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Transient Analysis of a Combination
of Two Adaptive Filters

Tõnu Trump
Department of Radio and Telecommunication Engineering,

Tallinn University of Technology
Estonia

1. Introduction

The Least Mean Square (LMS) algorithm is probably the most popular adaptive algorithm.
The algorithm has since its introduction in Widrow & Hoff (1960) been widely used in
many applications like system identification, communication channel equalization, signal
prediction, sensor array processing, medical applications, echo and noise cancellation etc. The
popularity of the algorithm is due to its low complexity but also due to its good properties
like e.g. robustness Haykin (2002); Sayed (2008). Let us explain the algorithm in the example
of system identification.

✲x(n)
Plant ✲d(n)

✲ Adaptive filter
y(n)
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Fig. 1. Usage of an adaptive filter for system identification.

As seen from Figure 1, the input signal to the unknown plant, is x(n) and the output signal
from the plant is d(n). We call the signal d(n) the desired signal. The signal d(n) also contains
noise and possible nonlinear effects of the plant. We would like to estimate the impulse
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response of the plant observing its input and output signals. To do so we connect an adaptive
filter in parallel with the plant. The adaptive filter is a linear filter with output signal y(n).
We then compare the output signals of the plant and the adaptive filter and form the error
signal e(n). Obviously one would like have the error signal to be as small as possible in some
sense. The LMS algorithm achieves this by minimizing the mean squared error but doing this
in instantaneous fashion. If we collect the impulse response coefficients of our adaptive filter
computed at iteration n into a vector w(n) and the input signal samples into a vector x(n), the
LMS algorithm updates the weight vector estimate at each iteration as

w(n) = w(n − 1) + µe∗(n)x(n), (1)

where µ is the step size of the algorithm. One can see that the weight update is in fact a low
pass filter with transfer function

H(z) =
µ

1 − z−1
(2)

operating on the signal e∗(n)x(n). The step size determines in fact the extent of initial
averaging performed by the algorithm. If µ is small, only a little of new information is passed
into the algorithm at each iteration, the averaging is thus over a large number of samples and
the resulting estimate is more reliable but building the estimate takes more time. On the other
hand if µ is large, a lot of new information is passed into the weight update each iteration, the
extent of averaging is small and we get a less reliable estimate but we get it relatively fast.
When designing an adaptive algorithm, one thus faces a trade–off between the initial
convergence speed and the mean–square error in steady state. In case of algorithms belonging
to the Least Mean Square family this trade–off is controlled by the step-size parameter. Large
step size leads to a fast initial convergence but the algorithm also exhibits a large mean–square
error in the steady state and in contrary, small step size slows down the convergence but
results in a small steady state error.
Variable step size adaptive schemes offer a possible solution allowing to achieve both fast
initial convergence and low steady state misadjustment Arenas-Garcia et al. (1997); Harris
et al. (1986); Kwong & Johnston (1992); Matthews & Xie (1993); Shin & Sayed (2004). How
successful these schemes are depends on how well the algorithm is able to estimate the
distance of the adaptive filter weights from the optimal solution. The variable step size
algorithms use different criteria for calculating the proper step size at any given time instance.
For example squared instantaneous errors have been used in Kwong & Johnston (1992)
and the squared autocorrelation of errors at adjacent time instances have been used in
Arenas-Garcia et al. (1997). The reference Matthews & Xie (1993) ivestigates an algorithm
that changes the time–varying convergence parameters in such a way that the change is
proportional to the negative of gradient of the squared estimation error with respect to the
convergence parameter. In reference Shin & Sayed (2004) the norm of projected weight error
vector is used as a criterion to determine how close the adaptive filter is to its optimum
performance.
Recently there has been an interest in a combination scheme that is able to optimize the
trade–off between convergence speed and steady state error Martinez-Ramon et al. (2002).
The scheme consists of two adaptive filters that are simultaneously applied to the same inputs
as depicted in Figure 2. One of the filters has a large step size allowing fast convergence
and the other one has a small step size for a small steady state error. The outputs of the
filters are combined through a mixing parameter λ. The performance of this scheme has been
studied for some parameter update schemes Arenas-Garcia et al. (2006); Bershad et al. (2008);
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Candido et al. (2010); Silva et al. (2010). The reference Arenas-Garcia et al. (2006) uses convex
combination i.e. λ is constrained to lie between 0 and 1. The references Silva et al. (2010) and
Candido et al. (2010) present transient analysis of a slightly modified versions of this scheme.
The parameter λ is in those papers found using an LMS type adaptive scheme and possibly
computing the sigmoidal function of the result. The reference Bershad et al. (2008) takes
another approach computing the mixing parameter using an affine combination. This paper
uses the ratio of time averages of the instantaneous errors of the filters. The error function of
the ratio is then computed to obtain λ.
In Mandic et al. (2007) a convex combination of two adaptive filters with different adaptation
schemes has been investigated with the aim to improve the steady state characteristics. One
of the adaptive filters in that paper uses LMS algorithm and the other one Generalized
Normalized Gradient Decent algorithm. The combination parameter λ is computed using
stochastic gradient adaptation. In Zhang & Chambers (2006) the convex combination of two
adaptive filters is applied in a variable filter length scheme to gain improvements in low SNR
conditions. In Kim et al. (2008) the combination has been used to join two affine projection
filters with different regularization parameters. The work Fathiyan & Eshghi (2009) uses the
combination on parallel binary structured LMS algorithms. These three works use the LMS
like scheme of Azpicueta-Ruiz et al. (2008b) to compute λ.
It should be noted that schemes involving two filters have been proposed earlier Armbruster
(1992); Ochiai (1977). However, in those early schemes only one of the filters have been
adaptive while the other one has used fixed filter weights. Updating of the fixed filter has been
accomplished by copying of all the coefficients from the adaptive filter, when the adaptive
filter has been performing better than the fixed one.
In this chapter we compute the mixing parameter λ from output signals of the individual
filters. The scheme was independently proposed in Trump (2009a) and Azpicueta-Ruiz et al.
(2008a), the steady state performance of it was investigated in Trump (2009b) and the tracking
performance in Trump (2009c). The way of calculating the mixing parameter is optimal in the
sense that it results from minimization of the mean-squared error of the combined filter. In the
main body of this chapter we present a transient analysis of the algorithm. We will assume
throughout the chapter that the signals are complex–valued and that the combination scheme
uses two LMS adaptive filters. The italic, bold face lower case and bold face upper case letters
will be used for scalars, column vectors and matrices respectively. The superscript ∗ denotes
complex conjugation and H Hermitian transposition of a matrix. The operator E[·] denotes
mathematical expectation, tr[·] stands for trace of a matrix and Re{·} denotes the real part of
a complex variable.

2. Algorithm

Let us consider two adaptive filters, as shown in Figure 2, each of them updated using the
LMS adaptation rule

wi(n) = wi(n − 1) + µie
∗
i (n)x(n), (3)

ei(n) = d(n)− wH
i (n − 1)x(n), (4)

d(n) = wH
o x(n) + v(n). (5)

In the above equations the vector wi(n) is the length N vector of coefficients of the i-th
adaptive filter, with i = 1, 2. The vector wo is the true weight vector we aim to identify with
our adaptive scheme and x(n) is the N input vector, common for both of the adaptive filters.
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Fig. 2. The combined adaptive filter.

The input process is assumed to be a zero mean wide sense stationary Gaussian process. The
desired signal d(n) is a sum of the output of the filter to be identified and the Gaussian, zero
mean i.i.d. measurement noise v(n). We assume that the measurement noise is statistically
independent of all the other signals. µi is the step size of i–th adaptive filter. We assume
without loss of generality that µ1 > µ2. The case µ1 = µ2 is not interesting as in this case the
two filters remain equal and the combination renders to a single filter.
The outputs of the two adaptive filters are combined according to

y(n) = λ(n)y1(n) + [1 − λ(n)]y2(n), (6)

where yi(n) = wH
i (n − 1)x(n) and the mixing parameter λ can be any real number.

We define the a priori system error signal as difference between the output signal of the true
system at time n, given by yo(n) = wH

o x(n) = d(n) − v(n), and the output signal of our
adaptive scheme y(n)

ea(n) = yo(n)− λ(n)y1(n)− (1 − λ(n))y2(n). (7)

Let us now find λ(n) by minimizing the mean square of the a priori system error. The
derivative of E[|ea(n)|2] with respect to λ(n) reads

∂E[|ea(n)|2]

∂λ(n)
= 2E[(yo(n)− λ(n)y1(n)− (1 − λ(n))y2(n))

· (−y1(n) + y2(n))
∗]

= 2E[Re{(yo(n)− y2(n))(y2(n)− y1(n))
∗}

+λ(n)|(y2(n)− y1(n))|
2].
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Setting the derivative to zero results in

λ(n) =
E[Re{(d(n)− y2(n))(y1(n)− y2(n))

∗}]

E[|(y1(n)− y2(n))|2]
, (8)

where we have replaced the true system output signal yo(n) by its observable noisy version
d(n). Note however, that because we have made the standard assumption that the input
signal x(n) and measurement noise v(n) are independent random processes, this can be done
without introducing any error into our calculations.
The denominator of equation (8) comprises expectation of the squared difference of the
two filter output signals. This quantity can be very small or even zero, particularly in the
beginning of adaptation if the two step sizes are close to each other. Correspondingly λ
computed directly from (8) may be large. To avoid this from happening we add a small
regularization constant ǫ to the denominator of (8).

3. Transient analysis

In this section we are interested in finding expressions that characterize transient performance
of the combined algorithm i.e. we intend to derive formulae that characterize entire course of
adaptation of the algorithm. Before we can proceed we need, however, to introduce some
notations. First let us denote the weight error vector of i–th filter as

w̃i(n) = wo − wi(n). (9)

Then the equivalent weight error vector of the combined adaptive filter will be

w̃(n) = λw̃1(n) + (1 − λ)w̃2(n). (10)

The mean square deviation of the combined filter is given by

MSD = E[w̃H(n)w̃(n)] = λ2E[w̃H
1 (n)w̃1(n)] (11)

+2λ(1 − λ)Re{E[w̃H
2 (n)w̃1(n)}]

+(1 − λ)2E[w̃H
2 (n)w̃2(n)].

The a priori estimation error of an individual filter is defined as

ei,a(n) = w̃H
i (n − 1)x(n). (12)

It follows from (7) that we can express the a priori error of the combination as

ea(n) = λ(n)e1,a(n) + (1 − λ(n)) e2,a(n) (13)

and because λ(n) is according to (8) a ratio of mathematical expectations and, hence,
deterministic, we have for the excess mean square error of the combination

E[|ea(n)|
2] = λ2E[|e1,a(n)|

2] + 2λ(1 − λ)E[Re{e1,a(n)e
∗
2,a(n)}] + (1 − λ)2E[|e2,a(n)|

2]. (14)

As ei,a(n) = w̃H
i (n − 1)x(n), the expression of the excess mean square error becomes

E[|ea(n)|
2] = λ2E[w̃H

1 (n − 1)xxHw̃1(n − 1)] (15)

+2λ(1 − λ)E[Re{w̃H
1 (n − 1)xxHw̃2(n − 1)}]

+(1 − λ)2E[w̃H
2 (n − 1)xxHw̃2(n − 1)].
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In what follows we often drop the explicit time index n as we have done in (15), if it is not
necessary to avoid a confusion.
Noting that yi(n) = wH

i (n − 1)x(n), we can rewrite the expression for λ(n) in (8) as

λ(n) =
E[w̃H

2 xxHw̃2]− E[Re{w̃H
2 xxHw̃1}]

E[w̃H
1 xxHw̃1]− 2E[Re{w̃H

1 xxHw̃2}] + E[w̃H
2 xxHw̃2]

. (16)

We thus need to investigate the evolution of the individual terms of the type EMSEk,l =

E[w̃H
k (n − 1)x(n)xH(n)w̃l(n − 1)] in order to reveal the time evolution of EMSE(n) and λ(n).

To do so we, however, concentrate first on the mean square deviation defined in (11).
For a single LMS filter we have after subtraction of (3) from wo and expressing ei(n) through
the error of the corresponding Wiener filter eo(n)

w̃i(n) =
(

I − µixxH
)

w̃i(n − 1)− µixe∗o (n). (17)

We next approximate the outer product of input signal vectors by its correlation matrix xxH ≈
Rx. The approximation is justified by the fact that with small step size the weight error update
of the LMS algorithm (17) behaves like a low pass filter with a low cutoff frequency. With this
approximations we have

w̃i(n) ≈ (I − µiRx) w̃i(n − 1)− µixe∗o (n). (18)

This means in fact that we apply the small step size theory Haykin (2002) even if the
assumption of small step size is not really true for the fast adapting filter. In our simulation
study we will see, however, that the assumption works in practice rather well.
Let us now define the eigendecomposition of the correlation matrix as

QHRxQ = Ω, (19)

where Q is a unitary matrix whose columns are the orthogonal eigenvectors of Rx and Ω is
a diagonal matrix having eigenvalues associated with the corresponding eigenvectors on its
main diagonal. We also define the transformed weight error vector as

vi(n) = QHw̃i(n) (20)

and the transformed last term of equation (18) as

pi(n) = µiQ
Hxe∗o (n). (21)

Then we can rewrite the equation (18) after multiplying both sides by QH from the left as

vi(n) = (I − µiΩ) vi(n − 1)− pi(n). (22)

We note that the mean of pi is zero by the orthogonality theorem and the crosscorrelation
matrix of pk and pl equals

E[pkpH
l ] = µkµlQ

H E[xe∗o (n)eo(n)x
H ]Q. (23)

We now invoke the Gaussian moment factoring theorem to write

E[xe∗o (n)eo(n)x
H ] = E[xe∗o (n)]E[eo(n)x

H ] + E[xxH ]E[|eo|
2]. (24)
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The first term in the above is zero due to the principle of orthogonality and the second term
equals RJmin. Hence we are left with

E[pkpH
l ] = µkµl JminΩ, (25)

where Jmin = E[|eo|2] is the minimum mean square error produced by the corresponding
Wiener filter. As the matrices I and Ω in (22) are diagonal, it follows that the m-th element of
vector vi(n) is given by

vi,m(n) = (1 − µiωm) vi,m(n − 1)− pi,m(n) (26)

= (1 − µiωm)
n vm(0) +

n−1

∑
i=0

(1 − µiωm)
n−1−i pi,m(i),

where ωm is the m-th eigenvalue of Rx and vi,m and pi,m are the m-th components of the
vectors vi and pi respectively.
We immediately see that the mean value of vi,m(n) equals

E[vi,m(n)] = (1 − µiωm)
n vm(0) (27)

as the vector pi has zero mean.
The expected values of vi,m(n) exhibit no oscillations as the correlation matrix R is positive
semidefinite with all its eigenvalues being nonnegative real numbers. In order the LMS
algorithm to converge in mean, the weight errors need to decrease with time. This will happen
if

|1 − µiωm| < 1 (28)

for all m. In that case all the natural modes of the algorithm die out as the number of iterations
n approaches infinity. The condition needs to be fulfilled for all the eigenvalues ωm and is
obviously satisfied if the condition is met for the maximum eigenvalue. It follows that the
individual step size µi needs to be selected such that the double inequality

0 < µi <
2

λmax
(29)

is satisfied.
In some applications the input signal correlation matrix and its eigenvalues are not known a
priori. In this case it may be convenient to use the fact that

tr{Rx} =
N−1

∑
i=0

rx(i, i) =
N−1

∑
i=0

ωi > ωmax, (30)

where rx(i, i) is the i-th diagonal element of the matrix R. Then we can normalize the step size
with the instantaneous estimate of the trace of correlation matrix xH(n)x(n) to get so called
normalized LMS algorithm. The normalized LMS algorithm uses the normalized step size

µi =
αi

xH(n)x(n)

and is convergent if
0 < αi < 2.

303Transient Analysis of a Combination of Two Adaptive Filters
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The normalized LMS is more convenient for practical usage if the properties of the input signal
are unknown or are varying in time like this is for example the case with speech signals.
To proceed with our development for the combination of two LMS filters we note that we can
express the MSD and its individual components in (11) through the transformed weight error
vectors as

E[w̃H
k (n)w̃l(n)] = E[vH

k (n)vl(n)] =
N−1

∑
m=0

E[vk,m(n)v
∗
l,m(n)] (31)

so we also need to find the auto– and cross correlations of v. Let us concentrate on
the m-th component in the sum above corresponding to the cross term and denote it as
Υm = E[vk,m(n)v

∗
l,m(n)]. The expressions for the component filters follow as special cases.

Substituting (26) into the expression of Υm above, taking the mathematical expectation and
noting that the vector p is independent of v(0) results in

Υm = E
[

(1 − µkωm)
n vk(0) (1 − µlωm)

n v∗l (0)
]

(32)

+E

⎡

⎣

n−1

∑
i=0

n−1

∑
j=0

(1 − µkωm)
n−1−i (1 − µlωm)

n−1−j pk,m(i)p∗l,m(j)

⎤

⎦ .

We now note that most likely the two component filters are initialized to the same value

vk,m(0) = vl,m(0) = vm(0)

and that

E
[

pk,m(i)p∗l,m(j)
]

=

{

µkµlωm Jmin, i = j
0, otherwise

. (33)

We then have for the m-th component of MSD

Υm = (1 − µkωm)
n (1 − µlωm)

n |vm(0)|
2 (34)

+µkµlωm Jmin (1 − µkωm)
n−1 (1 − µlωm)

n−1
n−1

∑
i=0

(1 − µkωm)
−i (1 − µlωm)

−i .

The sum over i in the above equation can be recognized as a geometric series with n terms.

The first term is equal to 1 and the geometric ratio equals (1 − µkωm)
−1 (1 − µlωm)

−1 . Hence
we have

n−1

∑
i=0

(1 − µkωm)
−i (1 − µlωm)

−i (35)

=
(1 − µkωm) (1 − µlωm)

µkµlω
2
m − µkωm − µlωm

−
(1 − µkωm)

−n+1 (1 − µlωm)
−n+1

µkµlω
2
m − µkωm − µlωm

.

After substitution of the above into (34) and simplification we are left with

Υm = E[vk,m(n)v
∗
l,m(n)] (36)

= (1 − µkωm)
n (1 − µlωm)

n

[

|vm(0)|
2 +

Jmin

ω2
m − ωm

µl
− ωm

µk

]

−
Jmin

ω2
m − ωm

µl
− ωm

µk

,
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which is our result for a single entry to the MSD crossterm vector. It is easy to see that for the
terms involving a single filter we get an expressions that coincide with the one available in the
literature Haykin (2002).
Let us now focus on the cross term

EMSEkl = E
[

w̃H
k (n − 1)x(n)xH(n)w̃l(n − 1)

]

,

appearing in the EMSE equation (15). Due to the independence assumption we can rewrite
this using the properties of trace operator as

EMSEkl = E
[

w̃H
k (n − 1)Rxw̃l(n − 1)

]

(37)

= tr
{

E
[

Rxw̃l(n − 1)w̃H
k (n − 1)

]}

= tr
{

RxE
[

w̃l(n − 1)w̃H
k (n − 1)

]}

.

Let us now recall that for any of the filters w̃i(n) = Ωvi(n) to write

EMSEkl = tr
{

RxE
[

Qvl(n − 1)vH
k (n − 1)QH

]}

= tr
{

E
[

vH
k (n − 1)QHRxQvl(n − 1)

]}

= tr
{

E
[

vH
k (n − 1)Ωvl(n − 1)

]}

=
N−1

∑
i=0

ωiE
[

v∗k,i(n − 1)vl,i(n − 1)
]

. (38)

The EMSE of the combined filter can now be computed as

EMSE =
N−1

∑
i=0

ωiE
[

|λ(n)vk,i(n − 1) + (1 − λ(n)vl,i(n − 1)|2
]

, (39)

where the components of type E[vk,i(n − 1)vl,i(n − 1)] are given by (36). To compute λ(n) we
use (16) substituting (38) for its individual components.

4. Simulation results

A simulation study was carried out with the aim of verifying the approximations made in the
previous Section. In particular we are interested in how well the small step-size theory applies
to our combination scheme of two adaptive filters.
We have selected the sample echo path model number one shown in Figure 3 from ITU-T
Recommendation G.168 Digital Network Echo Cancellers (2009), to be the unknown system to
identify.
We have combined two 64 tap long adaptive filters. In order to obtain a practical algorithm,
the expectation operators in both numerator and denominator of (8) have been replaced by
exponential averaging of the type

Pu(n) = (1 − γ)Pu(n − 1) + γu2(n), (40)

where u(n) is the signal to be averaged, Pu(n) is the averaged quantity and γ = 0.01. The
averaged quantities were then used in (8) to obtain λ. With this design the numerator and
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Fig. 3. The true impulse response.

denominator of in the λ expression (8) are relatively small random variables at the beginning
of the test cases. For practical purposes we have therefore restricted λ to be less than unity
and added a small constant to the denominator to avoid division by zero.
In the Figures below the noisy blue line represents the simulation result and the smooth red
line is the theoretical result. The curves are averaged over 100 independent trials.
In our first simulation example we use Gaussian white noise with unity variance as the input
signal. The measurement noise is another white Gaussian noise with variance σ2

v = 10−3. The
step sizes are µ1 = 0.005 for the fast adapting filter and µ2 = 0.0005 for the slowly adapting
filter. Figure 4 depicts the evolution of EMSE in time. One can see that the system converges
fast in the beginning. The fast convergence is followed by a stabilization period between
sample times 1000 – 7000 followed by another convergence to a lower EMSE level between
the sample times 8000 – 12000. The second convergence occurs when the mean squared error
of the filter with small step size surpasses the performance of the filter with large step size.
One can observe that the there is a good accordance between the theoretical and the simulated
curves.
In the Figure 5 we show the time evolution of mean square deviation of the combination in
the same test case. Again one can see that the theoretical and simulation curves fit well.
We continue with some examples with coloured input signal. In those examples the input
signal x is formed from the Gaussian white noise with unity variance by passing it through
the filter with transfer function

H(z) =
1

1 − 0.5z−1 − 0.1z−2

to get a coloured input signal. The measurement noise is Gaussian white noise, statistically
independent of x.

306 Adaptive Filtering
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Fig. 4. Time–evolutions of EMSE with µ1 = 0.005 and µ2 = 0.0005 and σ2
v = 10−3.

Fig. 5. Time–evolutions of EMSE with µ1 = 0.005 and µ2 = 0.0005 and σ2
v = 10−3.

307Transient Analysis of a Combination of Two Adaptive Filters
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In our first simulation example with coloured input we have used observation noise with
variance σ2

v = 10−4. The step size of the fast filter is µ1 = 0.005 and the step size of the slow
filter µ2 = 0.001. As seen from Figure 6 there is a a rapid convergence, determined by the
fast converging filter in the beginning followed by a stabilization period. When the EMSE of
the slowly adapting filter becomes smaller than that of the fast one, between sample times
10000 and 15000, a second convergence occurs. One can observe a good resemblance between
simulation and theoretical curves.

Fig. 6. Time–evolutions of EMSE with µ1 = 0.005 and µ2 = 0.001 and σ2
v = 10−4.

In Figure 7 we have made the difference between the step sizes small. The step size of
the fast adapting filter is now µ1 = 0.003 and the step size of the slowly adapting filter
is µ2 = 0.002. One can see that the characteristic horizontal part of the learning curve has
almost disappeared. We have also increased the measurement noise level to σ2

v = 10−2. The
simulation and theoretical curves show a good match.
In Figure 8 we have increased the measurement noise level even more to σ2

v = 10−1. The step
size of the fast adapting filter is µ1 = 0.004 and the step size of the slowly adapting filter is
µ2 = 0.0005. One can see that the theoretical simulation results agree well.
Figure 9 depicts the time evolution of the combination parameter λ in this simulation. At
the beginning of the test case the combination parameter is close to one. Correspondingly the
output signal of the fast filter is used as the output of the combination. After a while, when the
slow filter catches up the fast one and becomes better, λ changes toward zero and eventually
becomes a small negative number. In this state the slow but more accurate filter determines
the combined output. Again one can see that there is a clear similarity between the lines.
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Fig. 7. EMSE with µ1 = 0.003 and µ2 = 0.002. and σ2
v = 10−2.

Fig. 8. EMSE with µ1 = 0.004 and µ2 = 0.0005 and σ2
v = 10−1.
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Fig. 9. Time–evolutions of λ with µ1 = 0.004 and µ2 = 0.0005. and σ2
v = 10−1.

5. Conclusions

In this chapter we have investigated a combination of two LMS adaptive filters that are
simultaneously applied to the same input signals. The output signals of the two adaptive
filters are combined together using an adaptive mixing parameter. The mixing parameter λ
was computed using the output signals of the individual filters and the desired signal. The
transient behaviour of the algorithm was investigated using the assumption of small step size
and the expressions for evolution of EMSE(n) and λ(n) were derived. Finally it was shown
in the simulation study that the derived formulae fit the simulation results well.
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