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1. Introduction

Echo is defined as the delayed and attenuated version of the original signal produced by some
device, such as a loudspeaker. As a consequence a person listens to a delayed replica of its
own voice signal. This is an undesired effect that appears whenever the output signal is fed
back into the system’s input and it can be quite disturbing on voice conversations.
Echo arises in long distance communication scenarios such as hands-free systems Hänsler
(1994); Jeannès et al. (2001); Liu (1994), voice over internet protocol (VoIP) Witowsky (1999),
teleconferencing Kuo & Pan (1994), mobile phone conversation, and satellite communications
among others.
In order to minimize or even remove the presence of echo in communications, echo
suppression and echo cancellation techniques have been proposed in the last three
decades Sondhi (2006). An echo suppressor is a voice-operated switch that disconnects
the communication path (or introduces a very large attenuation) whenever some decision
mechanism indicates that we are in the presence of echo. The emitting circuit is disconnected
whenever we have signal on the reception part of the circuit; the reception circuit is
disconnected whenever we have signal emission. Their behavior is not adequate for cross
conversation (full duplex) scenarios. Echo suppressors were the first approach to this problem.
In the last decade, due to their unsatisfactory results, they have been replaced by digital echo
cancelers. An echo canceler device, as opposed to an echo suppressor, does not interrupt
the echo path; it operates by removing (subtracting) the detected echo replicas from the
information signal. The term usually coined for the cancellation of echoes with acoustic
coupling is acoustic echo cancellation (AEC) Gilloire & Hänsler (1994).
In the past years, adaptive filtering techniques Haykin (2002); Sayed (2003); Widrow & Stearns
(1985) have been employed for the purpose of AEC Breining (1999); Widrow et al. (1975).
Typically, these techniques rely on the use of finite impulse response (FIR) filters Oppenheim
& Schafer (1999); Veen & Haykin (1999) whose coefficients are updated along the time by an
efficient rule guided by some statistical criterion. Usually, one employs a gradient descent
technique in order to minimize some cost (error) function. The most popular of these
techniques is the Widrow-Hoff least mean squares (LMS) algorithm as well as its variants, that
minimize the mean square error (MSE) between two signals. Moreover, in many cases such
as real-time conversations over mobile phones, AEC algorithms must run in real-time to be
useful. We thus have the need for efficient implementations of echo cancellation techniques
on digital embedded devices like field programmable gate array (FPGA) and/or digital signal
processor (DSP), to fulfill real-time requirements of many applications, these days.
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This chapter reviews and compares existing solutions for AEC based on adaptive filtering
algorithms. We also focus on real-time solutions for this problem on DSP platforms. Section
2 states the echo cancellation problem. Section 3 reviews some basic concepts of adaptive
filtering techniques and algorithms. Section 4 describes some existing solutions for AEC.
Section 5 details real-time implementations of AEC systems with DSP from Texas Instruments.
Section 6 presents some experimental results and Section 7 ends the chapter with some
concluding remarks and future directions and challenges for AEC techniques.

2. The echo cancellation problem

2.1 What is echo?

Echo signal is defined as the delayed and attenuated version of the original signal produced
by some device, such as a loudspeaker. Lets consider some signal x(t) and its attenuated and
delayed version

xd(t) = αx(t − td), (1)

where α is the attenuation factor and td is time delay of the echo replica. Whenever we
have a delay (td) larger than 35 ms, echo becomes perceptible to the listener Oh et al.
(1994). As td increases, the more annoying is the echo effect. Larger values of td imply
that we should have larger attenuation on the echo signal to minimize the undesired echo
effect. For satellite communications, a typical delay value between two end-points is about
270 ms. This leads to a total round trip delay of at least 540 ms, including the terrestrial
circuits Texas Instruments (1986). In these situations, we must apply a large attenuation to
the echo signal, to make conversation possible. The worst case happens when the feedback
is sustained (non-decaying); this makes the most annoying effect named as howling and it
happens whenever α is not small enough.
The existence of undesired echo is a well-known problem that frequently arises in
telecommunications, being most probable to happen in long distance communications
and most problematic in voice conversations. Therefore, echo cancellation is needed for
long-distance communications which have shown a growing use in the last decade. For
instance, in the VoIP application the network load changes the transmission time and the
time delay of the echo(es). Another challenging problem is that the echo path is not static
because the channel characteristics change over time, due to many factors such as the distance
between the loudspeaker and the microphone. Fig. 1 shows the existence of acoustic echo.
The received signal from the far end talker, r[n], is transmitted through the loudspeaker to the
near end. A version of this signal is received by the microphone (due, for example, to direct
coupling between the loudspeaker and the microphone), together with the near end speech,
constituting the received signal from the acoustic channel, rA[n]. The echo path is defined by
functions f and g on both ends; these functions represent the linear or non-linear behavior of
the echo path.

2.2 Sources of echo

In the telecommunications field, we can find many sources of echo caused by long distance
communications and/or the hands-free voice conversation setup Sondhi (2006). For instance
we have echoes:

• on the hands-free VoIP setup, in which we have a microphone and a loudspeaker;

• on a (satellite) mobile telephone connection;
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Echo Cancellation for Hands-Free Systems 3

Fig. 1. The acoustic echo scenario. A version of the received signal trough the loudspeaker is
fed back into the microphone re-entering the system leading to undesired feedback. The
worst case happens when the feedback is sustained (non-decaying); this makes the most
annoying effect named as howling. Functions f and g represent the echo path on both ends.

• whenever someone makes a speech on some room; each room has its own acoustic
conditions leading to echo Antweller & Symanzik (1995);

• the two-wire/four-wire conversion Sondhi & Berkeley (1980) in telephony carried out by a
hybrid circuit on a telephone line, as depicted in Fig. 2, in which we consider a simplified
connection between two subscribers S1 and S2.

Fig. 2. Simplified long distance connection between two subscribers, using a hybrid circuit
for the two-wire/four-wire conversion. The impedance mismatch on the two-wire/four-wire
conversion originates the return of a portion of the emitted signal. This causes echo on both
ends of the conversation system.

The subscriber loop connects the analog telephone with a two-wire line. In order to establish
a connection, the central office must connect the two-wire line from one subscriber to another.
This way, long distance telephone connections are four-wire connections with two-wires for
transmission and the other two for reception. The hybrid circuit is a device that establishes the
connection and conversion between the two-wire and the four-wire circuits. The connection
between S1 and H1 (or between S2 and H2) is a two-wire connection between the subscriber
and the central office. Between central offices, we have four-wire connections (between H1
and H2). Each two-wire connection is usually designated as the subscriber loop; in this portion
of the circuit, both directions of communication are supported in the same pair of wires.
The hybrid circuit H1 converts the signal from S2 to the two-wire connection to S1, whitout
back reflection of energy from this signal. In practice, this is not possible to accomplish
because due to many varying characteristics such as the length of the subscriber loop, the
individual subscriber devices and line impedance; these factors altogether inhibit the perfect
separation between emission and reception signals. Since there is some energy reflection from
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the emmited signal, as a consequence S2 (or S1) receives a delayed version of its own voice
signal with some attenuation and distortion.
Applications such as hands-free telephony, tele-conferencing and video-conferencing require
the use of acoustic echo cancellation (AEC) techniques to eliminate acoustic feedback from the
loudspeaker to the microphone Gay & J.Benesty (2000).
Echo cancellation is usually achieved by using an adaptive filter which attempts to synthesize
a replica of the echo signal and subtract it from the returned signal. An adaptive filter changes
its coefficients along the time; as a consequence it changes its frequency response in order to
satisfy the adaptation criterion. This is the principle illustrated in Fig. 3 in the AEC context.
The adaptive filter operates on the voice signal and tries to replicate the echo signal, which is

Fig. 3. The acoustic echo cancellation scenario for the setup of Fig. 1. Echo cancellation is
achieved by using an adaptive filter which attempts to synthesize a replica of the echo signal
and subtract it from the returned signal.

subtracted from the emitted signal. The adaptive filter imitates the echo path thus canceling its
effects. In the case of the two-wire/four-wire conversion, depicted in Fig. 2, AEC is performed
with the block diagram of Fig. 4.

Fig. 4. Echo cancellation on the telephone line using an adaptive filter. The adaptive filter
compensates the non-ideal behavior of the hybrid circuit.

The adaptive filter synthesizes a replica of the echo, which is subtracted from the returned
signal. This removes/minimizes the echo whitout interrupting the echo path. The adaptive
filter compensates the undesired effects of the non-ideal hybrid circuit.

3. Adaptive filtering techniques

In order to model the referred time-changing echo characteristics and to cancel its undesired
effects on the conversation, adaptive filtering Haykin (2002); Sayed (2003); Widrow & Stearns
(1985) has been used extensively in the last three decades (see for instance, Benesty et al.
(2001); Greenberg (1998); J.Ni & Li (2010); Krishna et al. (2010); Marques et al. (1997); Sondhi
& Berkeley (1980)). The main reasons for the success of adaptive filtering to solve the AEC
problem are:
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• its efficiency, allowing real-time implementations;

• its ability to cope with statistically changing environments;

• its adequate results in noisy environments.

Due to the time varying characteristics of the echo path and the devices in the circuit, it is not
possible to cancel echo with (static) classic filtering which removes some frequency band. The
filter coefficients and thus its frequency response must change along the time to efficiently
model (imitate) the behavior of the echo path, thus leading to echo cancellation.

3.1 FIR and IIR filtering structures

A finite impulse response (FIR) filter Oppenheim & Schafer (1999); Veen & Haykin (1999) has
difference equation given by

o[n] =
M−1

∑
k=0

wkx[n − k], (2)

where wk with k ∈ {0, . . . , M − 1} are the filter coefficients and x[n − k] are the (past) samples
on the input of the filter. Using vector notation, we compute each output sample of the filter
by the inner product between row vectors w = [w0, w1, . . . , wM−1] and x = [x[n], x[n −
1], . . . , x[n − (M − 1)]],

o[n] = wxT = xwT . (3)

The infinite impulse response (IIR) Oppenheim & Schafer (1999); Veen & Haykin (1999)
difference equation is

o[n] =
M−1

∑
k=0

wkx[n − k] +
N−1

∑
k=1

vko[n − k], (4)

with feedback coefficients vk. Depending on the value of the feedback coefficients, the filter
can become an unstable system. In order to prevent this situation to happen, adaptive filtering
algorithms with IIR filters must take additional measures to assure the stability of the filter.
Fig. 5 depicts the FIR and IIR structures for digital filtering, corresponding to (2) and (4),
respectively. In the case in which these structures are applied on adaptive filtering scenarios,
the filter coefficients are periodically updated.

Fig. 5. FIR and IIR structures for digital filtering. When these structures are applied on
adaptive filtering problems, their coefficients are time-changing, being updated by some rule.

337Echo Cancellation for Hands-Free Systems
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3.1.1 Analysis on the z-plane

In the z-transform domain, the FIR filter has a rational transfer function

H(z) =
M−1

∑
k=0

wkz−k = w0

M

∏
k=1

(1 − qkz−1), (5)

with M zeros represented by qk, whereas a IIR filter has a transfer function

H(z) =

M−1

∑
k=0

wkz−k

1 −
N−1

∑
k=1

vkz−k

=

w0

M

∏
k=1

(1 − qkz−1)

N

∏
k=1

(1 − rkz−1)

, (6)

with M zeros (given by qk) and N poles (given by rk). The zeros correspond to the direct
connections between input and output whereas the poles indicate the feedback connections.
It is well-known that the use of poles can lead to accomplish a given filter specification more
easily that using only zeros. However, for causal filters poles cause instability whenever
placed outside the unit circle in the z-plane; the adaptation algorithm has to assure stability.
IIR filters are, by definition, systems with infinite impulse response and thus we can
theoretically accommodate any echo path of largest length. In the case of IIR filters, the
adaptive filtering algorithm must take additional steps in order to keep the N poles of the
filter inside the unit circle on the z-plane. Since a FIR filter is stable independently of its
coefficients, adaptive filtering algorithms usually employ FIR filtering instead of IIR filtering.

3.2 Statistical and adaptive filtering

Fig. 6 shows the block diagram of a typical statistical filtering problem. The adaptive filter
operates on the sequence x[n] which is made up by the desired signal with uncorrelated
aditive white noise. The impulse response of the adaptive filter is given by w[n]. At each time
instant n, the filter outputs o[n] which is an estimate of the desired response d[n]. Since both
these signals are instances of stochastic processes, the error estimate e[n] has specific statistical
properties. The goal of statistical filtering is to minimize the estimation error, according to
some statistical criterion, like the mean square error (MSE) between the output and the desired
signal.

Fig. 6. Block diagram of statistical filtering. The discrete filter is applied to the input signal
x[n] and produces output o[n], which is compared against the desired signal d[n]. The error
signal (to be minimized) is the difference between o[n] and d[n]. The discrete filter is learned
with the statistics from the input signal.

Fig. 7 shows the block diagram of a typical adaptive filtering application. The error signal is
used as input to the coefficient update algorithm of the adaptive (FIR or IIR) filter. As time
goes by and samples move along vector x, the coefficients in vector w are updated by some
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Fig. 7. Block diagram of adaptive filtering. The discrete filter is applied to the input signal
x[n] and produces output o[n], which is compared against the desired signal d[n]. The error
signal is used as input to the coefficient update algorithm of the adaptive filter. The adaptive
filter coefficients are updated according to the error signal produced at each time instant.

rule using a statistical criterion. The minimization of the mean square error (MSE) between the
output and the desired signal, leads to minimization of the energy of the error signal. If we
define the error signal as the difference between the desired signal d[n] and the output signal
o[n], we get

e[n] = d[n]− o[n] = d[n]− xwT = d[n]− wxT . (7)

The energy of the error signal is defined as

Ee =
∞

∑
n=−∞

e2[n] =
∞

∑
n=−∞

(d[n]− o[n])2

=
∞

∑
n=−∞

(d2[n]− 2d[n]o[n] + o2[n]). (8)

Each term of the sum in (8) is given by

e2[n] = d2[n]− 2d[n]o[n] + o2[n]

= d2[n]− 2d[n]xwT + wxTxwT. (9)

Taking the expectation operator E on (9) and since E [w] = w we get

E [e2[n]] = E [d2[n]]− 2E [d[n]xwT ] + E [wxTxwT]

= E [d2[n]]− 2E [d[n]x]wT + wE [xTx]wT

= E [d2[n]]− 2pwT + wRwT, (10)

where R is the square auto-correlation matrix of the input vector

R = E [xTx]

=









x2[n] x[n]x[n − 1] . . . x[n]x[n − (M − 1)]
x[n − 1]x[n] x2[n − 1] . . . x[n − 1]x[n − (M − 1)]

...
...

...
x[n − (M − 1)]x[n] x[n − (M − 1)]x[n − 1] . . . x2[n − (M − 1)]









, (11)

and p is the vector with the cross-correlation between the desired and the input signal

p = E [d[n]x] = [d[n]x[0], d[n]x[n − 1], . . . , d[n]x[n − (M − 1)]] . (12)
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The error surface is a multidimensional paraboloid with concavity aligned along the positive
axis, leading to a surface with a single minimum. In order to find this minimum, we search
for the optimal weight vector w∗ that leads to a null gradient

∇
δE [e2[n]]

δw
= 0. (13)

For stationary input signals, the minimization of (13) leads to the Wiener filter Orfanidis
(2007); Widrow & Stearns (1985) solution that computes the optimal weight vector given by

w∗ = R−1p, (14)

leading to the optimal solution in the MSE sense. However, Wiener filter is not adequate for
non stationary situations, because it requires prior knowledge of the statistical properties of
the input signal. This way, Wiener filter is optimal only if these statistics match with the ones
considered for the design of the filter. In cases which we do not have such information, it may
not be possible to design the Wiener filter, or at least it can not be optimal. We can overcome
this problem with a two step approach:

1. estimation of the statistical parameters of those signals;

2. compute the filter parameters.

For real-time applications, the computational complexity of this approach is prohibitive. An
efficient method to solve this problem consists on the use of an adaptive filter. These filters
exhibit a satisfactory behavior in environments in which there is no prior knowledge of the
statistical properties of the signals under consideration. The adaptive filter designs itself
automatically, with some recursive learning algorithm to update its parameters, minimizing
some cost function. It starts with a set of parameters which reflect the absence of knowledge of
the environment; if we have a stationary environment the adaptive filter parameters converge,
at each iteration step, to the Wiener filter solution given by (14) Haykin (2002); Sayed (2003);
Widrow & Stearns (1985). On a non-stationary environment, the adaptive filtering algorithm
provides a way to follow the variation of the statistical properties of the signal, along the time,
provided that this variation is slow enough.
Adaptive filtering has been used in a variety of applications such as communications, radar,
sonar, seismology, and biomedical engineering. Altough these applications come from such
different fields, they all share a common characteristic: using an input vector and a desired
response, we compute an estimation error; this error is then used to update the adaptive filter
coefficients. Table 1 summarizes classes and some applications of adaptive filtering. The echo
cancellation problem belongs to the class IV-Interference Cancellation.

3.2.1 Echo cancellation

The block diagram for AEC depicted in Fig. 2, operates by synthesizing an echo replica
subtracting it from the received signal. This synthetic echo is generated from the speech signal.
The result of this subtraction is named acoustic error signal, which can be used to adjust the
filter coefficients. In the ideal case, the adaptive filter has a transfer function which is equal
to the echo path, leading to a total echo cancellation. The principle shown in Fig. 6 is applied
in Fig. 2. Notice that if the echo paths given by functions f and g in Fig. 2 are non-linear, it is
not possible to achieve full echo cancellation because we are using linear filters to imitate the
echo path. In practice, linear filters achieve adequate results.

340 Adaptive Filtering
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Class Applications

I. Identification System Identification
Terrestrial Layer Modelization

II. Inverse Modelization Predictive Deconvolution
Adaptive Equalization

III. Prediction Linear Predictive Coding
Auto-Regressive Spectral Analysis
Signal Detection

IV. Interference Cancellation Noise Cancellation
Echo Cancellation
Adaptive Beamforming

Table 1. Classes and applications of adaptive filtering techniques.

The adaptive filter coefficients adjustment has been addressed using the least mean squares
(LMS) adaptive filtering algorithm and its variants Haykin (2002); Widrow & Stearns (1985).
The choice of the adaptive filter adjustment coefficients must be made taking into account
some important characteristics of the algorithm such as:

• rate of convergence and precision;

• numerical complexity;

• filter structure and stability.

The rate of convergence is defined as the number of iterations that the algorithm requires,
operating on stationary signals, to approximate the optimal Wiener solution. The higher
the rate of convergence, the faster the algorithm adapts to non stationary environments with
unknown characteristics.
The numerical complexity is the number of operations needed to complete an iteration of the
algorithm. Depending on the adaptation algorithm and on the processor where the algorithm
runs, it is possible to have numerical problems. The most common source of problems of
this kind is the so-called finite precision effects, due to limited number of bits used to represent
data types for coefficients and samples. As the algorithm performs its computations, it is
possible to accumulate quantization errors. If this situation is not monitored, the adaptive
filter coefficients may enter into an overflow (or underflow) problem. These factors prevent
that the adaptive algorithm converges to an acceptable solution. In the worst case of overflow
and underflow, we say that the algorithm is numerically unstable.
The filter stability is assured by choosing a FIR filter; whatever are its coefficients, a FIR filter is
always stable since it has no feedback from the output to the input. If the filter input becomes
zero at a given time instant, then its output will be zero after M/FS, where M is the order
of the filter and Fs is the sampling frequency. The longest echo path (time delay) that we can
accommodate is given by the order of the filter; long echo paths lead to higher order filters that
are computationally more demanding to store in memory and to update in real-time. Thus,
the computational complexity that we can put into the adaptive filter limits the longest echo
path.
On the other hand, if we use an adaptive IIR filter care must be taken to assure stability. In
any case (FIR or IIR filter) we have a time varying impulse response, due to the adaptation of
the filter coefficients.

341Echo Cancellation for Hands-Free Systems
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3.3 Adaptive filter update: Least mean squares algorithm and variants

In this section, we review the most common adaptive filtering techniques. For the purpose of
explanation we consider adaptive FIR filters. The least mean square (LMS) algorithm operates
by updating the filter coefficients w according to a gradient descent rule given by

w(i+1) ← w(i) + 2µe(i)x(i), (15)

where w(i) is the value of the coefficient vector w at time instant i, µ is the step size, e(i) is
the error signal and x(i) represents the present and previous samples at the filter taps, at time
instant i.
The LMS step µ must be chosen carefully in order to assure proper convergence. A small µ
will assure convergence but the rate of convergence can be quite slow that is not adequate
for a real-time conversation. A large µ can cause that the LMS algorithm does not find an
adequate local minimum, thus leading to unsatisfactory echo cancellation. It can be shown
Haykin (2002); Widrow & Stearns (1985) that the choice

0 < µ <
1

(M + 1)P(i)
, (16)

assures adequate convergence rate; M is the order of the adaptive filter and P(i) is the average

power of the signal present in the input of the filter. In Özbay & Kavsaoğlu (2010), the choice
of the optimal value for the LMS adaptation step is discussed.

3.3.1 Variants of LMS

Some acceleration techniques have been proposed to improve LMS convergence. Moreover,
in the presence of speech signals, one must be careful in the coefficient update because speech
signals have a power which exhibit a large dynamic range, making ineffective the use of a
constant step size. To overcome this difficulty, the normalized least mean squares (NLMS) Birkett
& Goubran (1995); Kuo & Lee (2001) algorithm (a variant of LMS) uses a variable step size,
µ(i), computed by

µ(i) =
η

a + P(i)
, (17)

in which η > 0, P(i) is the instantaneous power of signal x at time index i and a > 0 is a
suitably chosen value to avoid numerical problems caused by zero division. This way, we
have an adaptation step given by

w(i+1) ← w(i) + 2µ(i)e(i)x(i), (18)

for NLMS, which has a relatively low convergence speed but it is quite stable and has low
complexity. The leaky least mean squares (LLMS) algorithm is another variant of LMS Kuo &
Lee (2001), which introduces a leakage factor β such that (0 < β < 1) into the coefficient
update

w(i+1) ← βw(i) + 2µe(i)x(i). (19)

Thus, for the following iteration we use a portion of the coefficient value (they have leaks
caused by β). The NLMS and LLMS can be used simultaneously in the coefficient update
process, leading to

w(i+1) ← βw(i) + 2µ(i)e(i)x(i). (20)
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The recursive least squares algorithm (RLS) Haykin (2002) recursively computes the filter
coefficients such that minimize a weighted linear least squares cost function. Notice that the
LMS algorithm aims at minimizing the mean square error. RLS algorithm considers the input
signals as deterministic, while for the LMS and variants these are considered as instances of
stochastic processes. RLS has extremely fast convergence at the expense of high computational
complexity, which makes it uninteresting for real-time implementations. The main drawback
of RLS is its poor performance when the filter to be estimated changes its statistical properties.
A LMS variant named frequency-response-shaped least mean squares (FRS-LMS) was proposed
in Kukrera & Hocanin (2006) and shown to have good convergence properties. The
FRS-LMS algorithm has improved performance when a sinusoidal input signal is corrupted
by correlated noise. The algorithm shapes the frequency response of the transversal filter.
This shaping action is performed on-line using an additional term similar to leakage β in
LLMS shown in (19). This term involves the multiplication of the filter coefficient vector by
a matrix, and it is computed efficiently with the fast Fourier Transform (FFT) Oppenheim &
Schafer (1999). The authors show analytically that the adaptive filter converges in both the
mean and mean-square senses. They also analyze the filter in the steady state in order to
show its frequency-response-shaping capability. The experimental results show that FRS-LMS
is very effective even for highly correlated noise.
The decoupled partitioned block frequency domain adaptive filter (DPBFAD) approach is quite
demanding regarding computational requirements in the number of operations as well as the
required memory, when compared to LMS, NLMS, and LLMS. The coefficients are updated
in blocks, to allow real-time implementation, on the frequency domain. It requires the
computation of the DFT (using FFT) and its inverse at each iteration.
Table 2 compares three algorithms that have proven effective for adaptive filtering, namely
the least mean squares (LMS), recursive least squares (RLS), and fast RLS (also known as fast
Kalman) Orfanidis (2007). This list is by no means exhaustive, since there are many different
algorithms for this purpose.

Algorithm Rate of Convergence Complexity Stability

LMS Slow Low Stable
RLS Fast High Stable
Fast RLS Fast Low Unstable

Table 2. Rate of convergence, complexity, and stability of well-known adaptive filtering
algorithms.

4. Solutions for echo cancellation

This section presents some solutions for the AEC problem. We focus on real-time solutions
carried out over DSP platforms.

4.1 Short-length centered adaptive filter approach

In Marques (1997); Marques & Sousa (1996); Marques et al. (1997) we have an implementation
of a long distance echo canceler which copes with double talking situations and exceeds
the CCITT (now ITU-T, International Telecommunication Union-Telecommunications) G.165
recommendation levels for echo cancellation. The proposed solution is based on short length
adaptive FIR filters centered on the positions of the most significant echoes, which are
tracked by time-delay estimators. To deal with double talking situations a speech detector
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is employed. The resulting algorithm enables long-distance echo cancellation with low
computational requirements. It reaches high echo return loss enhancement (ERLE) and shows
fast convergence. The key issue to use centered adaptive filters is that the echo-path impulse
response is characterized mainly by two active regions, corresponding to the near-end and the
far-end signal echo respectively, as shown in Fig. 8.

Fig. 8. Typical echo path impulse response (adapted from Marques et al. (1997)). We have
two active regions corresponding to the near-end and far-end echo, respectively.

Each active region has a length usually much shorter than the total supported echo-path
length. The proposed system is based on time-delay estimators to track the position of these
active regions, where short-length adaptive filters have to be centered.
Fig. 9 shows the impulse response of an acoustic echo path, resulting from the direct coupling
between the speaker and the microphone of an IRISTEL telephone. Although the supported
echo path length is 64 delay elements, only a small region is active. Knowing its position and
length, the adaptive filter has to adjust only the corresponding coefficients.

Fig. 9. Acoustic echo path impulse response for an IRISTEL telephone. Most of the
coefficients are near zero and only a small subset of the coefficients has a significant value
(adapted from Marques et al. (1997)).

In Marques et al. (1997) the authors compare the traditional full-tap FIR and short-length
centered filter solution in an echo path with a delay of half a second. The conventional
structure converges to a solution where the ERLE is less than 10 dB, while the centered filter
achieves approximately 80 dB, as depicted in Fig. 10.

4.1.1 System architecture

Fig. 11 shows the proposed system architecture which is a combined echo cancellation
structure including two echo cancelers, one for each communication direction, and a speech
detector. Each echo canceler is composed by a centered adaptive filter and a time delay
estimator. The delay estimator tracks the corresponding main signal reflection position where
the short length adaptive filter is to be centered. The near-end and far-end speech detectors
inhibit the adaptation of the filter whenever speech is present.
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Fig. 10. Convergence of the traditional FIR structure compared to the centered adaptive filter,
for a delay of 4000 taps (adapted from Marques et al. (1997)).

Fig. 11. The block diagram of the proposed system with two echo cancelers and a speech
detector. Each echo canceler has a short-length centered adaptive filter and a time delay
estimator (from Marques et al. (1997)).

The speech detector is very important in echo cancellation systems where double talking may
occur (full duplex mode) as this situation originates the abrupt increase of the adjustment
error. The common solution of using adaptive FIR filters to approximate the echo-path
impulse response becomes insufficient; if this situation occurs and no action is taken, drift
of the adaptive filter coefficients is possible Johnson (1995). Additionally, in this system,
erroneous time-delay estimation (TDE) may happen. To overcome this problem, the strategy
is to inhibit the filters adjustment and the delay estimation when double talking is detected.
In Fig. 12 a centered adaptive filter example is shown. The supported echo path length is
M taps, the position of the active region is (M − 1)Ts and for illustration purposes only, the
considered length is 3 taps. Ts = 1/Fs is the sampling time, that is, the time between two
consecutive samples. The main advantages of the centered adaptive filter, as compared to the
typical full-length FIR solution, are:
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Fig. 12. Centered adaptive filter. The supported echo path length is Na taps, but considering
an active region of 3 taps, only the corresponding 3 coefficients need adjustment.

• reduced computational cost, due to the lower number of coefficients that need adjustment,
when compared with the total supported echo path length;

• greater convergence speed, since the adaptation step can now be larger;

• reduced residual error because the coefficients which would otherwise converge to zero,
now take precisely that value.

To adjust the short length centered adaptive filter coefficients, the NLMS algorithm was
employed, due to its adequacy in the presence of speech signals Haykin (2002).

4.1.2 Time delay estimation

The TDE block estimates the presence of the echo as well as its delay, given by parameter td

in (1). The basic aspects of TDE are discussed in Jacovitti & Scarano (1993). The direct cross
correlation (DCC) method is analyzed and compared with the average square difference function
(ASDF) and the average magnitude difference function (AMDF).
The DCC method computes the cross-correlation between signals x[n] and y[n] given by

DCCxy[k] =
L−1

∑
k=0

x[n]y[n − k] =< x[n], y[n − k] >, (21)

where < ., . > denotes the inner product between its two arguments. Essentially, DCC is the
inner product between x[n] and shifted versions of y[n]. The DCC can be computed efficiently
on the frequency domain using the fast Fourier transform (FFT) and its inverse Oppenheim &
Schafer (1999) by

DCCxy[k] = IFFT[FFT[x[n]]. ∗ FFT[y[−n]]], (22)

using L-point FFT/IFFT and .∗ being the dot product between vectors. The maximum value
of DCCxy[k] corresponds to the estimated location of the delay k̂ = arg maxk DCCxy[k]; the
value of td as in (1) is given by td = k̂Ts. The ASDF estimator is given by

ASDFxy[k] =
1
L

L−1

∑
k=0

(x[n]− y[n − k])2, (23)

which is similar to the Euclidian distance between two signals. Finally, the AMDF estimator
computes

AMDFxy[k] =
1
L

L−1

∑
k=0

|x[n]− y[n − k]|, (24)
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with the advantage, over the previous two measures, that it requires no multiplications to
measure the similarity between two signals. For ASDF and AMDF we are interested in finding
indexes k̂ = arg mink ASDFxy[k] and k̂ = arg mink AMDFxy[k].
Supported on many experimental tests, the authors in Marques et al. (1997) chose the DCC
method, because it outperforms the other two (AMDF and ASDF) for low signal-to-noise ratio
(SNR) scenarios. The TDE component is the most demanding block on the entire system; it
takes about 90 % of the total processing time.

4.1.3 Speech detector

The speech detector copes with double talking situations. When both speakers are talking,
the received signal is a composition of the received echo and the other speaker’s signal. If no
action is taken, adaptive filter coefficient drift may happen as well as erroneous time delay
estimation, so the common solution of using adaptive FIR filters to approximate the echo path
impulse response becomes insufficient. Thus, whenever speech is present we have to inhibit
the coefficients adjustment as well as delay estimation. The speech detector criterion, based
on Messerschmidt et al. (1986), is as follows:

• the far-end speaker is considered present when the power of the original signal is above a
given threshold, established by the noise average power; we consider that the speaker is
still present for more 75 ms, after the power level gets below this threshold;

• the near-end speaker is considered present when the power of the echoed signal is 6 dB
below the power of the original signal.

Each filter is adapted only when the corresponding speaker is detected. This way, when
speech is detected on both directions, echo cancellation is performed using the coefficients
that were updated just before the beginning of the presence of speech.

4.2 Improved short-length centered adaptive filter approach

In Ferreira & Marques (2008) we have an improvement on the approach detailed in
Subsection 4.1, and depicted in Fig. 11. The system architecture is the same, but some
modifications were placed on the centered adaptive filter as well as on the TDE block. The
DSP platform and the hands-free conversation setup used in the experimental tests are also
different.
The centered adaptive FIR filter has a small number of coefficients, corresponding to the
length of the active area of the echo, with 32 and 64 coefficients for a sampling rate of 8
kHz; this assures fast convergence. The experimental tests showed that is preferable to set to
(absolute) zero all the filter coefficients that are near zero and to keep with a non-zero value,
only the coefficients on the active area.
On the TDE block, both DCC and ASDF methods were considered. The authors also
considered a new approach with a maximum delay FIR filter, that has a (large) number of
coefficients c = [c0, c1, . . . , cM−1] corresponding to the maximum expected delay. These
coefficients are updated by

c(i+1) ← c(i) + 2µe(i)x(i), (25)

but only a small fraction (t ≪ M) of these coefficients is updated between two consecutive
sampling times (125 µs), in order to meet real-time requirements. For the typical scenario,
there is no need to update the entire set of coefficients in order to get an accurate estimation
of the time delay. The main component of the echo is given by the coefficient with the highest
(absolute) amplitude value. Using the DSP parallel instructions Kehtarnavaz (2004), this
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update is carried out simultaneously with the update of the centered filter coefficients. In the
experimental tests, this delay estimator with low complexity, has obtained good results even
in situations of low signal-to-noise ratio. The number of coefficients that need adjustment is
small when compared with the total number of elements in the supported delay line, thus
enabling a larger step.

4.3 Normalized subband adaptive filter

In J.Ni & Li (2010), the authors address two well-known problems of AEC:

• high correlation between both speech signals (on the input of the adaptive filter);

• the large length of the impulse response of the echo path.

These characteristics slow down the convergence rate of the adaptive filter whenever NLMS
algorithm is used. The normalized subband adaptive filter (NSAF) offers a good solution to this
problem due to its decorrelating property. However, similar to the NLMS-based adaptive
filter, the NSAF requires a tradeoff between fast convergence rate and small steady-state
MSE. In J.Ni & Li (2010), the authors propose an adaptive combination scheme to address
this tradeoff. The combination is carried out in subband domain and the mixing parameter
is adapted by means of a stochastic gradient algorithm which employs the sum of squared
subband errors as the cost function. The proposed combination scheme obtains both fast
convergence rate and small steady-state MSE.

4.4 Hirschman optimal transform

In Krishna et al. (2010), the transform domain adaptive filter approach finds an adequate
solution for AEC as it results in a significant reduction in the computational burden, as
compared to the traditional approaches. There are some different orthogonal transform based
adaptive filters for echo cancellation. In Krishna et al. (2010), the authors present Hirschman
optimal transform (HOT) based adaptive filter for elimination of echo from audio signals.
Simulations and analysis show that HOT based LMS adaptive filter is computationally
efficient and has fast convergence compared to LMS, NLMS and Discrete Fourier Transform
-LMS (DFT-LMS). The spectral flatness measure shows a significant improvement in canceling
the acoustic echo.

4.5 An optimal step approach

The optimal step approach described in Özbay & Kavsaoğlu (2010) deals with the AEC
problem in the context of practical applications in which the positions of talker, microphone
and loudspeaker are not stationary. They explore the fact that the amplitude of the speech
signals depend on the acoustic properties of the environment. Choosing a constant step µ does
not always yield an optimal result as echo power spectrum density depends on the distance
between speaker microphone and loudspeaker which can not be known a priori. The authors
show the need for a dynamic choice of the LMS step value. They provide an algorithm for
obtaining an optimal step value for any AEC problem.
The authors show that for the optimal µ value in the case that the microphone of the speaker
is far from its loudspeaker, adaptive filter output power spectrum density is approximately
equal to that of the one obtained for a small µ value. Therefore, in AEC application, the
optimal µ value is computed as a function of the echo power spectrum density. By using the
proposed algorithm, the step is adaptively set depending on the distance between speaker
microphone and loudspeaker and the acoustic properties of the environment.
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5. Real-time DSP implementations

This section addresses real-time implementations of long-distance AEC systems on DSP from
Texas Instruments with code optimized for real-time processing. We consider AEC on a
hands-free system developed on the TMS320C50 and TMS320C6713 DSP platforms.
The TMS320C50 operates at 41 MHz, has a on-chip RAM of 10 K word and a 32 kB PROM with
communication kernel Texas Instruments (1993). The analog interface circuit (AIC) has 14 bit
resolution. The TMS320C6713 Kehtarnavaz (2004) has a master clock of 225 MHZ, delivering
1800 MIPS and 1350 MFLOPS. The analog stereo interface is carried out by the AIC 23 codec,
with sampling rates from 8 to 96 kHz, with 16, 20 and 24 bits per sample. Fig. 13 shows the
block diagram of the development starter kit (DSK) C6713 developed by Spectrum Digital1 for
Texas Instruments; the DSK has 192 kB of internal RAM and 16 MB of external RAM.

Fig. 13. The block diagram of the Development Starter Kit C6713 developed by Spectrum
Digital for Texas Instruments (adapted from Spectrum Digital Inc., DSP Development
Systems (2003)).

5.1 The (improved) short-length centered adaptive filter approach

The first approach of AEC system based on centered adaptive filter reported in Marques
et al. (1997) and described in Subsection 4.1 was implemented on the TMS320C50 DSP.
The approach described in Subsection 4.2 and reported in Ferreira & Marques (2008)
was implemented with TMS320C6713 using the DSKC6713. The code, written in C++
programming language, is located on the 192 kB internal RAM, along with the data. The
code was compiled with level-3 optimization Kehtarnavaz (2004), for faster execution:

• using allocation of variables to registers;

• elimination of unused code, unused assignments and local common expressions;

• simplification of expressions and statements;

• software pipelining;

• loop optimizations and loop unrolling;

• removal of functions that are never called; simplification of functions with return values
that are never used.

1 www.c6000.spectrumdigital.com
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The filters are managed as circular buffers and inline functions are used whenever possible.
The sampling rate is 8 kHz, and the number of bits per sample is 16 (the minimum allowed
by the AIC23 codec), suited for speech signals. This way, we have 125 µs between two
consecutive samples, and this is the maximum processing time to meet real-time requirements
(28125 instructions, under a 225 MHz clock). The time delay estimator has the largest amount
of total processing time, being not possible to completely update the time delay estimation,
within 125 µs. Between two consecutive samples, we update only a small portion of the filter
coefficients.

5.2 An optimal step approach

The optimal step approach of Özbay & Kavsaoğlu (2010) also uses the Texas Instruments
TMS320C6713 with DSKC6713, because it is an up to date architecture. The authors
established an experimental setup including the DSKC6713 board, a laptop computer, an
amplifier, a loudspeaker, and two microphones. They have considered two scenarios of
application:

• in the first scenario, two microphones were placed close to the loudspeaker;

• in the second scenario one microphone was placed close to the loudspeaker and speech
trial was implemented in the far-end microphone.

The experimental results show the adequacy of the proposed solution.

6. Experimental results

This section presents some experimental results obtained with the AEC systems described in
Subsections 4.1 and 4.2, respectively.

6.1 The short-length centered adaptive filter approach

Using a single TM5320C50 DSP with no external memory, the system detects and cancels an
echo with a delay of more than 380 ms. Considering a configuration with 64 Kwords of data
memory, the maximum supported delay is larger than 2.5 seconds.
Table 3 shows the computational requirements for a TMS320C50 DSP. Considering an
unidirectional configuration and an active region of 4 miliseconds, the maximum supported
echo delay is very significant (greater than 2.5 seconds).

Module function Processor clock-cycles Percentage

Speech detector 65 2.6
Time-delay estimator 82+18*corrl 3.28+0.72*corrl
Centered adaptive filter 114+6*M 4.56+0.24*M
Main Cycle 31 1.2

Table 3. Computational requirements for a TMS320C50 DSP with the AEC approach
described in Subsection 4.1. M is the supported echo region length (order of FIR filter). The
number of computations per sampling period has been reduced by dividing the computation
of the cross-correlation function into blocks, each with length corrl.

Table 4 describes the main features of the developed AEC system. The maximum length of
the echo path is proportional to the available amount of memory. We have two values for
this parameter, corresponding to the internal memory of the DSP and the external memory
available on the DSK (64 kB), respectively.
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Feature Value

Maximum supported echo delay 381 ms // 2643 ms
Maximum length of dispersion area 4 ms
Absolute delay 0.375 ms
Minimum attenuation on the returned echo 6 dB
Convergence Improvement of 41 dB in 80 ms
Residual echo level -51 dBm0
Speech detector level 6 dB below emission level
Hold time after speech detection 75 ms

Table 4. Main features of the AEC approach with TMS320C50 DSP described in
Subsection 4.1. The maximum supported echo delay depends on the amount of
internal//external memory.

Fig. 14 shows the ERLE (in dB) obtained by the AEC system with simulated, electric, and real
echo paths, as a function of time. As expected, we get the best results on the simulated echo
path, due to the adequacy of the adaptive filter to this path. The electric echo path is easier
to cancel than the acoustic echo path, in which due to its non-linearities, the experimental
results show less attenuation than for the other two paths. Even on the acoustic echo path
which is the most difficult, we rapidly get 10 dB of attenuation, in less than 30 ms (which is
roughly the delay time that a human user perceives the echo); this attenuation stops about -20
dB which is a very interesting value. In summary, ERLE is greater than 41 dB in just 80 ms in
a simulated echo path; with real electrical and acoustic echo paths, 24.5 dB and 19.2 dB have
been measured, respectively.

Fig. 14. Echo canceller ERLE in simulated, electric and acoustic paths. On the acoustic path,
which is the most difficult we get about 10 dB of attenuation in less than 30 ms.

Table 5 compares this system with the CCITT G.165 recommendation, for a real situation, on
the following tests:

• CR - Convergence Rate;

• FERLAC - Final Echo Return Loss After Convergence;

• IRLC - Infinite Return Loss Convergence;

• LR - Leak Rate.
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Test Description CCITT G.165 Requirement System Performance

CR ≥ 27 dB (500 ms) 41 dB
FERLAC -40 dBm0 -51 dBm0
IRLC -40 dBm0 -51 dBm0
LR ≤ 10 dB ≈ 0 dB

Table 5. System performance - comparison with CCITT G.165 recommendation levels for
AEC.

We conclude that the system exceeds the recommendation levels for all these tests. The CR
and FERLAC measures are taken on the single-talk scenario. Fig. 15 shows the time delay
estimator ability to track time varying delays in the presence of real speech signals. On the
voiced parts of the speech signals the TDE block tracks the delays accurately.

Fig. 15. Real speech signal (top) and real/estimated delay obtained by the TDE module. The
TDE block has a good performance on the presence of real speech. Adapted from Marques
et al. (1997).

In Fig. 16 the usefulness of the speech detector to prevent the filter coefficient drift is
emphasized. In the presence of double talk, with the speech detector disabled the coefficient
drift happens.
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Fig. 16. The speech detector prevents filter coefficient drift in the case of double talk. With the
speech detector disabled, coefficient drift happens. Adapted from Marques et al. (1997).

Feature Value

Absolute delay 0.375 ms
Convergence speed 27 dB (125 ms)
Digitalization Fs = 8000Hz n = 16 bit/sample
Hold time after speech 75 ms
Max. length 256 ms
Max. length of dispersion area 4 ms
Max. memory (data + code) < 192 kB
Residual echo -42.26 dBm0
Returned echo minimum loss 6 dB
Speech detector 6 dB below threshold

Table 6. Main features of the AEC approach with TMS320C6713 DSP described in
Subsection 4.2.

6.2 The improved short-length centered adaptive filter approach

The tests were carried out in DSP Code Composer Studio (CCS) environment, with code
written in C++, using real signals. Table 6 summarizes the developed system features. The
total amount of memory needed for the echo canceler data and code is low (and proportional
to the maximum expected delay) making it suited for an embedded system. The total amount
of memory required can be reduced, using a fixed-point DSP. The adaptive centered filters
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have 32 or 64 coefficients, while FIR-based time delay estimator uses up to M=4000 coefficients
(delays up to 0.5 seconds), giving a reasonable range of delays, suited for several applications.
Fig. 17 shows the (typical) centered adaptive filter coefficients (with 32 active coefficients), for
a speech signal. Only a small subset of coefficients is far from zero according to the echo path
characteristics, as expected; this is a typical test situation. Fig. 18 displays the echo and error

Fig. 17. Centered adaptive filter coefficients. Only a small subset of coefficients is far from
zero.

signals for a speech signal, while Fig. 19 displays the achieved attenuation, of about 20 dB, for
the speech signal on its voiced parts. It is interesting to note that how attenuation increases on
the voiced parts of the speech signal, according to the AEC fundamental concepts presented
in Subsections 2.1 and 2.2.

Fig. 18. Echo (top) and error (bottom) signal. Whenever there is echo with higher energy the
adaptive filter error signal follows it. On its portions with higher energy, the error signal
shows a decaying behavior that corresponds to the convergence of the adaptive filter.

Fig. 19. Attenuation obtained for the speech signal of Fig. 18. We have increased attenuation
on the voiced parts of the speech signal.

Table 7 compares our system with the CCITT G.165 recommendation levels, for a real
conversation. We conclude that this system approaches the recommendation levels for
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Test Description CCITT G.165 Requirement System Performance

CR ≥ 27 dB (500 ms) 27 dB (125 ms)
FERLAC -40 dBm0 -37.39 dBm0
IRLC -40 dBm0 -37.39 dBm0
LR ≤ 10 dB ≈ 0 dB

Table 7. System performance - comparison with CCITT G.165 recommendation levels for
AEC.

FERLAC and IRLC measures, matches for CR and exceeds it for the LR measure. The CR
and FERLAC measures are taken on the single-talk scenario.
Fig. 20 displays the attenuation obtained for several electric and acoustic echo paths, using
the average power of the received echo as the reference value, because the attenuation on the
acoustic channel is not constant along these tests. The attenuation for the simulated echo path

Fig. 20. Attenuation for the echo paths real (acoustic), electric and simulated (real-time on
CCS).

is much larger than the other two, as expected. On the other hand, the attenuation for the
electric echo path is around 30 dB, which is a considerable value. Finally, for the acoustic
path we get about 10 dB of attenuation, which is also an acceptable practical value. This
result was expected due to the strong non-linearities in the acoustic echo path, caused by the
loudspeakers and microphone.

7. Conclusions

In this chapter, we have addressed the problem of acoustic echo cancellation. Echo being
a delayed and attenuated version of the original signal produced by some device, such as
a loudspeaker, causes disturbing effects on a conversation. This problem arises in many
telecommunication applications such those as hands-free systems, leading to need of its
cancellation in real-time. The echo cancellation techniques have better performance than the
oldest and simpler echo suppression techniques.
We have reviewed some concepts of digital, statistical, and adaptive filtering. Some solutions
for real-time acoustic echo cancellation based on adaptive filtering techniques, on digital
signal processors were described in detail.
We have addressed some implementation issues of adaptive filtering techniques in real-time.
After the description of the acoustic echo cancellation solutions in some detail, we have
focused on their real-time implementations on well known digital signal processor platforms,
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discussing its main characteristics as well as their experimental results according to standard
measures.

7.1 Open challenges: future work

Altough adaptive filtering techniques have been proved efficient for the echo cancellation
problem, there are some open challenges that lead to directions of future work. One of the
most important directions of current and future research, due to its importance and difficulty
is to model the non-linear echo path. Since we use linear filters to model the echo path, it
is not possible to guarantee a complete echo cancellation when the echo path is non-linear.
In these situations, better results can be obtained with non-linear filters or with linear filters
complemented by non-linear functions. The challenge is thus positioned at choosing adequate
non-linear filters and non-linear functions that accurately model the echo path, being able to
achieve even better and faster cancellation results.
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