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1. Introduction 

To combat ischemic heart disease in the clinical scenarios of open heart surgery, unstable 

coronary syndromes, percutaneous coronary interventions, or thrombolysis, different 

research approaches are used to improve clinical treatments. The most dreaded long term 

consequence of ischemic heart disease – heart failure – is another clinical diagnosis where 

the treatment we have to offer is less than optimal. Some researchers are attempting to omit 

the reason for cardiovascular disease through targeting the process of atherosclerosis. 

Others adress the pathophysiology of restenosis, which may occurr after balloon dilatation 

of atherosclerotic lesions. Yet others adress improved treatment of the myocardium which 

has undergone an infarction, where the building of new blood vessels, strengthening of the 

contractile apparatus, and recruitment of new cells to areas of necrosis may be therapeutical 

end-points. Arrthythmias may occur due to reperfusion injury, after long-term 

morphological changes in the heart, or due to endogenous causes related to changes of the 

conduction system; new therapies are required for improved treatment. Novel treatments 

for dysfunctional, calsified heart valves are subject to other lines of investigations. Gene 

therapy and cell therapy using genetic engineering of stem cells will be the focus of this 

chapter, in particular the current status of treatments directed towards the myocardium 

itself in ischemic heart disease will be discussed. Gene therapy and to a lesser extend cell 

therapy have been used both clinically and experimentally to combat acute ischemia, 

remodeling and heart failure. However, the protected location of the heart of the heart 

inside the thoracic cavity, the nature of cardiac cells with minimal ability of entering cell 

cycle, and the  electrophysiological properties of the heart render this organ with some 

particular challenges for gene therapy. 

2. Gene therapy for myocardial protection 

Delivery of DNA to hearts as well as other organs has been performed in animal 

experiments, and clinical studies in “no-option” patients have been conducted. Many 

clinical trials with gene therapy in cardiovascular patients have recently been reviewed 

(Lavu at al., 2010, Lyon et al., 2011). A general challenge with gene delivery to the heart is 

low transfection efficacy (the cardiomyocyte does not enter cell cycle), cell 

injury/inflammation, and unwanted sideeffects. There are several options on routes of DNA 
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delivery to the heart. One alternative is intravascular delivery, which can be directed 

through coronary arteries or retrogradely into the coronary sinus. An arterial approach 

which requires open coronary arteries may not be suitable for patients with coronary artery 

disease if the target is treating cardiomyocytes rather than vascular cells. Pericardial gene 

delivery has been attempted, but there are rather few publications with that particular route 

of delivery. Another option is direct intracardiac delivery, which has been tried clinically 

and experimentally (Isner, 2002, Semenza, 2004, Vinge et al., 2008). In general it is difficult to 

achieve a lasting transfection through this invasive approach, which may be delivery of 

naked DNA or DNA ligated to a vector. Viral vectors used for cardiovascular therapy are 

most commonly adenovirus, adenoasscociated virus, and to a lesser extent lentivirus. A 

third possibility is systemic delivery with “something” that directs the DNA/RNA to a 

specific cell. The “something” in question may be adenovirus or adenoassociated virus, 

which have been most extensively used for genetic correction of cardiovascular disorders. 

Adenovirus have the advantage of being easy to manipulate, can be produced in high titers, 

and have a large transgene cloning capacity (Vinge et al., 2008). However, adenovirus elicit 

an inflammatory response. Development of so-called “gutted or gutless” adenovirus, where 

the immunogenic viral epitopes are removed, may become an option in the future (Vinge et 

al., 2008). Adenoassociated virus are not associated with any human disease, produce a 

stable and long-lasting gene expression, and easily transfect cardiac muscle cells. The latter 

is especially the case with some of the newer serotypes, of which serotype 9 is most 

cardiotropic (Bush et al., 2008, Zancarelli et al., 2008). A disadvantage is that only small 

constructs (less than 5 kb) can be packed into adenoassociated virus (AAV). Non-viral 

vectors are also in use and will be briefly discussed.  

Further considerations in cardiac gene therapy are which cells are to be treated and what do 

we want to overexpress or silence (Vinge et al., 2008). The possibilities range from targeting 

the vasculature to stabilize atherosclerotic plaques, prevent neointima formation, reduce 

atherosclerosis, induce angiogenesis, to improve survival of cardiomyocytes, improve 

function of cardiomyocytes, to reduce pathologic remodelling, and to prevent arrhythmia 

generation. Choice of gene construct and delivery route will depend on this. Genes encoding 

for factors which have intracellular effects should be delivered to a large population of cells 

to correct the underlying pathology, while genes encoding for secretory factors require 

fewer successfully transfected cells provided gene expression lasts (Isner, 2002). RNA 

interference or silencing, a possibility for gene knockdown, is predominantly at an animal 

experimental level. Experimentally, RNA interference though short hairpin RNA silencing 

the RNA polymerase of Coxsackie B3 virus packed into AAV2 successfully treated cardiac 

dysfunction in mice with coxsackieB cardiomyopathy (Fechner et al., 2008). In that study, 

the AAV2-construct was given intravenously. The same group have also used 

phospholamban silencing in short hairpin RNA delivered systemically through a AAV9 

vector to normalize left ventricular remodelling after phenylephrine-induced hypertrophy 

(Suckau et al., 2009). RNA silencing will not be discussed further in this chapter. 

2.1 Viral vectors 

The first experimental studies on cardiac gene therapy used intramyocardial delivery with 
plasmid DNA, demonstrating the feasibilty of envisioning cardiac gene transfer (Acsadi et 
al., 1991, Lin et al., 1990, Burrick et al., 1992). Although those studies were successful in 
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the terms of being able to cause transgene expression up to six months later in 
cardiomyocytes, the number of transfected myocytes was estimated to be as low as 60-100 
cells (Ascadi et al., 1991). This lead to the search for vectors to enhance nuclear uptake, 
where viral vectors have been most extensively studied. Adenovirus was first attempted. 
Guzman and coworkers injected an adenoviral vector containing ┚-galactosidase (1993) 
into the myocardium, and was able to see a stronger signal than that evoked by plasmid 
containing the same molecular marker. However, the expression lasted only one week, 
and was accompanied by an inflammatory response (Guzman et al. 1993). Subsequently 
viral titers and protein production have been extensively studied and optimized,  as have 
anatomic  location and duration of adenoviral based gene expression in the heart (French 
et al., 1994, Magovern et al., 1996, Barr et al., 1994). Delivery of therapeutic genes with 
adenoviral vectors has been performed with success. For instance, adenoviral based 
delivery of DNA encoding for ┚2-adrenoceptors enhanced cardiac function in hamsters 
with cardiomyopathy (Tomiyasu et al., 2000). However, although adenovirus was the first 
vector to be used for cardiac gene therapy and has been useful for “proof of concept” as 
well as some initial clinical trials (Lavu et al., 2010), it may not be of large scale 
therapeutic use for the future. Adenovirus are double-stranded DNA viruses, with a high 
effeciency of delivery and expression of their genome in nuclei of dividing and non-
dividing cells (Voplers & Kochanek, 2004). They are relatively large viral structures, with 
the capacity to carry constructs of up to 30 kB (Lyon et al., 2011). However, despite the 
fact that they are relatively cheap to produce in high titers and with a reasonably high 
purity, a major issue is that they evoke an immune response. As naturally occurring 
pathogens, patients are likely to have encountered them previously. Thus immune 
responses leading to destruction of cells containing adenovirus in the heart is a likely 
outcome. The latter factor also limits the time frame of therapeutic gene expression (Lyon 
et al., 2011).   However, since work on gene therapy of the heart started with adenoviral 
vectors, the experience in use of this vector is high, and it is an excellent tool for basic 
science studies to evaluate the therapuetic potential of novel genes.    
Attempts are being made to reduce the immunogenicity of adenoviruses, removing the viral 

genome and viral proteins. The third generation of “gutless” adenovirus have low 

immunogenicity, and longer transgene expression (Chen et al., 1997). Direct myocardial 

delivery of gutless adenovirus resulted in less inflammation than the first generation virus, 

but the gene expression was not high and it was short-lasting (Fleury et al., 2004). Another 

still remaining problem with adenovirus in the heart is the affinity for other organs such as 

gastrointestinal tract, liver, respiratory tract, and muscle, causing side effects in clinical trials 

(Lavu et al., 20120, Lyon et al., 2011).  

Adenoassociated viruses (AAV) are currently without comparison the most suitable vectors 

for cardiovascular gene transfer. AAVs are not associated with any human pathology 

although 20-40% of all humans may have antibodies to them, making them attractive and 

safe for clinical treatment. AAVs exist in different seroforms, which have different affinity 

for the heart. The most recent serotyope, AAV9, is more cardiotropic than any other known 

virus and will transfect nearly 100% of all heart cells (Vandendriessche et al., 2007). AAV9 

causes a sustained cardiac expression of the delivered gene, with little leakage to other 

organs (Bish et al., 2008, Inagaki et al., 2006, Zincarelli et al., 2008, Pacak et al., 2006). AAV1, 

6, and 8 also have relatively high tropism to the heart, and since they have been around for a 

longer time, they have come further into clinical studies. AAV have been used for 
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intracardiac, intravascular, and systemic gene delivery. Hitherto more than 20 clinical trials 

using AAV vectors have delivered the vectors to hundreds of patients without observing 

any adverse effects (Lyon et al. 2011, Leon et al. 2010). A major advantage of AAV9 is that a 

systemic approach to gene delivery can be used, thus avoiding some of the challenges of the 

other viral vectors. 

Retroviruses are RNA viruses which integrate into the host cell chromosome after enzymatic 
conversion to DNA. Retroviral vectors are modified to retain the part of the genome which 
is neccessary to initiate reverse transcription into the target cell, while the rest of the viral 
genome is removed (Lyon et al., 2011). Integration of virus into the cell requires cell 
division, which is why this vector can be suitable for therapies against endothelial or smooth 
muscle cells such as in avoiding atherosclerosis or restenosis, but less suitable for 
cardiomyocytes which have a low division rate.  However, the insertion of retrovirus into 
the host genome may cause mutations, potentially leading to malignancies which can be 
passed on into the germline to offspring. 
Lentiviruses belong to the retroviridae family, and include vectors derived from the human 

immunodeficiency virus type I (HIV-1). Wild-type HIV-1 have an affinity for T-cell 

subpopulations, limiting their usability for cardiovascular purposes. Hybrid “pseudotyped” 

lentivirus have been produced to expand their tropism for other cell types. In the context of 

transfecting cardiomyocytes, lentiviral-based vectors are as effecient as adenoviruses, with 

transgene expression lasting longer (Yoshimitsu 2006). They can incorporate constructs up 

to 8 kB in size (Yoshimitsu). Lentivirurses are especially favoured in studies targeting 

transfection of endothelial cells or smooth muscle cells (Sakoda et al., 2007). The major 

obstacle towards a large-scale employment of lentivirus is currently uncertainties regarding 

safety. Modifications of the virus to avoid any risk of human disease are being performed, 

and may in the future lead to a larger therapeutic potential (Lyon et al. 2011). 

2.2 Intrapericardial gene delivery 

In theory, injection of DNA into the intrapericardial space may offer an environment which 

is relatively constant (no blood flow), and would be a relatively non-invasive approach for 

getting DNA to the heart. However, an intrapericardial injection can not lead to directed 

gene delivery, in the sense that there is no control over uptake in a specific type of cell or a 

specific area of the heart such as into the border zone of myocardial infarction. It is 

noteworthy that few publications exist using this option. Zhang and coworkers delivered 

adenoviral based LacZ into the pericardium of neonatal mice through a percutaneous 

puncture, and three days later found LacZ activity in the endocardium, epicardium, and 

myocardium (Zhang et al., 1999). However, the same regimen did not lead to wide-spread 

expression in adult hearts, in which hepatic transduction was found in high levels (Zhang et 

al., 1999). Using a transdiagfragmatic approach, Fromes et al. (1999) delivered adenoviral 

based ┚-galactodase intrapericardially in rats. Positive staining was found exclusively in 

pericardial cells. Mixing the virus with proteolytic enzymes increased transgene expression 

intramyocardially within a short time later, but the expression did not last, and there was 

leakage to other organs (Fromes et al., 1999). In the canine myocardium,  March and 

coworkers (1999) delivered adenovirus based LacZ through a penetrating catheter. This lead 

to a pericardial-located activity of LacZ. The abscence of publications using this delivery 

approach for the last decade suggests that this is not a delivery route for the future. 
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Fig. 1. The cartoon depicts possible routes of delivery of either stem cells or DNA with or 
without a vector to the heart. Systemic delivery is suitable only when DNA is ligated to a 
cardiotropic vector.  

2.3 Intramyocardial gene delivery 

Gene delivery to the heart of either plasmid DNA or DNA ligated to a vector has been 
performed for decades both in experimental and in clinical trials (Lavu et al., 2010, Katz et 
al., 2010). Regardless of whether the injection is of plasmid DNA or DNA ligated to a vector, 
intramyocardial injections are invasive and do not have a clinical appeal. One can envision 
injection of DNA during open heart surgery when the heart is exposed anyway, or catheter-
based delivery when a patient is undergoing invasive arterial procedures. However, except 
for open heart surgery with direct visualization the accuracy of such an approach is not high 
- if the intention is delivery of genes i.e. into an ischemic border zone to induce 
angiogenesis, it will be very difficult to control where exactly the injection site is in relation 
to where it would be wished to be. The approach has, however, given us invaluable research 
information on the therapeutic potential and limitations of genes thought to correct 
underlying pathologies. Many studies have used intramyocardial injections of DNA to 
induce angiogenesis. Delivery of the transcription factor GATA-4 ligated to an adenoviral 
vector before coronary artery ligation resulted in improved left ventricular function and 
reduced infarct size (Rysä et al., 2010). This was due to increased angiogenesis, decreased 
apoptosis, and mobilization of cardiac stem cells in GATA-4 treated hearts. AAV-based 
transfection with angiogenin in an in vivo infarction model reduced remodelling, induced 
angiogenesis, and attenuated cardiac dysfunction four weeks later (Zhao et al., 2006). 
Therapeutic use of AAV9-vascular endothelial growth factor-B is cardioprotective in canine 
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pacing-induced dilated cardiomyopathy, but not due to formation of new vessels (Pepe et 
al., 2010). Delivery of adenoviral vector-ligated vascular endothelial growth factor B to rats 
with angiotensin II-induced hypertrophy leads to reduction of diastolic dysfunction, 
increasing capillary area but not density (Serpi et al., 2011). In a chronic ischemia model in 
rats, AAV2-based delivery of both vascular endothelial growth factor A and – B were 
protective (Zentilin et al., 2010). Vascular endothelial growth factor B was more protective 
than A, reducing apoptosis and remodelling and preserving heart function in the abscence 
of angiogenesis. Hepatocyte growth factor delivered by adenovirus into the myocardium 
following myocardial infarction preserved cardiac function, reduced remodelling and 
apoptosis, and induced angiogenesis (Jayasankar et al., 2003). Other studies have used 
antiinflammatory agents injected into the myocardium to combat ischemic heart disease and 
its consequences. Adenoviral-based expression of inhibitory kappa B-alpha in a rat 
infarction model improved heart function six weeks later (Trescher et al., 2004). AAV9 based 
delivery of heme oxygenase-1 into the myocardium before myocardial infarction had infarct 
reducing, anti-inflammatory, and antiapoptotic effects (Melo et al., 2002). Intramyocardial 
injection with inducible nitric oxide synthase ligated to adenovirus had an infarct-reducing 
effect both short-term and long-term (Li et al., 2006). This effect was mediated by inducible 
cyclooxygenase and nuclear factor kappa B (Liet al., 2007). Other cardioprotective genes in 
various models of heart disease are the inhibitor of matrix metalloproteinase TIMP-1 
(Jayasankar 2004), the cell cycle regulator cyclin A2 (Woo et al., 2006), the regulator of organ 
development sonic hedgehog (Kusano et al., 2005); Notch1, regulator of cell proliferation 
and  differentiation (Kratsios et al., 2010), the beta adrenoceptor receptor betaARKct (Rengo 
et al., 2009), and sphingosine kinase 1, a protective protein kinase (Duan et al., 2007). Thus, a 
major insight into possible therapeutic genes has been provided by this gene delivery route. 
Intramyocardial gene delivery is likely to remain a powerful research tool for testing the 
therapeutic potiential of genes in experimental models in the future. However, the future 
clinical gene therapies are unlikely to involve intramyocardial delivery at a large scale. 

2.4 Intravascular delivery 

Cardiac intravascular gene delivery has been performed through antegrade coronary artery 

delivery, non-selective intracoronary delivery (i.e. left ventricular injection), and 

retrogradely through the coronary sinus (Katz et al., 2010). Common for these approaches is 

the need to occlude the coronary circulation temporarily to allow virus to migrate into cells. 

The attractive aspect of this approach is the possibility of a  minimally invasive delivery 

procedure through a catheter well within established clinical procedures (at least the 

antegrade technique) and the possibility to deliver into all four heart chambers. The first 

studies using coronary artery delivery resulted in very few transfected cells (Longeart et al., 

2001, Hayase et al., 2005, Kaplitt et al., 1996). Later studies have refined delivery methods to 

some degree. With a recombinant AAV2 vector ligated to deliver enhanced green 

fluorescent protein,  Kaspar and collegues (2005) used rats for indirect intracoronary 

delivery. Rats had transgene expression lasting up to 12 months, with a gradient of 

expression across the left ventricular wall, the epicardium expressing much more than the 

endocardium. There was evidence of AAV2 vector genome in liver and lungs of injected 

animals (Kaspar et al., 2005). Lai and coworkers (2004) delivered DNA encoding for 

adenylyl cyclase 6 ligated to an adenoviral vector into all three major coronary arteries of 

pigs with heart failure, using a vasodilator at the time of delivery, and compared with 
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delivery of saline. Three weeks later left ventricular function was improved in the pigs 

recieving adenylyl cyclase 6. Gene expression in left ventricular biopsies evaluated with 

PCR was increased, although in which cells was not adressed (Lai et al., 2004). The success 

of intravascular gene delivery may depend on the target cell; if it is vascular, the chance of 

success may increase compared with a cardiac cell target. However, anything that enters the 

coronary circulation must enter the general circulation, reducing the clinical appeal of this 

approach. A special situation where this mode of delivery may be attractive is during open 

heart surgery with cardioplegic arrest. 

2.5 Gene therapy using non-viral vectors 

Although improvements are made in modifying viral vectors, reducing immunogenicity 
and increasing duration and amount of gene expression and narrowing the expression to 
target cells, researchers are travelling on alternative routes to deliver genes to the heart. 
Several non-viral techniques are used to improve the transfection efficacy of plasmids such 
as liposomes, polymers, electroporation, and nanotechnology (Holladay et al. 2010, 
Lukyanenko 2007). The status of these approaches are recently reviewed elsewhere 
(Holladay et al. 2010, Lukyanenko 2007).            

3. Cardioprotection by cell therapy  

Stem cell therapy for protecting hearts is a large topic. For readers particularly interested in 
the field, the recent reviews by Novotny et al. (2008), Beeres at al. (2008), and Atoui et al. 
(2008) are excellent. Stem cells are divided into committed and uncommitted cells, where the 
latter are the true stem cells in the sense that they are undifferenciated, capable of self-
renewal, and multipotent (Novotny et al., 2008, Beeres et al., 2008, Atoui et al., 2008). These 
types of cells include multipotent bone marrow or adipose tissue derived mesenchymal 
stem cells and embryonic stem cells. Commited progenitor cells are more differentiated, and 
include endothelial progenitor cells, fetal cardiomyocytes, and autologous skeletal 
myoblasts. Experimental studies have successfully been able to induce neovascularization, 
increase cardiomyocyte survival, and improve postinfarct function through using cell 
transplantation. However, why it works is not completely clarified. Some investigators 
believe that stem cells dedifferentiate into cardiomyocytes, but not all studies confirm this 
finding (Silva et al., 2005, Cinnaird et al., 2004, Cocher et al., 2001, Murry et al., 2004). 
Possibly there is a fusion between the transplanted cells and the endogenous 
cardiomyocytes (Beeres et al., 2008). Possibly also the transplanted cells lead to recruitment 
of resident cardiac progenitor cells (Novotny et al., 2008, Beeres et al., 2008). Paracrine 
effects may be of importance. As transplanted cells have a short life span in their new 
environment, these effects will be transitory. Some suggested mechanisms of action are 
autocrine or paracrine release of cytokines and growth factors that will stimulate new vessel 
formation, inhibit apoptosis, rescue injured cardiomyocytes, and reduce pathologic 
remodelling. Recently, endogenous cardiac stem cells are reported to have even more 
promising potential for correcting cardiac pathologies. These cells are a large topic beyond 
the scope of this chapter (Bolli & Chaudrey, 2010).   
Therapeutic use of stem cells is now a clinical reality, but there is need for more laboratory 
work before this field can become useful in patients at a large scale. At the moment we do 
not know the optimal cell for delivery, the optimal amount of cells, or which route of 
delivery (as for gene therapy, intramyocardial, intravascular through artery or vein, 
pericardial and other approaches have all been performed) that will give the best outcome. 
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Genetically modifed cells may act as transgene carriers and be used to deliver therapeutic 
targets to cardiac tissue. Transfected cells of different origins have been used in animal 
experiments to induce angiogenesis, increase contractility, decrease fibrosis, improve 
remodelling, and improve graft cell survival. 
 

 

Fig. 2. The advantages of using genetically engineered stem cells versus naive stem cells are 
illustrated. Naive stem cells do rescue myocardium, but the effects are much more 
pronounced when stem cells are genetically engineered. 
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3.1 Genetically engineered stem cells as cardioprotective agents 

Based on the assumption that the major effect of stem cells is through their paracrine effects, 

quite a few works have focused on genetically engineered stem cells to produce angiogenic 

factors, with the perspective to both increase survival of the transplanted cell and to enhance 

the formation of new blood vessels in the infarcted heart. For instance, bone-marrow 

derived endothelial progenitor cells were expanded and transduced with AAV to 

overexpress insulin-like growth factor 1. Then the autologous cells were transplanted into 

the infarct area of rats (Sen et al., 2010). Three months later rats receiving insulin-like growth 

factor 1 transduced cells as opposed to LacZ-transduced cells had improved myocardial 

function, reduced apoptosis, increased number of capillaries, and increased cardiomyocyte 

proliferation in the infarct area. There was no dissemination of transduced cells into other 

organs (Sen et al., 2010). In a model of neointima formation in hypercholesterolemic rats, 

endothelial progenitor cells transduced to overexpress hepatocyte growth factor were 

delivered. The transduced cells homed to the vascular site of injury more than untreated 

cells, and this caused a decreased neointima formation and increased endothelialization 

(Song et al., 2009). Colony stimulating factor-1 was used to transfect primary autologous rat 

myoblasts, which were transplanted into the myocardium of rats with postinfarction heart 

failure (Aharinejad et al., 2008). Left ventricular function evaluated by echocardiography 

was improved in hearts of rats treated with with autologous colony stimulating factor 

myoblasts. This protection was not found after delivery of untransduced myoblasts or 

plasmid DNA encoding for colony stimulating factor. In a similar model myoblasts 

transduced with human growth factor were able to improve heart function, increase 

capillary density, and reduced apoptosis (Rong et al., 2008). Mesenchymal stem cells 

engineered to overexpress adrenomedullin transplanted after myocardial infarction 

improved cardiac function more than naive mesenchymal stem cells (Jo et al., 2007). The 

growth factor angiopoietin-1 in modified mesenchymal stem cells has reduced ischemic 

damage when injected shortly after ischemia in rat hearts (Sun et al., 2007). In pigs, 

mononuclear cells were extracted from peripheral blood and induced to overexpress 

vascular endothelial growth factor retrogradely delivered through the coronary sinus. The 

transduced cells induced angiogenesis and reduced postischemic ventricular dysfunction 

four weeks later (Hagikura et al., 2010). Vascular endothelial growth factor ligated to 

mesenchymal stem cells under the control of a hypoxia response element induced ischemia-

responsive production of vascular endothelial growth factor when transplanted into the 

ischemic myocardium (Kim et al., 2010). This caused an increased retainment of genetically 

altered mesenchymal stem cells in the infarcted heart compared with naive cells, reduction 

of apoptosis, and reduced remodelling. Also hypoxia-regulated heme oxygenase-1 

overexpressing mesenchymal stem cells transplanted into the infarcted ventricular wall 

improved survival of transplanted cells, improved heart function, and reduced cell death 

(Tang et al., 2005). 

Genetic modification of stem cells also improves cell survival and outcome of ischemia 
models when the gene in question is not considered to be a secretory molecule. Treatment of 
mesenchymal stem cells to overexpress connexin 43 followed by injection into infarcted 
myocardium improves left ventricular function and reduces cell death (Wang et al., 2010). 
Mesenchymal stem cells overexpressing heat shock protein of the 20 kDa family has similar 
beneficial effects (Wang et al., 2009). In the latter study, the authors provide evidence that 
the protective effect could be through increased secretion of proteins, where vascular 
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endothelial growth factor, insulin-like growth factor, and fibroblast growth factor were 
released from transfected cells. The authors speculate that the relased growth factors were 
due to a detected activation of the protein kinase Akt (Wang et al., 2009). Indeed, 
mesenchymal stem cells overexpressing Akt itself transplanted into the ischemic 
myocardium improved left ventricular function, reduced infarct size, reduced apoptosis, 
increased mobilization of cardiac progenitor cells (c-kit+), and reduced collagen deposition 
(Mangi et al., 2003). The beneficial effects were dependent on the amount of transplanted 
cells. In a follow up study, the authors found that the mechanism for cardioprotection was 
not through stem cell fusion with cardiomyocytes, which occurred infrequently, and not due 
to differentiation of stem cells into cardiomyocytes  (Noiseux et al. 2006). Another protein 
kinase associated with myocardial protection, Pim-1 kinase, was transfected into cardiac 
progenitor cells before injection into ischemic myocardium (Fischer et al., 2009). When 
animals were observed up to 32 weeks later, improved function and reduced infarct size 
was accompanied by increased survival of engrafted cells, increased vascularization, and 
increased number of c-kit+ cells (Fischer et al., 2009). Consequently, secondary secretory 
effects of genetic manipulation with a factor acting intracellularly is indicated. The 
antiapoptotic molecule Bcl2 has been used to transfect cardiomyoblasts (Kutcha et al., 2006) 
and mesenchymal stem cells (Li et al, 2007) before transplantation into infarcted 
myocardium, leading to improved function and survival of both engrafted cells and 
infarcted myocardium. Mesenchymal stem cells transfected with Bcl2 had an increased 
secretion of vascular endothelial growth factor in vitro, and an increased capillary density in 
vivo (Li et al., 2007). Finally, a few studies have used genes coding for antiinflammatory 
factors as enrichment of stem cells to improve survival of engrafted stem cells and the heart. 
Mesenchymal stem cells overexpressing the interleukin-18 binding protein, the naturally 
occurring inhibitor of the proinflammatory cytokine interleukin 18,  improved 
cardioprotection more than that observed with unmodified stem cells (Wang et al., 2009). 
The beneficial effects observed on heart function, remodelling, and infarct size could have 
been due to increased secretion of vascular endothelial growth factor and decreased 
interleukin 6 levels in hearts of animals treated with genetically modified cells. 
Mesenchymal stem cells have also been used to overexpress the chemokine receptors CCR1 
and CXCR2 before intramyocardial injection into infarcted heart (Huang et al., 2010). Stem 
cells with overexpression of CCR1 had increased survival intramyocardially, which was 
accompanied by less cardiac remodelling, increased capillarization, and improved cardiac 
function in both acute and chronic (4 weeks) observation times. The effect was not found 
when cells were overexpressing CXCR2, which lead to similar findings as with naive 
mesenchymal stem cells (Huang et al., 20010).                 
To conclude, we still have a long way to go to fully understand the mechanisms by which 
stem cells may protect hearts and which cell type and number that should be used for future 
therapies. However, it is well documented that genetic engineering of stem cells with both 
secretory factors and primarily intracellularly acting factors improve engrafted cell survival 
as well as survival of the myocardium.  Many of the studies mentioned above using a 
primary intracellularly acting factor have documented secondary secretory effects.  

4. Cardiac gene therapy using a peripheral approach 

A downside with intracardiac delivery of either genes or genetically modified cells is the 
relative invasiveness of the method. It is possible to envision effects in the heart through a 
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Fig. 3. The cartoon depicts the principle of remote gene therapy delivering plasmid DNA 
into the skeletal muscle, increasing nuclear uptake by electroporation, and  achieving 
myocardial protection. 

peripheral approach, building upon the principle of general organ protection evoked by pre- 

or postconditioning (Przyklenk et al., 1993). Preconditioning is the observation that brief 

episodes of ischemia and reperfusion to an organ will protect the organ against a later 
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ischemic event (Murry et al., 1986), while postconditioning is the observation that brief 

episodes of ischemia and reperfusion at the start of reperfusion will reduce organ damage 

(Zhao et al., 2003). It is shown that the protection afforded by these brief episodes of 

ischemia and reperfusion provide an universal organ protection termed remote 

preconditioning (Przyklenk et al., 1993). In a series of experiments we have delivered 

plasmid DNA encoding for hypoxia-inducible factor 1alpha (HIF-1┙) into an easily 

accessible peripheral organ, the quadriceps skeletal muscle. Others have shown that the 

skeletal muscle may serve as an endocrine organ, stably secreting endocrine factors into the 

blood stream after delivery of plasmid DNA and enhancing nuclear uptake by 

electroporation (Mathisen et al., 1999). This gives a very local increase of gene expression, 

transfecting a few skeletal muscle fibers in the treated muscle and with no leakage to other 

organs (Czibik et al 2009a, 2009b). The skeletal muscle expression of  HIF-1┙ lasted for 8 

weeks (not investigated longer) (Czibik et al., 2009a). When hearts were isolated and 

Langendorff-perfused with global ischemia and reperfusion, they had improved function 

and reduced infarct size compared with hearts of mice which were not pretreated with HIF-

1┙ (Czibik et al., 2009a). To attempt to unravel mechanisms underlying the beneficial effects 

of HIF-1┙, a Taqman low density array of some 47 HIF-regulated genes was performed on 

samples of the transfected skeletal muscle one week later. Several genes encoding for 

growth factors were increased in the transfected muscle, among them insulin-like growth 

factor 2, heme oxygenase-1, adrenomedullin, and platelet derived growth factor B (Czibik et 

al. 2009a). When these factors were used to protect the cardiomyocyte cell line HL-1 cells 

against injury evoked by hydrogen peroxide, heme oxygenase-1 (HMOX-1) was beyond 

comparison most protective, with effects similar to that of HIF-1┙ (Czibik et al. 2009b).  

HMOX-1 is an inducible member of the heme oxygenase family of proteins, also consisting 

of the constitutive heme oxygenase-2 and the less well characterized heme oxygenase-3 

(Durante et al., 2010, Wu et al., 2010). HMOX-1 expression is induced by its substrates: 

heme, oxidants, heavy metals, cytokines, growth factors, hemodynamic forces, gases, 

hypoxia, and hormones (Wu et al., 2011). Many transcription factors may be involved in its 

regulation. Some of them are HIF-1┙, nuclear factor kappa B, activator protein 1, and 

nuclear factor E2-related factor (Wu et al., 2011). HMOX-1 catalyzes the degradation of heme 

into biliverdin, free iron, and carbon monoxide (Maines et al., 1986). Biliverdin is 

subsequently rapidly reduced to bilirubin by the enzyme biliverdin reductase. HMOX-1 is 

expressed in a plethora of cell types, including cardiac and vascular cells. Carbon monoxide, 

most known as a toxic gas, is recognized as an intracellular signalling molecule (Maines et 

al., 1986, Verma et al., 1993). Carbon monoxide has many cellular effects which have 

recently been reviewed elsewhere (Abraham & Kappas, 2008); in this context, it can be 

summarized that it may have antiinflammatory and antiapoptotic effects, lead to 

vasorelaxation, reduce lipid peroxidation and proliferation of vascular smooth muscle cells, 

and possibly induce angiogenesis. Bilirubin was shown to have antioxidant effects already 

in 1987 (Stocker et al.). Since then evidence supports that bilirubin regulates cellular redox 

states, reduces the formation of reactive oxygen species, and has antiinflammatory effects 

through decreasing the expression leukocyte adhesion molecules and neutrophil adhesion. 

Free iron may induce ferritin expression leading to iron sequestration. Thus, HMOX-1 

through its downstream products is potentially very suitable for protection of 

cardiomyocytes.  
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When the HIF-1┙ gene was delivered in vivo into skeletal muscle of rats, the expression of 
HMOX-1 was increased, accompanied by increased serum bilirubin (Czibik et al., 2009b, 
Czibik et al., 2011). When a HMOX-1 blocker was given together with plasmid DNA 
encoding for HIF-1┙ and the hearts isolated and perfused with induced global ischemia, the 
beneficial effect of gene therapy was abolished (Czibik et al., 2009b). Delivery of plasmid 
DNA endocing for HMOX-1 before isolated heart perfusion mimicked the beneficial effects 
of HIF-1┙ (Czibik et al.,2009b). Gene delivery of HIF-1┙  into the skeletal muscle protected 
the heart ex vivo, and in vitro, and was also evaluated to be highly cardioprotective in an in 
vivo model of cardiac ischemia-reperfusion with remodelling six weeks later (Czibik et al., 
2009a, 2009b, 2011). Unfortunately, systemic delivery of HIF-1┙ induced a general 
angiogenesis evident as increased CD31 positive staining in the electroporated muscle with 
gene delivery, the contralateral muscle, and in the heart (Czibik et al., 2009a, 2009b, 2011). 
Downstream factors to hypoxia inducible factor may turn out to be cardioprotective without 
the unwanted side-effects. Delivery of plasmid DNA encoding for HMOX-1 into the skeletal 
muscle before in vivo infarction protects against postinfarct remodelling without causing 
angiogenesis (manuscript in progress). Thus, these promising results from mice 
experimental studies should now be tested in larger animals as a bridge to human therapy.  

5. Conclusion 

For the treatment of cardiovascular disease, gene therapy may become an alternative in the 
near future. Gene delivery through intravascular approaches, intramyocardial injection, and 
pericardial route have been tried using plasmid DNA, adeno-, retro-, lenti-, and 
adenoassociated viral vectors. Of the viral vectors, adenoassociated virus serotype 9 is the 
most promising, as it is cardiotropic and can be delivered systemically. Stem cells are 
another approach to novel therapies against ischemic heart disease. Stem cells can be 
delivered through the same routes as genes. At the moment the mechanism of stem cell-
induced protection of the heart is not well understood - the cells tend to stay shortly in the 
myocardium, and to a low degree fuse with cardiomyocytes or differentiate into 
cardiomyocytes. Possibly paracrine effects of stem cells are the reason for cardioprotection. 
Genetic engineering of stem cells improves the therapeutic  effect of transplanted cells, both 
when the engineering is for a secretory factor and when it is overexpressing a factor 
primarily working intracellularly, and secondarily secretory. Gene therapy of the heart can 
also be evoked through using the skeletal muscle as a site of gene transfer, where delivery of 
plasmid DNA encoding for both hypoxia-inducible factor 1 alpha and its downstream target 
heme oxygenase-1 protects cardiomyocytes in vivo, ex vivo, and in vitro. 
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