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1. Introduction

Least mean square (LMS) adaptive filters, as investigated by Widrow and Hoff in 1960
(Widrow & Hoff, 1980), find applications in many areas of digital signal processing including
channel equalization, system identification, adaptive antennas, spectral line enhancement,
echo interference cancelation, active vibration and noise control, spectral estimation, and
linear prediction (Farhang-Boroujeny, 1999; Haykin, 2002). The computational burden and
slow convergence speed of the LMS algorithm can render its real time implementation
infeasible. To reduce the computational cost of the LMS filter, Ferrara proposed a frequency
domain implementation of the LMS algorithm (Ferrara, 1980). In this algorithm, the data is
partitioned into fixed-length blocks and the weights are allowed to change after each block
is processed. This algorithm is called the DFT block LMS algorithm. The computational
reduction in the DFT block LMS algorithm comes from using the fast DFT convolution to
calculate the convolution between the filer input and weights and the gradient estimate.
The Hirschman optimal transform (HOT) is a recently developed discrete unitary transform
(DeBrunner et al., 1999; Przebinda et.al, 2001) that uses the orthonormal minimizers of
the entropy-based Hirschman uncertainty measure (Przebinda et.al, 2001). This measure
is different from the energy-based Heisenberg uncertainty measure that is only suited for
continuous time signals. The Hirschman uncertainty measure uses entropy to quantify the
spread of discrete-time signals in time and frequency (DeBrunner et al., 1999). Since the HOT
bases are among the minimizers of the uncertainty measure, they have the novel property of
being the most compact in discrete-time and frequency. The fact that the HOT basis sequences
have many zero-valued samples, as well as their resemblance to the DFT basis sequences,
makes the HOT computationally attractive. Furthermore, it has been shown recently that a
thresholding algorithm using the HOT yields superior frequency resolution of a pure tone in
additive white noise to a similar algorithm based on the DFT (DeBrunner et al., 2005). The
HOT is similar to the DFT. For example, the 32-point HOT matrix is explicitly given below.
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 e−j2π/3 0 0 e−j4π/3 0 0
0 1 0 0 e−j2π/3 0 0 e−j4π/3 0
0 0 1 0 0 e−j2π/3 0 0 e−j4π/3

1 0 0 e−j4π/3 0 0 e−j8π/3 0 0
0 1 0 0 e−j4π/3 0 0 e−j8π/3 0
0 0 1 0 0 e−j4π/3 0 0 e−j8π/3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1)

In general, the NK-point HOT basis are generated from the N-point DFT basis as follows.
Each of the DFT basis functions are interpolated by K and then circularly shifted to produce
the complete set of orthogonal basis signals that define the HOT. The computational saving
of any fast block LMS algorithm depends on how efficiently each of the two convolutions
involved in the LMS algorithm are calculated (Clark et al., 1980; Ferrara, 1980). The DFT
block LMS algorithm is most efficient when the block and filter sizes are equal. Recently, we
developed a fast convolution based on the HOT (DeBrunner & Matusiak, 2003). The HOT
convolution is more efficient than the DFT convolution when the disparity in the lengths of
the sequences being convolved is large. In this chapter we introduce a new fast block LMS
algorithm based on the HOT. This algorithm is called the HOT DFT block LMS algorithm. It
is very similar to the DFT block LMS algorithm and reduces its computational complexity by
about 30% when the filter length is much smaller than the block length. In the HOT DFT block
LMS algorithm, the fast HOT convolution is used to calculate the filter output and update the
weights.
Recently, the HOT transform was used to develop the HOT LMS algorithm (Alkhouli et
al., 2005; Alkhouli & DeBrunner, 2007), which is a transform domain LMS algorithm, and
the HOT block LMS algorithm (Alkhouli & DeBrunner, 2007), which is a fast block LMS
algorithm. The HOT DFT block LMS algorithm presented here is different from the HOT
block LMS algorithm presented in (Alkhouli & DeBrunner, 2007). The HOT DFT block LMS
algorithm developed in this chapter uses the fast HOT convolution (DeBrunner & Matusiak,
2003). The main idea behind the HOT convolution is to partition the longer sequence into
sections of the same length as the shorter sequence and then convolve each section with the
shorter sequence efficiently using the fast DFT convolution. The relevance of the HOT will
become apparent when the all of the (sub)convolutions are put together concisely in a matrix
form as will be shown later in this chapter.
The following notations are used throughout this chapter. Nonbold lowercase letters are
used for scalar quantities, bold lowercase is used for vectors, and bold uppercase is used
for matrices. Nonbold uppercase letters are used for integer quantities such as length or
dimensions. The lowercase letter k is reserved for the block index. The lowercase letter n
is reserved for the time index. The time and block indexes are put in brackets, whereas
subscripts are used to refer to elements of vectors and matrices. The uppercase letter N
is reserved for the filter length and the uppercase letter L is reserved for the block length.
The superscripts T and H denote vector or matrix transposition and Hermitian transposition,
respectively. The N-point DFT matrix is denoted by FN or simply by F. The subscripts F and
H are used to highlight the DFT and HOT domain quantities, respectively. The N × N identity
matrix is denoted by IN×N or I. The N × N zero matrix is denoted by 0N×N . The linear and
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circular convolutions are denoted by ∗ and ⋆, respectively. Diag [u] or U denotes the diagonal
matrix whose diagonal elements are the elements of the vector u.
In section 2, The explicit relation between the DFT and HOT is developed. The HOT
convolution is presented in Section 3. In Section 4, the HOT DFT block LMS algorithm is
developed. Its computational cost is analyzed in Section 5. Section 6 contains the convergence
analysis and Section 7 contains its misadjustment. Simulations are provided in Section 8
before the conclusions in Section 9

2. The relation between the DFT and HOT

In this section, an explicit relation between the DFT and HOT is derived. Let u be a vector of
length NK. The K-band polyphase decomposition of u decomposes u into a set of K polyphase
components. The kth polyphase componenet of u is denoted by ũk and is given by

ũk =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

uk

uk+K

uk+2K
...

uk+(N−1)K

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (2)

The vector that combines the polyphase components of u is denoted by ũ , i.e.,

ũ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ũ0
ũ1
ũ2
...

ũK−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (3)

The square matrix that relates ũ and u is denoted by P, i.e.,

ũ = Pu. (4)

For example, P for the case of N = 4 and K = 3 is given by

P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (5)
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Without loss of generality, we consider the special case of N = 4 and K = 3 to find an explicit
relation between the DFT and HOT. The 4 × 3-point HOT is given by

H =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1
1 0 0 e−j2π/4 0 0 e−j4π/4 0 0 e−j6π/4 0 0
0 1 0 0 e−j2π/4 0 0 e−j4π/4 0 0 e−j6π/4 0
0 0 1 0 0 e−j2π/4 0 0 e−j4π/4 0 0 e−j6π/4

1 0 0 e−j4π/4 0 0 e−j8π/4 0 0 e−j12π/4 0 0
0 1 0 0 e−j4π/4 0 0 e−j8π/4 0 0 e−12π/4 0
0 0 1 0 0 e−j4π/4 0 0 e−j8π/4 0 0 e−j12π/4

1 0 0 e−j6π/4 0 0 e−j12π/4 0 0 e−j18π/4 0 0
0 1 0 0 e−j6π/4 0 0 e−j12π/4 0 0 e−j18π/4 0
0 0 1 0 0 e−j6π/4 0 0 e−j12π/4 0 0 e−j18π/4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(6)
Equation (6) shows that the HOT takes the 4-point DFTs of the 3 polyphase components and
then reverses the polyphase decomposition. Therefore, the relation between the DFT and HOT
can be written as

H = P

⎡

⎢

⎢

⎣

F4 04×4 04×4

04×4 F4 04×4

04×4 04×4 F4

⎤

⎥

⎥

⎦

P. (7)

Also, it can be easily shown that

H−1 = P

⎡

⎢

⎢

⎣

F−1
4 04×4 04×4

04×4 F−1
4 04×4

04×4 04×4 F−1
4

⎤

⎥

⎥

⎦

P. (8)

3. The HOT convolution

In this section we present a computationally efficient convolution algorithm based on the
HOT. Let h(n) be a signal of length N and u(n) be a signal of length KN. The linear
convolution between h(n) and u(n) is given by

y(n) =
N−1

∑
l=0

h(l)u(n − l). (9)

According to the overlap-save method (Mitra, 2000), y(n) for 0 ≤ n ≤ KN, where K is an
integer, can be calculated by dividing u(n) into K overlapping sections of length 2N and h(n)
is post appended with N zeros as shown in Figure 1 for K = 3. The linear convolution in (9)
can be calculated from the circular convolutions between and h(n) and the sections of u(n).
Let uk(n) be the kth section of u(n). Denote the 2N-point circular convolution between uk(n)
and h(n) by ck(n) = uk(n) ⋆ h(n).
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Fig. 1. Illustration of how u(n) is divided into 3 overlapping sections. Each section is
convolved with the the appended h(n).

The circular convolution ck(n) can be calculated using the 2N-point DFT as follows. First,
form the vectors

h =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

h(0)
h(1)

...
h(N − 1)

0
0
...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (10)

ck =

⎡

⎢

⎢

⎢

⎣

ck(0)
ck(1)

...
ck(2N − 1)

⎤

⎥

⎥

⎥

⎦

, (11)

Then the 2N-point DFT of ck is given by

F2Nck = F2Nuk · F2Nh, (12)
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where uk is the vector that contains the elements of uk(n). “·” indicates pointwise
matrix multiplication and, throughout this chapter, pointwise matrix multiplication takes
a lower precedence than conventional matrix multiplication. Combining all of the circular
convolutions into one matrix equation, we should have

⎡

⎢

⎢

⎢

⎣

F2Nc0
F2Nc1

...
F2NcK−1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

F2Nh
F2Nh

...
F2Nh

⎤

⎥

⎥

⎥

⎦

·

⎡

⎢

⎢

⎢

⎣

F2Nu0
F2Nu1

...
F2NuK−1

⎤

⎥

⎥

⎥

⎦

. (13)

Using equation (7), equation (13) can be written as

Hc̃ = Hũ · Hh̃r, (14)

where

hr =

⎡

⎢

⎢

⎢

⎣

h
h
...
h

⎤

⎥

⎥

⎥

⎦

, (15)

and

u =

⎡

⎢

⎢

⎢

⎣

u0
u1
...

uk−1

⎤

⎥

⎥

⎥

⎦

. (16)

Therefore, The vector of the circular convolutions is given by

c = PH−1
(

Hũ · Hh̃r

)

. (17)

According to the overlap-save method, only the second half of ck corresponds to the kth section
of the linear convolution. Denote the kth section of the linear convolution by yk and the vector
that contains the elements of y(n) by y. Then yk can be written as

yk =
[

0N×N IN×N

]

ck, (18)

and y as
y = Gc, (19)

where

G =

⎡

⎢

⎢

⎢

⎣

0N×N IN×N 02N×2N · · · 02N×2N

02N×2N 0N×N IN×N · · · 02N×2N
...

...
. . .

...
02N×2N 02N×2N · · · 0N×N IN×N

⎤

⎥

⎥

⎥

⎦

. (20)

Finally, the linear convolution using the HOT is given by

y = GPH−1
(

Hũ · Hh̃r

)

. (21)

In summery, the convolution between (K + 1)N-point input u(n) and N-point impulse
response h(n) can be calculated efficiently using the HOT as follows:
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1. Divide u(n) into K overlapping sections and combine them into one vector to from u.

2. Perform K-band polyphase decomposition of u to form ũ.

3. Take the HOT of ũ.

4. Post append h(n) with N zeros and then stack the appended h(n) K times into one vector
to form hr.

5. Perform K-band polyphase decomposition of hr to form h̃r.

6. Take the HOT of h̃r.

7. Point-wise multiply the vectors from steps 3 and 6.

8. Take the inverse HOT of the vector from step 7.

9. Perform K-band polyphase decomposition of the result from step 8.

10. Multiply the result of step 9 with G.

4. Development of the HOT DFT block LMS algorithm

Recall that in the block LMS algorithm there are two convolutions needed. The first
convolution is a convolution between the filter impulse response and the filter input and
is needed to calculate the output of the filter in each block. The second convolution is a
convolution between the filter input and error and is needed to estimate the gradient in the
filter weight update equation. If the block length is much larger than the filter length, then
the fast HOT convolution developed in the previous section can be used to calculate the first
convolution. However, the second convolution is a convolution between two signals of the
same length and the fast HOT convolution can not be used directly without modification.
Let N be the filer length and L = NK be the block length, where N, L, and K are all integers.
Let

ŵ(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

w0(k)
w1(k)

...
wN−2(k)
wN−1(k)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(22)

be the filter tap-weight vector in the kth block and

û(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u (kL − N)
...

u (kL)
u (kL + 1)

...
u (kL + L − 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(23)

be the vector of input samples needed in the kth block. To use the fast HOT convolution
described in the previous section, û(k) is divided is into K overlapping sections. Such sections
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can be formed by multiplying û(k) with the following matrix:

J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IN×N 0 · · · 0 0
0 IN×N · · · 0 0
0 IN×N · · · 0 0
...

...
. . .

...
...

0 0 · · · IN×N 0
0 0 · · · IN×N 0
0 0 · · · 0 IN×N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (24)

Define the extended tap-weight vector (post appended with N zeros)

w(k) =

⎡

⎢

⎢

⎢

⎣

ŵ(k)
0
...
0

⎤

⎥

⎥

⎥

⎦

. (25)

According the fast HOT convolution, see equation (21), the output of the adaptive filter in the
kth block

y(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

y(kL)
y(kL + 1)

...
y(kL + L − 2)
y(kL + L − 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(26)

is given by

y(k) = GPH−1
(

HPwr(k) · HPJû(k)
)

. (27)

The desired signal vector and the filter error in the kth block are given by

d̂(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

d(kL)
d(kL + 1)

...
d(kL + L − 2)
d(kL + L − 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(28)

and

ê(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

e(kL)
e(kL + 1)

...
e(kL + L − 2)
e(kL + L − 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (29)

respectively, where
e(n) = d(n)− y(n). (30)
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The filter update equation is given by

ŵ(k + 1) = ŵ(k) +
µ

L

L−1

∑
i=0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

u (kL + i)
u (kL + i − 1)

...
u (kL + i − N + 2)
u (kL + i − N + 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

e(kL + i). (31)

The sum in equation (31) can be efficiently calculated using the (L+ N)-point DFTs of the error
vector e(n) and input vector u(n). However, the (L + N)-point DFT of u(n) is not available
and only the 2N-point DFTs of the K sections of û(k) are available. Therefore, the sum in
equation (31) should be divided into K sections as follows:

L−1

∑
i=0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

u (kL + i)
u (kL + i − 1)

...
u (kL + i − N + 2)
u (kL + i − N + 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

e(kL + i) =

K−1

∑
l=0

N−1

∑
j=0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

u (kL + lN + j)
u (kL + lN + j − 1)

...
u (kL + lN + j − N + 2)
u (kL + lN + j − N + 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

e(kL + lK + j). (32)

For each l, the sum over j can be calculated as follows. First, form the vectors

ul(k) =

⎡

⎢

⎢

⎢

⎣

u(kL + lN − N)
...

u(kL + lN + N − 2)
u(kL + lN + N − 1)

⎤

⎥

⎥

⎥

⎦

, (33)

el(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0N×1
e(kL + lN)

...
e(kL + lN + N − 2)
e(kL + lN + N − 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (34)

Then the sum over j is just the first N elements of the circular convolution of el(k) and
circularly shifted ul(k) and it can be computed using the DFT as shown below:

N−1

∑
j=0

ul(k)e(kL + lK + j) = UN

(

u∗
lF(k) · elF(k)

)

, (35)

where

UN =

[

IN×N 0N×N

0N×N 0N×N

]

, (36)
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ulF(k) = F2Nul(k), (37)

and
elF(k) = F2Nel(k). (38)

Therefore, the filter update equation for the HOT DFT block LMS algorithm can be written as

w(k + 1) = w(k) +
µ

L

K−1

∑
l=0

UNF−1
(

u∗
lF(k) · elF(k)

)

. (39)

Next, we express the sum in equation (39) in terms of the HOT. Form the vectors

u(k) =

⎡

⎢

⎢

⎢

⎣

u0(k)
u1(k)

...
uK−1(k)

⎤

⎥

⎥

⎥

⎦

, (40)

e(k) =

⎡

⎢

⎢

⎢

⎣

e0(k)
e1(k)

...
eK−1(k)

⎤

⎥

⎥

⎥

⎦

. (41)

Then using equation (7), the filter update equation can be written as

w(k + 1) = w(k) +
µ

L
SPH−1

(

H∗ũ(k) · Hẽ(k)
)

, (42)

where the matrix S is given by

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1K×1 0K×1 · · · 0K×1
0K×1 1K×1 · · · 0K×1

...
...

. . .
...

0K×0 0K×1 · · · 1K×1

0N×KN

0N×KN 0N×KN

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (43)

Figure 2 shows the flow block diagram of the HOT DFT block LMS adaptive filter.

5. Computational cost of the HOT DFT block LMS algorithm

Before looking at the convergence analysis of the new adaptive filter, we look at its
computational cost. To calculate the the output of the kth block, 2K + 1 2N-point DFTs are
needed. Therefore, (2K + 1)2N log2 2N + 2NK multiplications are needed to calculate the
output. To calculate the gradient estimate in the filter update equation, 2K 2N-point DFTs are
required. Therefore, 6KN log2 2N + 2NK multiplications are needed. The total multiplication
count of the new algorithm is then (4K + 1)2N log2 2N + 4NK. The multiplication count for
the DFT block LMS algorithm is 10KN log2 2NK + 4NK. Therefore, as K gets larger the HOT
DFT block LMS algorithm becomes more efficient than the DFT block LMS algorithm. For
example, for N = 100 and K = 10, the HOT DFT LMS algorithm is about 30% more efficient
and for for N = 50 and K = 20 the HOT DFT LMS algorithm is about 40% more efficient.
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Fig. 2. The flow block diagram of the HOT DFT block LMS adaptive filter.
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The ratio between the number of multiplications required for the HOT DFT block LMS
algorithm and the number of multiplications required for the DFT block LMS algorithm is
plotted in Figure 3 for different filter lengths. The HOT DFT block LMS filter is always
more efficient than the DFT block LMS filter and the efficiency increases as the block length
increases.
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Fig. 3. Ratio between the number of multiplications required for the HOT DFT and the DFT
block LMS algorithms.

6. Convergence analysis of the HOT DFT LMS algorithm

Now the convergence of the new algorithm is analyzed. The analysis is performed in the DFT
domain. The adaptive filter update equation in the DFT domain is given by

wF(k + 1) = wF(k) +
µ

L

K−1

∑
l=0

FUNF−1
(

u∗
lF(k) · elF(k)

)

. (44)

Let the desired signal be generated using the linear regression model

d(n) = wo(n) ∗ u(n) + eo(n), (45)

where wo(n) is the impulse response of the Wiener optimal filter and eo(n) is the irreducible
estimation error, which is white noise and statistically independent of the adaptive filter input.
In the kth block, the lth section of the desired signal in the DFT domain is given by

d̂l(k) =
[

0N×N IN×N

]

F−1
(

wo
F(k) · ulF(k)

)

+ êo
l (k), (46)

Therefore, the lth section of the error is given by

el(k) = LNF−1
(

ǫF(k) · ulF(k)
)

+ eo
l (k), (47)
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where

LN =

[

0N×N 0N×N

0N×N IN×N

]

, (48)

and ǫF(k) = wo
F −wF(k). Using equation (44), the error in the estimation of the adaptive filter

weight vector ǫF(k) is updated according to

ǫF(k + 1) = ǫF(k)−
µ

L

K−1

∑
l=0

UN,F

(

u∗
lF(k) · elF(k)

)

, (49)

where

UN,F = F

[

IN×N 0N×N

0N×N 0N×N

]

F−1. (50)

Taking the DFT of equation (47), we have that

elF(k) = LN,F

(

ǫF(k) · ulF(k)
)

+ eo
lF(k), (51)

where

LN,F = F

[

0N×N 0N×N

0N×N IN×N

]

F−1. (52)

Using equation (51), we can write

u∗
lF(k) · elF(k) = U ∗

lF(k)
(

LN,FUlF(k)ǫF(k) + eo
lF(k)

)

. (53)

Using
U ∗

lF(k)LN,FUlF(k) = u∗
lF(k)u

T
lF(k) · LN,F, (54)

equation (53) can be simplified to

u∗
lF(k) · elF(k) =

(

u∗
lF(k)u

T
lF(k) · LN,F

)

ǫF(k) + u∗
lF(k) · eo

lF(k). (55)

Substituting equation (55) into equation (49), we have that

ǫF(k + 1) =
(

I −
µ

L
UN,F

K−1

∑
l=0

u∗
lF(k)u

T
lF(k) · LN,F

)

ǫF(k)−
µ

L
UN,F

K−1

∑
l=0

u∗
lF(k) · eo

lF(k). (56)

Taking the expectation of the above equation yields

EǫF(k + 1) =
(

I −
µ

N
UN,F

(

Ru,F · LN,F

))

EǫF(k), (57)

where Ru,F = FHRuF and Ru is the 2N × 2N autocorrelation matrix of u(n). Equation (57) is
similar to the result that corresponds to the DFT block LMS algorithm (Farhang-Boroujeny &
Chan, 2000). Therefore, the convergence characteristics of the HOT DFT block LMS algorithm
are similar to that of the DFT block LMS algorithm.
The convergence speed of the HOT DFT LMS algorithm can be increased if the convergence
moods are normalized using the estimated power of the tap-input vector in the DFT domain.
The complete HOT DFT block LMS weight update equation is given by

w(k + 1) = w(k) +
µ

L

K−1

∑
l=0

UNF−1Λ−1
l (k)

(

u∗
lF(k) · elF(k)

)

(58)

and

Λl(k + 1) =
k − 1

k
Λl(k) +

1
kL

Diag
[

u∗
lF(k) · ulF(k)

]

. (59)
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7. Misadjustment of the HOT DFT LMS algorithm

In this section, the misadjusment of the HOT DFT block LMS algorithm is derived. The mean
square error of the conventional LMS algorithm is given by

J(n) = E
∣

∣

∣
e(n)

∣

∣

∣

2
. (60)

For the block LMS algorithm, the mean square error is given by

J(k) =
1
L

E
L−1

∑
i=0

∣

∣

∣
e(kL + i)

∣

∣

∣

2
, (61)

which is also equivalent to

J(k) =
1

2NL
E

K−1

∑
l=0

eH
lF(k)elF(k). (62)

Using equation (51), the mean square error of the HOT DFT block LMS algorithm is given by

J(k) = Jo +
1

2NL
E

K−1

∑
l=0

∣

∣

∣

∣

∣

∣
LN,FUlF(k)ǫ(k)

∣

∣

∣

∣

∣

∣

2
, (63)

where Jo is the mean square of eo(n). Assuming that ǫ(k) and Diag[ulF(k)] are independent,
the excess mean square error is given by

Jex(k) =
1

2NL
E

K−1

∑
l=0

ǫ
H
F (k)EUH

lF(k)LN,FU
H
lF(k)ǫF(k). (64)

Using equation (54), the excess mean square error can be written as

Jex =
K

2NL
EǫH

F (k)
(

Ru,F · LN,F

)

ǫF(k), (65)

or equivalently

Jex =
K

2NL
tr
[(

Ru,F · LN,F

)

EǫF(k)ǫ
H
F (k)

]

. (66)

8. Simulation of the HOT DFT block LMS algorithm

The learning curves of the HOT DFT block LMS algorithm were simulated. The desired
input was generated using the linear model d(n) = wo(n) ∗ u(n) + eo(n), where eo(n) is the
measurement white gaussian noise with variance 10−8. The input was a first-order Markov
signal with autocorrelation function given by r(k) = ρ|k|. The filter was lowpass with a cutoff
frequency π/2 rad.
Figure 4 shows the learning curves for the HOT DFT block LMS filter with those for the LMS
and DFT block LMS filters for N = 4, K = 3, and ρ = 0.9. Figure 5 shows similar curves for
N = 50, K = 10, and ρ = 0.9. Both figures show that the HOT DFT block LMS algorithm
converges at the same rate as the DFT block LMS algorithm and yet is computationally more
efficient. Figure 6 shows similar curves for N = 50 and K = 10 and ρ = 0.8. As the correlation
coefficient decreases the algorithms converges faster and the HOT DFT block LMS algorithm
converges at the same rate as the DFT block LMS algorithm.
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Fig. 4. Learning curves for the LMS, HOT DFT block LMS, and DFT block LMS algorithms.
N = 4 and K = 3. ρ = 0.9.
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Fig. 5. Learning curves for the LMS, HOT DFT block LMS, and DFT block LMS algorithms.
N = 50 and K = 10. ρ = 0.9.

Another coloring filter was also used to simulate the learning curves of the algorithms.
The coloring filter was a bandpass filter with H(z) = 0.1 − 0.2z−1 − 0.3z−2 + 0.4z−3 +
0.4z−4 − 0.2z−5 − 0.1z−6. The frequency response of the coloring filter is shown in Figure
7. The learning curves are shown in Figure 8. The simulations are again consistent with the
theoretical predictions presented in this chapter.
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Fig. 6. Learning curves for the LMS, HOT DFT block LMS, and DFT block LMS algorithms.
N = 50 and K = 10. ρ = 0.8.
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Fig. 7. Frequency response of the coloring filter.
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Fig. 8. Learning curves for the LMS, HOT DFT block LMS, and DFT block LMS algorithms.
N = 50 and K = 10.

9. Conclusions

In this chapter a new computationally efficient block LMS algorithm was presented. This
algorithm is called the HOT DFT block LMS algorithm. It is based on a newly developed
transform called the HOT. The basis of the HOT has many zero-valued samples and resembles
the DFT basis, which makes the HOT computationally attractive. The HOT DFT block LMS
algorithm is very similar to the DFT block LMS algorithm and reduces it computational
complexity by about 30% when the filter length is much smaller than the block length. The
analytical predictions and simulations showed that the convergence characteristics of the HOT
DFT block LMS algorithm are similar to that of the DFT block LMS algorithm.
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