T
T

_
T

L
W

T
T

_
IS

T
T

_
T

S

T
T

_
T

T
S

T
T

_
S

T
S

T
T

_
T

S
S

k

T
T

_
L

W
T

S

N
T

_
R

P
W

N
T

_
T

N
T

_
E

W

N
T

_
L

W

N
T

_
N

N
T

_
S

k

N
T

_
T

L
W

N
T

_
IS

N
T

_
T

S

N
T

_
T

T
S

N
T

_
S

T
S

N
T

_
T

S
S

k

N
T

_
L

W
T

S

LOP-1 LOP-2

Fig. 3. Performance of GRASP procedures

The results obtained with the proposed GRASP methods were also compared with
the results obtained by multi-pass methods, in which the assembly subgraphs
are randomly selected and tasks are assigned according to nominal values of the priority
rules of Table 1. Table 7 shows the percentages of improvement in the solution provided
by the proposed GRASP methods comparing with multi-pass ones (e.g., Capacho et
al., 2009), considering a CT=0.1 seconds. Data in Table 7 includes Impmax, Impav,
Impmin, maximal, average, and minimum percentage of improvement, respectively. It also
shows the percentage of cases in which the best solution found requires 1, 2 or 3
workstations less (%1ws, %2ws, %3ws), respectively, than the best result provided by the
corresponding multi-pass methods. As can be seen in Table 7, the best results were
obtained when LOP-2 was applied. This strategy provided an additional 12.9% of best
solutions, getting in some cases up to 35.6%. Table 7 also reveals that both types of
procedures were able to generate improved solutions in which up to three fewer
workstations were required; i.e., in 0.1% and 0.3% of the cases with LOP-1 and LOP-2,
respectively.

5. Conclusions and further research work

In this chapter, the metaheuristic approach GRASP was used to solve the Alternative

Subgraphs Assembly Line Balancing Problem (ASALBP). Thirty-nine construction methods,

PS1stat

www.intechopen.com

Assembly Line – Theory and Practice

48

based on weighted priority rule values, and two local search strategies (LOP-1 and LOP-2)

were proposed, implemented and evaluated.

Local method Impmax Impav Impmin % 1 ws % 2 ws % 3 ws

LOP-1 24.9 6.8 0.2 2.2 0.3 0.1

LOP-2 35.6 12.9 2.7 3.6 0.6 0.3

Table 7. Comparison of nominal- and weighted- rule based methods

The results obtained showed that methods that used LOP-2 performed better than those

that used LOP-1, achieving best solutions in up to 85.3% of all cases, considering all

the proposed construction methods. Nevertheless, some methods applying LOP-1 (i.e.,

W-NT_TSSk and W-TT_TSSk) also performed well, providing best solutions in up to

82.7%.

The results also showed that a significant improvement can be obtained in comparison

to previous results obtained using multi-pass methods based on single priority rule values

and using random choice for subgraphs. Improved solutions were obtained in which

the number of workstations required was reduced by one, two or even three, which

represent the best results obtained with any method developed up to now to solve the

ASALBP. Thus, all proposed methods that used LOP-2 could be applied to solve an

Alternative Subgraphs Assembly Line Balancing Problem to select the best overall

solution.

Further research involves exploring other methods to solve the ASALBP. The growing

interest on using Evolutionary Algorithms to solve optimization problems in industry

makes the use of such procedures an attractive approach, which, in addition, has been

successfully applied to complex assembly line balancing problems. On the other hand, in

order to increase the practicality of the problem, its definition can be extended by including

new features such as, for example, stochastic processing times, setups, and different line

layouts.

6. Acknowledgment

Supported by the University of Los Andes, Mérida – Venezuela.

7. References

Andrés, C., Miralles, C. & Pastor, R. (2008). Balancing and scheduling tasks in assembly lines

with sequence-dependent setup times. European Journal of Operational Research, Vol.

187, No. 3, pp. 1212-1223.

Armentano, A. & Bassi, O. (2006). Graph with memory-based mechanisms for minimizing

total tardiness in single machine scheduling with setup Times. Journal of Heuristics,

Vol. 12, pp. 427-446.

www.intechopen.com

A Metaheuristic Approach to Solve the Alternative Subgraphs Assembly Line Balancing Problem

49

Becker, C. & Scholl, A. (2006). A survey on problems and methods in generalized

assembly line balancing. European Journal of Operational Research, Vol. 168, pp. 694-

715.

Capacho, L. (2007). ASALBP: the Alternative Subgraphs Assembly Line Balancing Problem.

Formalization and resolution procedures. PHD thesis. Tecnical Universtity of

Catalunya. Barcelona, Spain.

Capacho L. & Pastor, R. (2006). The ASALB problem with processing alternatives involving

different tasks: definition, formalization and resolution. Lecture Notes in Computer

Science, Vol. 3982, pp. 554-563.

Capacho, L. & Pastor, R. (2008). ASALBP: The alternative subgraphs assembly line

balancing problem. International Journal of Production Research, Vol. 46, pp. 3503-

3516.

Capacho, L., Pastor, R., Dolgui, A. & Guschinskaya, O. (2009). An evaluation of constructive
heuristic methods to solve the alternative subgraphs assembly line balancing
problem. Journal of Heuristics, Vol. 15, pp. 109-132.

Capacho, L., Pastor, R., Guschinskaya, O. and Dolgui, A. (2006). Heuristic Methods
to Solve the Alternative Subgraphs Assembly Line Balancing Problem.
Proceedings of the IEEE Conference on Automation Science and Engineering -
CASE 2006, pp. 501-506, ISBN: 1-4244-0310-38-11, Shanghai-China. October 7-10,
2006.

Das, S. & Nagendra, P. (1997). Selection of routes in a flexible manufacturing facility.
International Journal of Production Economics, Vol. 48, pp. 237–247.

Delorme, X., Gandibleux, X. & Rodriguez, J. (2004). GRASP for set packing problems,
European Journal of Operational, Vol. 153, pp. 564-580.

Dolgui, A., Eremeev, O. & Guschinskaya, O. (2010). MIP-based GRASP and genetic
algorithm for balancing transfer lines. Matheuristics: Hybridizing Metaheuristics and
Mathematical Programming, Maniezzo, V., Stutzle, T., Voss, S. (eds.), Annals of
Information Systems, Springer, 10, 189-208.

Falkenauer, E. (2005). Line Balancing in the Real World. Proceedings of the International
Conference on Product Lifecycle Management PLM´05, 360 - 370.

Festa, P. & Resende, M. (2008a). An annotated bibliografy of GRASP. Part I: Algoritms.
Technical Report. AT&T Labs Research. Available online at www.optimization-
online.org/DB_FILE/2008/06/2011.pdf. Visited: 01.03.11.

Festa, P. & Resende, M. (2008b). An annotated bibliografy of GRASP. Part II: Aplications.
Technical Report. AT&T Labs Research. 01. 03.11. Available online at:

 www2.research.att.com/~mgcr/doc/gabib-appl.pdf. Visited: 01.03.11.
Martino, L. & Pastor, R. (2007). Heuristic procedures for solving the General Assembly Balancing

Problem with Setups (GALBPS). Tecnical Report, IOC-DT-P-2007-15. Tecnical
Universtity of Catalunya.

Resende, M. & Ribeiro, C. (2003). Greedy Randomized Adaptive Search Procedures.
Handbook of Metaheuristics. International Series in Operations Research &
Management Science, Vol. 57, pp. 219-249, DOI: 10.1007/0-306-48056-5_8

Scholl, A., Boysen, N. & Fliedner, M. (2008). The sequence-dependent assembly line
balancing problem. Operations Research Spectrum, Vol. 30, pp. 579-609.

www.intechopen.com

Assembly Line – Theory and Practice

50

Scholl, A., Boysen, N. & Fliedner, M. (2009). Optimally solving the alternative subgraphs
assembly line balancing problem. Annals of Operations Research, vol. 172, No.1, pp.
243-258.

Talbot, F.B, Patterson, J.H. & Gehrlein, W.V. (1986). A comparative evaluation of heuristic
line balancing techniques. Management Science, Vol. 32, pp. 431-453.

www.intechopen.com

Assembly Line - Theory and Practice

Edited by Prof. Waldemar Grzechca

ISBN 978-953-307-995-0

Hard cover, 250 pages

Publisher InTech

Published online 17, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

An assembly line is a manufacturing process in which parts are added to a product in a sequential manner

using optimally planned logistics to create a finished product in the fastest possible way. It is a flow-oriented

production system where the productive units performing the operations, referred to as stations, are aligned in

a serial manner. The present edited book is a collection of 12 chapters written by experts and well-known

professionals of the field. The volume is organized in three parts according to the last research works in

assembly line subject. The first part of the book is devoted to the assembly line balancing problem. It includes

chapters dealing with different problems of ALBP. In the second part of the book some optimization problems

in assembly line structure are considered. In many situations there are several contradictory goals that have to

be satisfied simultaneously. The third part of the book deals with testing problems in assembly line. This

section gives an overview on new trends, techniques and methodologies for testing the quality of a product at

the end of the assembling line.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Liliana Capacho and Rafael Pastor (2011). A Metaheuristic Approach to Solve the Alternative Subgraphs

Assembly Line Balancing Problem, Assembly Line - Theory and Practice, Prof. Waldemar Grzechca (Ed.),

ISBN: 978-953-307-995-0, InTech, Available from: http://www.intechopen.com/books/assembly-line-theory-

and-practice/a-metaheuristic-approach-to-solve-the-alternative-subgraphs-assembly-line-balancing-problem

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

