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1. Introduction 

Over the past decades a number of new adaptive filter algorithms have been elaborated and 
applied to meet demands for faster convergence and better tracking properties than earlier 
techniques could offer. The Filtered LMS algorithm is currently the most popular method 
for adapting a filter, due to its simplicity and robustness, which have made it widely 
adopted in many applications. Applications include adaptive channel equalization, adaptive 
predictive speech coding, Noise Suppression and on-line system identification. Recently, 
because of the progress of digital signal processors, a variety of selective coefficient update 
of gradient-based adaptive algorithms could be implemented in practice. Different types of 
adaptive algorithms have been developed and used in conventional adaptive filters such as, 
filtered LMS algorithms [1], [2], [3] and [4], filtered X-LMS algorithms [1], [2], [5], and [6], 
filtered NLMS algorithms and RLS algorithms [1] and [2]. As a result, this chapter surveys 
sequential filter adaptation techniques and some applications for transversal FIR filter. 
In other words filters are devices or systems that processes (or reshapes) the input signal 
according to some specific rules to generate an output signal Figure 1. 
 

 

Fig. 1. Filter Representation 

Filters could be classified in two categories linear and non-linear filters where in linear 
filters there is a linear relationship between input and output of the filter that satisfy the 
following property: 
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meanwhile in non-linear filters; there is a nonlinearity between input and output of the filter 
that satisfy the following property: 

 

( )

2
1 1 1

2
2 2 2

2

1 2 1 2then 

x y x

x y x

x x x x

→ =

→ =

+ = +

 (2) 

In this chapter we will be focusing on adaptive filtering which could automatically adjust 
(or adapt) in the face of changing environments and changing system requirements by 
training them to perform specific filtering or decision-making tasks and in which they 
should be some “adaptation algorithm” for adjusting the system’s parameters figure (2) [7]. 
 

 

Fig. 2. General Adaptive Filter Configuration. 

Different filter structures could be implemented in the adaptive filter of figure 2 such as: 

• Transversal Filter Structure (FIR) 

• IIR Filter Structure 

• Lattice Filter Structure 

• Non-Linear Filter Structure (Volterra Filter) 
in which the adaptation approaches are based on: 

• Wiener filter theory where the optimum coefficients of a linear filter are obtained by 
minimization of its mean-square error (MSE) 

• Method of least squares where The performance index is the sum of weighted error 
squares 

The main objective of the adaptation algorithm is to set the filter parameters, ( )n
θ  in such a 

way that its output tries to minimize a meaningful objective function F (cost function in 

some literatures) involving the reference signal (or desired signal) which will be based on 

• Mean Square Error 

• Least Square Error 

• weighted least square 

• instantaneous square value 
and the minimization algorithms are based on the following methods: 

• Newton’s method 

• Quasi-Newton method 

• Steepest-descent method 
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2. Signals 

Before pursuing the study of adaptive systems, it is important to refresh our memory with 
some useful definitions from the stochastic process theory. The representation of signals 
could fall into two categories: 

• Deterministic Signals 

• Random Signals 

2.1 Deterministic signals 
A deterministic discrete-time signal is characterized by a defined mathematical function of 
the time index n, with n= 0, ±1, ±2, ⋯, such as: 

 ( ) ( ) ( )cosn

n n
x e wn uα−= +  (3) 

where u(n) is the unit-step sequence and The response of a linear time-invariant filter to an 
input x(n) is given by: 

 ( ) ( ) ( ) ( ) ( )n n n k n k
k

y x h x h
∞

−
=−∞

= ∗ =   (4) 

where h(n) is the impulse response of the filter. Knowing that The Z-transform and its inverse 
of a given sequence x(n) is defined as: 

 
( )( ) ( ) ( )

( ) ( ) 11

2

n

n n
n

n

n

c

Z x X Z x Z

x X Z Z dZ
jπ

∞
−

=−∞

−

= =

=




 (5) 

where C is a counter clockwise closed contour in the region of convergence of X(z) and 
encircling the origin of the z-plane as a result; by taking the Z-transform of both sides of 
equation (4), we will obtain 

 Y(Z) = H(Z) × X(Z) (6) 

For finite finite-energy waveform, it is convenient to use the discrete-time Fourier transform 
defined as: 

 ( ) ( ) ( )
jw jwn

n n
n

F x X e x e
∞

−

=−∞

= =   (7) 

2.2 Random signals 
In many real life situations, observations are made over a period of time and they are 
influenced by random effects, not just at a single instant but throughout the entire interval 
of time or sequence of times. In a “rough” sense, a random process is a phenomenon that 
varies to some degree unpredictably as time goes on. If we observed an entire time-sequence 
of the process on several different occasions, under presumably “identical” conditions, the 
resulting observation sequences, in general, would be different. A random variable (RV) is a 
rule (or function) that assigns a real number to every outcome of a random experiment, 
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while a stochastic random process is a rule (or function) that assigns a time function to every 
outcome of a random experiment. The elements of a stochastic process, {x(n)}, for different 
value of time-index n, are in general complex-valued random variable that are characterized 
by their probability distribution functions. A stochastic random process is called stationary 
in the strict sense if all of its (single and joint) distribution function is independent of a shift 
in the time origin. 
In this subsection we will be reviewing some useful definitions in stochastic process: 

• Stochastic Average 

 ( )x n
m E x =    (8) 

where E is the expected value of x(n). 

• Autocorrelation function for a stochastic process x(n) 

 ( ) ( ),xx mn
n m E x xφ ∗ =    (9) 

where x* denotes the complex conjugate of x and the symmetry properties of correlation 
function is: 

 ( ) ( )xx xxk kφ φ∗= −  (10) 

Furthermore a stochastic random process is called stationary in the wide sense if xm and 

( ),xx n mφ  are independent of a shift in the time origin for any k, m, and n therefore, 

 ( ) ( ) constant for all x xm n m n k n= + =  (11) 

and 

 ( ) ( ), ,xx xxn m n k m kφ φ= + +  (12) 

which means ( ),xx n mφ depends only on the difference n – m or  

 ( ) ( ) ( )xx n n k
k E x xφ ∗

−
 =  

 (13) 

Special case  

 ( ) ( ) ( )

2

0 mean square of xx n n
E x xφ  = =  

 (14) 

The Z-transform of ( )xx kφ is given by 

 ( ) ( ) k
xx xx

k

Z k Zφ
∞

−

=−∞

Φ =   (15) 

where it can be easily shown that 

 ( )
1

xx xxZ
Z

∗

∗

 
Φ = Φ  

 
 (16) 
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Equation (16) implies that if ( )xx ZΦ is a rational function of z, then its poles and zeros must 

occur in complex-conjugate reciprocal pairs. Moreover, the points that belong to the region 

of convergence of ( )xx ZΦ also occur in complex-conjugate pairs which suggest that the 

region of convergence of ( )xx ZΦ must be of the form
1

a z
a

  which will cover the unit 

circle 1z = . By assuming that ( )xx ZΦ is convergent on the unit circle’s contour C and by 

letting Z = ejw then, 

 ( ) ( )1
0

2
jw

xx xx e dw
π

π

φ
π −

= Φ  (17) 

and if mx = 0, we will have 

 ( ) ( )
2

2 1

2
jw

x xxn
E x e dw

π

π

σ
π −

 = = Φ     (18) 

• Cross-correlation function for two stochastic processes x(n) and y(n) 

 ( ) ( ),xy mn
n m E x yφ ∗ =    (15) 

and the symmetry properties of the correlation function is: 

 ( ) ( )xy yxk kφ φ∗= −  (16) 

The Z-transform of ( )xy kφ is given by 

 ( ) ( ) k
xy xy

k

Z k Zφ
∞

−

=−∞

Φ =   (17) 

where it can be easily shown that 

 ( )
1

xy xyZ
Z

∗

∗

 
Φ = Φ  

 
 (18) 

• Auto-covariance function for stationary process is defined as: 

 ( ) ( )( ) ( )( ) ( )
2

xx x x xx xn n k
k E x m x m k mγ φ

∗

−

 = − − = −  
 (19) 

and the symmetry properties of auto-covariance function 

 ( ) ( )xx xxk kγ γ ∗= −  (20) 

Special case  

 ( ) ( )
20 var  of xx x n

iance xγ σ= =  (21) 
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• Cross-covariance function is defined as: 

 ( ) ( )( ) ( )( ) ( )xy x y xy x yn n k
k E x m y m k m mγ φ

∗
∗

−

 = − − = −  
 (22) 

and the symmetry properties of the cross-covariance function is: 

 ( ) ( )xy yxk kγ γ ∗= −  (23) 

2.2.1 Power spectral density 

Consider the wide-sense stationary random process {x(n)} from which we will consider a 
window of 2N+1 elements of x(n) such as 

 
( )

( ) ,

0,n

n

N

x N n N
x

otherwise

− ≤ ≤
= 


 (24) 

and the discrete-time Fourier transform of
( )nNx is computed as: 

 ( )
( ) ( )n

N
jw jwn jwn

N N n
n n N

X e x e x e
∞

− −

=−∞ =−

= =   (25) 

By conjugating both sides of equation 25 with: 

 ( ) ( )

N
jw jwm

N m
n N

X e x e∗ ∗

=−

=   (26) 

we will obtain 

 ( ) ( ) ( )
( )2 N N

jw n mjw
M n m

n N m N

X e x x e
− −∗

=− =−

=    (27) 

and by taking the expected value of equation 27, we will have: 

 ( ) ( ) ( )
( )2 N N

jw n mjw
M n m

n N m N

E X e E x x e
− −∗

=− =−

   =        (28) 

which after simplification by imposing k = n – m will yield: 

 ( ) ( )
22

2

1
1

2 1 2 1

N
jw jwk

N xx
k N

k
E X e k e

N N
φ −

=−

   = −   + + 
  (29) 

By assuming that the summation on the right hand side of equation 29 will converge for 
large k then 

 ( ) ( ) ( )
22

2

1
lim

2 1

N
jw jwk jw

N xx xx
N k N

E X e k e e
N

φ −

→∞ =−

   = = Φ   + 
  (30) 

The function ( )jw
xx eΦ is called the power spectral density of the stochastic, wide-sense 

stationary process {x(n)} which is always real and non-negative. 

www.intechopen.com



The Ultra High Speed LMS Algorithm Implemented on  
Parallel Architecture Suitable for Multidimensional Adaptive Filtering 

 

53 

2.2.2 Response of linear system to stochastic processes 

Given the Linear Time-Invariant System (LTI) illustrated in figure 3 where we will assume 

that ( )xx kφ is known therefore, the Z-transform of ( )xy kφ could be elaborated as: 

 ( ) ( ) ( ) ( )
k k

xy xy n n k
k k

Z k Z E x y Zφ
∞ ∞

− ∗ −

−
=−∞ =−∞

 Φ = =     (31) 

and 

 ( ) ( ) ( )n l n l
l

y h x
∞

−
=−∞

=   (32) 

 

 

Fig. 3. Structure of LTI system 

To be noted that the following expressions could be easily derived: 

 ( ) ( ) ( ) ( )1
yy xxZ

Z H Z H Z∗Φ = Φ  (33) 

and 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

jw jw jw
xy xx

jw jw jw
yx xx

jw jw jw
yy xx

e H e e

e H e e

e H e e

∗Φ = Φ

Φ = Φ

Φ = Φ

 (34) 

3. Regression 

Data fitting is one of the oldest adaptive systems which are a powerful tool, allowing 
predictions of the present or future events to be made based on information about the past 
or present events. The two basic types of regression are linear regression and multiple 
regressions. 

3.1 Linear regression 
The goal of linear regression is to adjust the values of slope and intercept to find the line that 
best predicts d from x (Figure 4) or in other words linear regression estimates how much d 
changes when x changes by one unit.  
The slope quantifies the steepness of the line which is equals to the change in d for each unit 
change in x. If the slope is positive, d increases as d increases. If the slope is negative, d 
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decreases as d increases. The d intercept is the d value of the line when x equals zero. It 
defines the elevation of the line.  
 

Δd 

Δx 
Slope = Δd/Δx 

x 

d 

d  

intercept 

 

Fig. 4. Slope and Intercept. 

The deviation from the straight line which represents the best linear fits of a set of data as 
shown in figure 5 is expressed as: 

 d ≈ w × x + b (35) 

or more specifically, 

 d(n) = w × x(n) +b + e(n) = y(n) + e(n)  (36) 

where e(n) is the instantaneous error that is added to y(n) (the linearly fitted value), w is  
the slope and b is the y intersect (or bias). More precisely, the goal of regression is to 
minimize the sum of the squares of the vertical distances of the points from the line. The 
problem can be solved by a linear system with only two free parameters, the slope w and 
the bias b.  
 

 

Fig. 5. Example of linear regression with one independent variable 
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Fig. 6. Linear Regression Processing Element. 

Figure 6 is called the Linear Regression Processing Element (LRPE) which is built from two 
multipliers and one adder. The multiplier w scales the input, and the multiplier b is a simple 
bias, which can also be thought of as an extra input connected to the value +1.The 
parameters (b, w) have different functions in the solution. 

3.1.1 Least squares for linear model 
Least squares solves the problem by finding the best fitted line to a set of data; for which the 
sum of the square deviations (or residuals) in the d direction are minimized (figure 7). 
 

 

Fig. 7. Regression line showing the deviations. 

The goal is to find a systematic procedure to find the constants b and w which minimizes the 
error between the true value d(n) and the estimated value y(n) which is called the linear 
regression. 

 d(n) – (b + wx(n)) = d(n) –  y(n) = e(n)  (37) 

The best fitted line to the data is obtained by minimizing the error e(n) which is computed by  
the mean square error (MSE) that is a widely utilized as performance criterion  

 ( )
2

1

1

2

N

n
n

e
N

ξ
=

=   (38) 
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where N in the number of observations and ξ is the mean square error. 
Our goal is to minimize ξ analytically, which can be achieved by taking the partial 
derivative of this quantity with respect to the unknowns and equate the resulting equations 
to zero, i.e. 

 

0

0

b

w

δξ

δ
δξ

δ


=


 =


 (39) 

which yields after some manipulation to: 

 
( ) ( ) ( ) ( ) ( )

( )( )

( )( ) ( )( )

( )( )

2

22
  

n n n n n n n
n n n n n

nn
nn

x d x x d x x d d

b w
x xN x x

− − −

= =
  −− 
 

    


 (40) 

where the bar over the variable means the mean value and the procedure to determine the 
coefficients of the line is called the least square method. 

3.1.2 Search procedure 

The purpose of least squares is to find parameters (b, w1, w2, …, wp) that minimize the 
difference between the system output y(n) and the desired response d(n). So, regression is 
effectively computing the optimal parameters of an interpolating system which predicts the value 
of d from the value of x. 
Figure 8 shows graphically the operation of adapting the parameters of the linear system in 
which the system output y is always a linear combination of the input x with a certain bias b 
according to the equation y= wx + b. Changing b modifies the y intersect, while changing w 
modifies the slope. The goal of linear regression is to adjust the position of the line such that 
the average square difference between the y values (on the line) and the cloud of points d(n) 
i.e. the error e(n), is minimized. 
 

x(n) (b,w) y(n) 

d(n) 

e(n) 

Change 

Parameters 

x 

y 

y = xw+b 

b 

d(1) 

d(2) 

d(n) 

. .
. .. .

.

 

Fig. 8. Regression as a linear system design problem. 

The key point is to recognize the information transmitted by the error which can be used to 
optimally place the line and this could be achieved by including a subsystem that accepts 

www.intechopen.com



The Ultra High Speed LMS Algorithm Implemented on  
Parallel Architecture Suitable for Multidimensional Adaptive Filtering 

 

57 

the error and modifies the parameters of the system. Thus, the error e(n) is fed-back to the 
system and indirectly affects the output through a change in the parameters (b,w). With the 
incorporation of the mechanism that automatically modifies the system parameters, a very 
powerful linear system can be built that will constantly seek optimal parameters. Such 
systems are called Adaptive systems, and are the focus of this chapter.  

3.2 Multiple regression 
With the same reasoning as above, the regression for multiple variables could be derived as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
0 0

p p

i i k i k i k i k
k k

e d b w x d w x
= =

 
= − + = − 

 
   (41) 

where for this case is to find the coefficient vector W that minimizes the MSE of e(i) over the i 
samples (Figure 9).  
 

 

Fig. 9. Regression system for multiple inputs. 

The mean square error (MSE) becomes for this case:  

 
( ) ( ) ( )

2

,
0

1

2

p

n k n k
n k

d w x
N

ξ
=

 
= − 

 
   (42) 

where the solution  of this equation can be found by taking the derivatives of ξ with respect 
to the unknowns (w(k)), and equating the result to zero which will yield to the famous normal 
matrix equation expressed as: 

 ( ) ( ) ( ) ( ) ( ), ,,
0

p

n j n jn k n k
n k n

x d w x x
=

=    (43) 

for j = 0, 1, …, p. 
By defining: 

 ( ) ( ) ( ), ,,

1
n j n jn k

n

R x x
N

=   (44) 

as the autocorrelation function, 

 ( ) ( ) ( ),

1
j n j n

n

P x d
N

=   (45) 
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as the cross-correlation of the input x for index j and the desired response y and substituting 
these definitions into Eq. (43), the set of normal equations can be written simply as: 

 
1  or P RW W R P∗ ∗ −= =  (46) 

where W is a vector with the p+1 weights wi in which W* represents the value of the vector 
for the optimum (minimum) solution. The solution of the multiple regression problems can 
be computed analytically as the product of the inverse of the autocorrelation of the input 
samples multiplied by the cross-correlation vector of the input and the desired response. 
All the concepts previously mentioned for linear regression can be extended to the multiple 
regression case where J in matrix notation is illustrated as: 

 
( )
2

2
nT T

n

d
W RW P W

N
ξ

 
= − + 
  

  (47) 

where T means the transpose and the values of the coefficients that minimize the solution 
are: 

 10    or RW P W R Pξ ∗ −∇ = = − =  (48) 

4. Wiener filters 

The Wiener filter is a filter proposed by Norbert Wiener during the 1940s and published in 
1949 [8]. Its purpose was to reduce the amount of noise present in a signal in comparison 
with an estimation of the desired noiseless signal. This filter is an MSE-optimal stationary 
linear filter which was mainly used for images degraded by additive noise and blurring. The 
optimization of the filter is achieved by minimizing mean square error defined as the 
difference between the output filter and the desired response (Figure 10) which is known as 
the cost function expressed as: 

 
2

nE eξ  =    (49) 

 

 

Fig. 10. block schematic of a linear discrete-time filter W(z) for estimating a desired signal d(n) 
based on an excitation x(n) where d(n) and x(n) are random processes. 

In signal processing, a causal filter is a linear and time-invariant causal system. The word 
causal indicates that the filter output depends only on past and present inputs. A filter 
whose output also depends on future inputs is non-causal. As a result two cases should be 
considered for the optimization of the cost function (equation 49). 

• The filter W(Z) is causal and or FIR (Finite Impulse Response). 

• The filter W(Z) is non-causal and or IIR (Infinite Impulse Response Filter). 
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4.1 Wiener filter – the transversal filter 

Let W be the transversal filter’s tap weights illustrated in figure 11 which is defined as: 

 [ ]0 1 1

T

NW w w w −=   (50) 

where T denotes the vector transpose and  

 [ ]0 1 1

T

NX x x x −=   (51) 

be the input vector signal where two cases should be treated separately depending on the 
required application: 

• Real valued input signal 

• Complex valued input signal 
 

 

Fig. 11. Block Diagram of the Transversal Filter. 

4.1.1 Wiener filter – the transversal filter - real-valued input signal 

The output filter could be expressed as: 

 ( ) ( ) ( ) ( )

1

0

N T T

in n i n n
i

y w x W X X W
−

−
=

= = =  (52) 

Where 

 ( ) ( ) ( ) ( ) ( )

T

n n n n n
e d y d X W= − = −  (53) 

The performance or cost function expressed in equation 49 could be elaborated as: 

 
( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2   

T T

n n n n n

T T T T

n n n n n n n

E e E d W X d X W

E d W E X d E X d W W E X X W

ξ   = = − −    
      = − − +          

 (54) 

By examining equation 54 we could easily notice that ( ) ( )n n
E X d 
  is the cross correlation 

function which will be defined as: 
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 ( ) ( ) [ ]0 1 1

T

Nn n
P E X d p p p −

 ≡ =    (55) 

and with the same reasoning as above the autocorrelation function ( ) ( )

T

n n
E X X 
  

could be 

expressed as: 

 ( ) ( )

0,0 0 ,1 0 , 1

1,0 1,1 1, 1

1,0 1,1 1, 1

N

T N

n n

N N N N

r r r

r r r
R E X X

r r r

−

−

− − − −

 
 

   ≡ =    
 
  




   


 (56) 

Knowing that ( ) ( )

T T

n n
E d X P  =  

and
T T

W P P W= therefore, the cost function would be: 

 ( )
2 2

T T

n
E d W P W RWξ  = − +   (57) 

where W in the quadratic function expressed in equation 43 will have a global minimum if 

and only if R is a positive definite Matrix. 
The gradient method is the most commonly used method to compute the tap weights that 
minimizes the cost function therefore, 

 
0 1 1

0
i Nw w w w

ξ ξ ξ ξ
ξ

−

 ∂ ∂ ∂ ∂
∇ = = = 

∂ ∂ ∂ ∂ 
  (58) 

which yield after expanding equation 57 to: 
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1
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1

0

0
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i

N
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l

w

p w r r
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ξ

−

=

−

=

∂
=

∂
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+ =





 (59) 

where we have assumed in the expanded equation ( )

1 1 1
2

0 0 0

2
N N N

l l l l lmn
l l m

E d p w w w rξ
− − −

= = =

 = − +    that: 

 
1 1 1 1 1

2

0 0 0 0 0

N N N N N

l l lm l l lm i m im i ii
l m l m m

l i m i l i

w w r w w r w w r w r
− − − − −

= = = = ≠
≠ ≠ ≠

= + +    (60) 

Knowing that rli = ril due to the symmetry property of the autocorrelation function of real-
valued signal equation 45 could be expressed as: 

 
1

0

N

l il i
l

w r p
−

=

=  (61) 
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for i = 0, 1, …, N – 1 which could be expressed in matrix notation as: 

 opRW P=  (62) 

known as Weiner-Hopf equation, whose solution for the optimal tap-weight vector opW and 

by assuming that R has an inverse matrix, is: 

 1
opW R P−=  (63) 

Finally, the minimum value of the cost function can be expressed as: 

 ( ) ( ) ( )
2 2 2 1

min

T T T

op op opn n n
E d W P E d W RW E d P R Pξ −     = − = − = −       (64) 

4.1.2 Wiener filter – the transversal filter - complex-valued input signal 

The data transmission of the basebands QPSK and the QAM is complex valued random 
signals where the filter’s tap weight vector is also assumed to be complex therefore, the cost 
function for this case could be expressed as: 

 ( ) ( ) ( )

2

n n n
E e E e eξ ∗   = =    

 (65) 

and the gradient of the cost function would be: 

 ( ) ( ) ( ) ( )i i i

c c c
w w wn n n n

E e e e e∗ ∗ ∇ = ∇ + ∇   (66) 

By examining figure 11 we could easily notice that equation 53 could be formulated as: 

 ( ) ( ) ( ) ( )

1

0

N

n n k n k
k

e d w x
−

−
=

= −  (67) 

and since d is independent of w and since 
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∗ ∗
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∇ = − ∇

∂ ∂
∇ = + = + =

∂ ∂

∂ ∂
∇ = + = + − =

∂ ∂

 (68) 

Where the sub-indices R and I refers to the real part and imaginary part of the complex 

number therefore, the gradient of the cost function (Equation 66) would be: 

 ( ) ( )2
i

c
w n n i

E e xξ ∗

−
 ∇ = −    (69) 

The optimum filter’s tap-weights e0(n) are obtained by setting the complex gradient of 

equation 69 to zero yielding: 
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 ( ) ( ) 0
o n n i

E e x∗

−
  =   (70) 

By defining 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

* * *

1 1 1 1

* * *
0 1 1 1 10

T H

n n n n N n n n N

HT

n N N

x x x x x x x

w w w w w w x

− − + − − +

− −

   ≡ ≡   

  ≡ ≡   

 

 
 (71) 

where H denotes the complex-conjugate transpose or Hermitian and by re-writing equation 
67 as: 

 
( ) ( ) ( )

H

on n n
e d w x= −  (72) 

whose solution is: 

 oRw p=  (73) 

where  

 
( ) ( )

( ) ( )

H

n n

n n

R E x x

p E x d∗

 =   
 =  

 (74) 

Equation 73 is known as Weiner-Hopf equation for the complex valued signals and the 
minimum of the cost function will be: 

 
( )
2

min

H

o on
E d w Rwξ  = − 

 (75) 

5. Least Mean Square algorithm (LMS algorithm) 

The purpose of least squares is to is to find the optimal filter’s tap weights that that 

minimize the difference between the system output y(n) and the desired response d(n) or in 

other words to minimize the cost function. Instead of solving the Weiner-Hopf equation in 

order to obtain the optimal filter’s tap weights as seen previously, their exists other iterative 

methods which employ an iterative search method that starts with an arbitrary initial 

weight ( )0W , then  a recursive search method that may require many iterations in order to 

converge to the optimal filter’s tap weights oW . The most important iterative methods are 

the gradient based iterative methods which are listed below: 

• Steepest Descent Method  

• Newton’s Method 

5.1 Steepest descent method 

The steepest descent method (also known as the gradient method) is the simplest example of 

a gradient based method that minimizes a function of several variables. This process is 

employing an iterative search method that starts with an arbitrary initial weight ( )0W , and 

then at the kth iteration ( )kW is updated according to the following equation: 
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 ( ) ( )1k k kW W µ ξ+ = − ∇  (76) 

where µ is positive known as the step size and kξ∇  denotes the gradient vector 

2 2RW pξ∇ = − evaluated at the point ( )kW W= . Therefore, equation 76 could be formulated 

as: 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )1 02 1 2k k k kk
W W RW p R W Wµ µ+ = − − = − −  (77) 

Knowing that the auto-correlation matrix R may be diagonalized by using the unitary 

similarity decomposition: 

 TR Q Q= Λ  (78) 

where Λ is a diagonal matrix consisting of the auto-correlation matrix R eigenvalues 

0 1 1 Nλ λ λ −  and the columns of Q contain the corresponding orthonormal eigenvectors and 

by defining the vector ( )kv as: 

 ( ) ( ) 0k kv W W= −  (79) 

As a result equation 77 could be expressed as: 

 ( ) ( ) ( )1 2 T
k kv I Q Q vµ+ = − Λ  (80) 

which after mathematical manipulation and by using the vector transformation 

( ) ( )
' T
k kv Q v= could be written as: 

 
( )

( )
( )1

' '1 2
k ki i iv vµλ

+
= −  (81) 

For i = 0, 1, 2, ... , N – 1 and ( )
( ) ( ) ( )

' ' ' '
0 1 1k k k

k Nv v v v −
 =   that yields: 

 
( )

( )
( )0

' '1 2
k

k

i i iv vµλ= −  (82) 

Equation 82 converges to zero if and only if the step-size parameter μ is selected so that: 

 1 2 1iµλ−   (83) 

which means 

 0 iµ λ   (84) 

for all i or equivalently 

 max0 µ λ   (85) 

where λmax is the maximum of the eigenvalues 0 1 1 Nλ λ λ − . 
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5.2 Newton’s method 
By replacing the scalar step-size μ with a matrix step-size given by μR-1in the steepest 

descent algorithm (equation 77) and by using 0p RW= , the resulting algorithm is: 

 ( ) ( )
1

1k k kW W Rµ ξ−
+ = − ∇  (86) 

Substituting 2 2RW pξ∇ = − in equation 86 we will get: 

 

( ) ( ) ( )( )
( ) ( )

( ) ( )

1
1

1

0

2

         1 2 2

         1 2 2

k k k

k

k

W W R RW p

W R p

W W

µ

µ µ

µ µ

−
+

−

= − −

= − +

= − +

 (87) 

and by subtracting 0W  from both sides of equation 87 will yield: 

 ( ) ( ) ( )( )1 0 01 2k kW W W Wµ+ − = − −  (88) 

where in actual implementation of adaptive filters, the exact values of kξ∇  and R – 1 are not 

available and have to be estimated. 

5.3 Least Mean Square (LMS) algorithm 

The LMS algorithm is a practical scheme for realizing Wiener filters, without explicitly 
solving the Wiener-Hopf equation and this was achieved in the late 1960’s by Widrow [2] 
who proposed an extremely elegant algorithm to estimate the gradient that revolutionized 
the application of gradient descent procedures by using the instantaneous value of the gradient 

as the estimator for the true quantity which means replacing the cost function ( )
2

n
E eξ  =   by its 

instantaneous coarse estimate 
( )
2

n
eξ = into steepest descent algorithm. By doing so, we will 

obtain 

 ( ) ( ) ( )
2

1n n n
W W eµ+ = − ∇  (89) 

where ( )
( ) ( ) ( )0 1 1n n n

T

n NW w w w −
 =   and

0 1 1

T

Nw w w −

 ∂ ∂ ∂
∇ =  

∂ ∂ ∂ 
 . 

The ith element of the gradient vector ( )
2

n
e∇ is: 

 
( )

( )
( )

( )
( )

( ) ( )

2

2 2 2
n n n

n n n n i

i i i

e e y
e e e x

w w w −

∂ ∂ ∂
= = − = −

∂ ∂ ∂
 (90) 

which leads to: 

 ( ) ( ) ( )
2 2 nn n

e e x∇ = −  (91) 

that will be replaced in equation 89 to obtain: 
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 ( ) ( ) ( ) ( )1 2n n nn
W W e xµ+ = +  (92) 

where ( ) ( ) ( ) ( )1 1

T

n n n n N
x x x x

− − +
 =   . 

 

 

Fig. 12. LMS Filter Structure 

Equation 92 is known as the LMS recursion and the summary of the LMS algorithm 
illustrated on figure 12 will be as follow: 

• Input 

• tap-weight vector, ( )nW  

• input vector, ( )nx  

• desired output, d(n)  

• Output 

• Filter output, y(n) 

• Tap-weight vector update, ( )1nW +  

1. Filtering: ( ) ( ) ( )
T

n nn
y W x=  

2. Error estimation: e(n) = d(n) - y(n)  

3. Tap-weight vector adaptation: ( ) ( ) ( ) ( )1 2n n nn
W W e xµ+ = +  

6. Classifying adaptive filtering applications 

Various applications of adaptive filtering differ in the manner in which the desired response 

is extracted. In this context, we may distinguish four basic classes of adaptive filtering 

applications (depicted in Figures 13 to 16, which follow): 

• Identification 

• Inverse Modeling 

• Prediction 

• Interference Cancelling  
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Adaptive Filtering Class Application 

Identification System Identification 
Layered Earth Modeling 

Inverse Modeling Predictive Convolution 
Adaptive Equalization 

Prediction Linear Prediction Coding 
Adaptive Differential PCM 
Auto Regressive Spectrum Analysis 
Signal Detection 

Interference Cancelling Adaptive Noise Cancelling 
Echo Cancellation 
Radar Polarimetry 
Adaptive Beam-forming 

Table 1. Adaptive Filtering Applications 

The following notations are used in Figures 11-15: 
u = input applied to the adaptive filter 
y = output of the adaptive filter 
d = desired response 
e = d – y = estimation error 
The functions of the four basic classes of adaptive filtering applications are summarized as 
follow: 

• Identification (Figure 13).  
The notion of a mathematical model is fundamental to sciences and engineering.  In the class 
of applications dealing with identification, an adaptive filter is used to provide a linear 
model that represents the best fit to an unknown plant. The plant and the adaptive filter are 
driven by the same input. The plant output supplies the desired responses for the adaptive 
filter. If the plant is dynamic in nature, the model will be time varying. 
 

 

Fig. 13. Identification 

• Inverse Modeling (Figure 14). 
In this second class of applications, the adaptive filter provides an inverse model 
representing the best fit to an unknown noisy plant. Ideally, the inverse model has a transfer 
function equal to the reciprocal of the plant’s transfer function. A delayed version of the 
plant input constitutes the desired response for the adaptive filter. In some applications, the 
plant input is used without delay as the desired response. 
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Fig. 14. Inverse Modeling 

• Prediction (Figure 15).  
In this example, the adaptive filter provides the best prediction of the present value of a 
random signal. The present value of the signal serves the purpose of a desired response for 
the adaptive filter. Past values of the signal supply the input applied to the adaptive filter. 
Depending on the application of interest, the adaptive filter output or the estimation error 
may service as the system output. In the first case, the system operates as a predictor; in the 
latter case, it operates as a prediction error filter. 
 

 

Fig. 15. Prediction 

• Interference Cancelling (Figure 16).  
In this final class of applications, the adaptive filter is used to cancel unknown interference 
contained in a primary signal, with the cancellation being optimized in some sense. The 
primary signal serves as the desired response for the adaptive filter. A reference signal is 
employed as the input to the adaptive filter. The reference signal is derived from a sensor or 
set of sensors located in relation to the sensor(s) supplying the primary signal in such a way 
that the information-bearing signal component is weak or essentially undetectable. 
 

 

Fig. 16. Interference Cancelling 
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7. Active noise suppressor ANC 

In this subsection we propose a new approach of noise control named ANS, where we 
propose stability-guaranteed algorithm for an adaptive filters, which can be derived on a 
basis of the strictly positive real property of the error model treated in adaptive system 
theory. It is important to assure the stability of the adaptive system especially in presence of 
unknown disturbances and mismatch in the order of the adaptive filter. Experimental 
results, performed on real mining noise, validate the effectiveness of the proposed stable 
algorithm [9]. 

7.1 Sounds and hearing 
When sound waves from a point source strike a plane wall, they produce reflected circular 
wave fronts as if there were an "image" of the sound source at the same distance on the other 
side of the wall. If something obstructs the direct sound from the source from reaching your 
ear, then it may sound as if the entire sound is coming from the position of the "image" 
behind the wall. This kind of sound imaging follows the same laws of reflection as your 
image in a plane mirror (figure 17). The reflection of sound follows the law "angle of 
incidence equals angle of reflection" as the light does and other waves or the bounce of a 
billiard ball off the bank of a table figure (18).  
 

 

Fig. 17. Point source of sound reflecting from a plane surface. 

 

 

Fig. 18. Wave reflection 
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The main item of note about sound reflections off of hard surfaces is the fact that they 
undergo a 180-degree phase change upon reflection. This can lead to resonance such as 
standing waves in rooms. It also means that the sound intensity near a hard surface is 
enhanced because the reflected wave adds to the incident wave, giving pressure amplitude 
that is twice as great in a thin "pressure zone" near the surface. This is used in pressure zone 
microphones to increase sensitivity. The doubling of pressure gives a 6-decibel increase in 
the signal picked up by the microphone figure (19). Since the reflected wave and the 
incident wave add to each other while moving in opposite directions, the appearance of 
propagation is lost and the resulting vibration is called a standing wave. The modes of 
vibration associated with resonance in extended objects like strings and air columns have 
characteristic patterns called standing waves. These standing wave modes arise from the 
combination of reflection and interference such that the reflected waves interfere 
constructively with the incident waves. An important part of the condition for this 
constructive interference is the fact that the waves change phase upon reflection from a fixed 
end. Under these conditions, the medium appears to vibrate in segments or regions and the 
fact that these vibrations are made up of traveling waves is not apparent - hence the term 
"standing wave" figure (19). 
 

 

Fig. 19. Resultant wave in pressure zone. 

Two traveling waves, which exist in the same medium, will interfere with each other figure 
(20). If their amplitudes add, the interference is said to be constructive interference, and 
destructive interference if they are "out of phase" and subtract figure (21). Patterns of 
destructive and constructive interference may lead to "dead spots" and "live spots" in 
auditorium acoustics. 
Interference of incident and reflected waves is essential to the production of resonant 
standing waves figure (22). 
 

 

Fig. 20. Interference of Sound 
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Fig. 21. Interference and Phase 

 

 

Fig. 22. The fundamental and second harmonic standing waves for a stretched string. 

The sound intensity from a point source of sound will obey the inverse square law if there 
are no reflections or reverberation figure (23). Any point source, which spreads its influence 
equally in all directions without a limit to its range, will obey the inverse square law. This 
comes from strictly geometrical considerations. The intensity of the influence at any given 
radius r is the source strength divided by the area of the sphere. Being strictly geometric in 
its origin, the inverse square law applies to diverse phenomena. Point sources of 
gravitational force, electric field, light, sound or radiation obey the inverse square law.  
 

 

Fig. 23. Inverse Square Law 
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A plot of this intensity drop shows that it drops off rapidly figure (24). A plot of the drop of 
sound intensity according to the inverse square law emphasizes the rapid loss associated 
with the inverse square law. In an auditorium, such a rapid loss is unacceptable. The 
reverberation in a good auditorium mitigates it. This plot shows the points connected by 
straight lines but the actual drop is a smooth curve between the points.  
 

 

Fig. 24. Inverse Square Law Plot 

Reverberation is the collection of reflected sounds from the surfaces in an enclosure like an 
auditorium. It is a desirable property of auditoriums to the extent that it helps to overcome 
the inverse square law drop-off of sound intensity in the enclosure. However, if it is 
excessive, it makes the sounds run together with loss of articulation - the sound becomes 
muddy, garbled figure (25). 
 

 

Fig. 25. Reverberant sound is the collection of all the reflected sounds in an auditorium. 

7.2 ANC 
In order to cancel unwanted noise, it is necessary to obtain an accurate estimate of the noise 
to be cancelled. In an open environment, where the noise source can be approximated as a 
point source, microphones can be spaced far apart as necessary and each will still receive a 
substantially similar estimate of the background noise. However in a confined environment 
containing reverberation noise caused by multiple sound reflections, the sound field is very 
complex and each point in the environment has a very different background noise signal. 
The further apart the microphones are, the more dissimilar the sound field. As a result, it is 
difficult to obtain an accurate estimate of the noise to be cancelled in a confined 
environment by using widely spaced microphones. 
The proposed model is embodied in a dual microphone noise suppression system in which 
the echo between the two microphones is substantially cancelled or suppressed. 
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Reverberations from one microphone to the other are cancelled by the use of first and 
second line echo cancellers. Each line echo canceller models the delay and transmission 
characteristics of the acoustic path between the first and second microphones Figure (26). 
 

 

Fig. 26. A pictorial representation of the sound field reaching an ear set in accordance with 
the proposed model intended to be worn in the human ear. 

If the two microphones are moved closer together, the second microphone should provide a 
better estimate of the noise to be cancelled in the first microphone. However, if the two 
microphones are placed very close together, each microphone will cause an additional echo 
to strike the other microphone. That is, the first microphone will act like a speaker (a sound 
source) transmitting an echo of the sound field striking the second microphone. Similarly, 
the second microphone will act like a speaker (a sound source) transmitting an echo of the 
sound field striking the first microphone. Therefore, the signal from the first microphone 
contains the sum of the background noise plus a reflection of the background noise, which 
results in a poorer estimate of the background noise to be cancelled figures (27) and (28). 
 

 

Fig. 27. Simplified model for one direction. 
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Fig. 28. Simplified model for the opposite direction. 

In a first embodiment, a noise suppression system in accordance with the proposed model 
acts as an ear protector, cancelling substantially all or most of the noise striking the dual 
microphones of the ear set figure (29). In a second embodiment, a noise suppression system 
in accordance with the present invention acts a noise suppression communication system, 
suppressing background noise while allowing communication signals to be heard by the 
wearer figures (30 and 31). 
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Fig. 29. A noise suppression System in accordance with a first embodiment of the proposed 
model. 
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Fig. 30. A noise suppression communications system in accordance with a second 
embodiment of the proposed model. 
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Fig. 31. An alternate scheme for a noise suppression communications system in accordance 
with a second embodiment of the proposed model. 

 

 

Fig. 32. Simulink block diagram of the proposed noise suppressor in figure 29. 

The conceptual key to this proposed model is that the signals received at two closely spaced 
microphones in a multi-path acoustic environment are each made up of a sum of echoes of 
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the signal received at the other one. This leads to the conclusion that the difference between 
the two microphone signals is a sum of echoes of the acoustic source in the environment. In 
the absence of a speech source, the ANS scheme proposed by Jaber first attempts to isolate 
the difference signal at each of the microphones by subtracting from it an adaptively 
predicted version of the other microphone signal. It then attempts to adaptively cancel the 
two difference signals. When speech is present (as detected by some type of VAD-based 
strategy), the adaptive cancellation stage has its adaptivity turned off (i.e. the impulse 
responses of the two FIR filters, one for each microphone, are unchanged for the duration of 
the speech). The effect here is that the adaptive canceller does not end up cancelling the 
speech signal contained in the difference between the two microphone signals. 
The Simulink implementation of the noise suppression system illustrated in figure 29 is 
displayed in figure 32 where figures 33 and 34 display the noise captured by Mic.1 and Mic. 
2 respectively, meanwhile figure 35 shows the filter output. 
 

 

Fig. 33. Noise Captured by Mic. 1. 

 

 

Fig. 34. Noise Captured By Mic. 2. 
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The Simulink implementation of the Active Noise Suppressor illustrated in Figure 30 with 
no Voice Activity Detection (VAD) attached is sketched in 36 and the taking off plane’s 
noise captured by Mic.1 and Mic. 2 are presented in figures 37 and 38 respectively 
meanwhile figure 39 shows the system output.  
 

 

Fig. 35. The Filtered Noise output. 

With an accurate front-point and end-point detection VAD algorithm [10] implemented  
in our proposed models illustrated in figures 30-31, an active noise suppressor is 
obtained. 
The simulation results have been obtained from 25 seconds of noisy voice conditions as 
shown in Fig. 40 at Mic. 1 and the clean speech of our output filter is shown in figure 41 
mean while figure 42 will illustrate the clean speech on a reduced scale [11]. 
 

 

Fig. 36. Simulink block diagram of the proposed noise suppressor in figure 30 
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Fig. 37. Taking off Airplane’s Noise Captured by Mic. 1. 

 

 

Fig. 38. Taking off Airplane’s Noise Captured by Mic. 2. 

 

 

Fig. 39. The system’s output 
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Fig. 40. Noisy speech captured by Mic 1. 
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Fig. 41. The clean speech obtained at the output of our proposed ANC (Fig. 30) by using a 
VAD. 
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Fig. 42. The clean speech obtained at the output of our proposed ANC (Fig. 30) by reducing 
the time scale 

8. The ultra high speed LMS algorithm implemented on parallel architecture 

There are many problems that require enormous computational capacity to solve, and 
therefore the success of computational science to accurately describe and model the real 
world has helped to fuel the ever increasing demand for cheap computing power. Scientists 
are eager to find ways to test the limits of theories, using high performance computing to 
allow them to simulate more realistic systems in greater detail. Parallel computing offers a 
way to address these problems in a cost effective manner. Parallel Computing deals with 
the development of programs where multiple concurrent processes cooperate in the 
fulfilment of a common task. Finally, in this section we will develop the theory of the 
parallel computation of the widely used algorithms named the least-mean-square (LMS) 

algorithm1 by its originators, Widrow and Hoff (1960) [2]. 

8.1 The spatial radix-r factorization 

This section will be devoted in proving that discrete signals could be decomposed into r 
partial signals and whose statistical properties remain invariant therefore, given a discrete 

signal xn of size N 

 ( )0 1 2 1
    

n N
x x x x x

−
 =    (93) 

and the identity matrix Ir of size r 

 ( ),

1 0 ... 0

0 1 ... 0 1     

... ... ... ... 0    

0 0 ... 1

r l c

for l c
I I

elsewhere

 
  =   = = =     
 

    (94) 

for l = c = 0, 1, ..., r – 1. 

Based on what was proposed in [2]-[9]; we can conclude that for any given discrete signal 

x(n) we can write: 

                                                 
1 M Jaber “Method and apparatus for enhancing processing speed for performing a least mean square 
operation by parallel processing” US patent No. 7,533,140, 2009 
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( ) ( ) ( ) ( ) ( ), 1,

   
l n rn rn rn pl c

x I x x x
+ +

   = ×    
   (95) 

is the product of the identity matrix of size r by r sets of vectors of size N/r (n = 0,1, .., N/r -1) 

where the lth element of the nth product is stored into the memory address location given by 

 l = (rn + p) (96) 

for p = 0, 1, …, r – 1. 

The mean (or Expected value) of xn is given as: 

 [ ]
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which could be factorizes as: 
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  (98) 

therefore, the mean of the signal xn is equal to sum of the means of its r partial signals 

divided by r for p = 0, 1, …, r – 1. 

Similarly to the mean, the variance of the signal xn equal to sum of the variances of its r 

partial signals according to: 
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8.2 The parallel implementation of the least squares method 
The method of least squares assumes that the best-fit curve of a given type is the curve that 
has the minimal sum of the deviations squared (least square error) from a given set of data. 
Suppose that the N data points are (x0, y0), (x1, y1)… (x(n – 1), y(n – 1)), where x is the 
independent variable and y is the dependent variable. The fitting curve d has the deviation 
(error) σ from each data point, i.e., σ0 = d0 – y0, σ1 = d1 – y1... σ(n – 1) = d(n – 1) – d(n – 1) which 
could be re-ordered as: 

 
( ) ( ) ( ) ( )( ) ( )( ) ( )( )

0 0 0 2 2 2

1 1 1 1 1 1 1 1 1

, , ,...,

, ,..., ,...,
r r r r r r

rn rn rn rn rn rn rn r rn r rn r

d y d y d y

d y d y d y d y

σ σ σ

σ σ σ σ
+ + + + − + − + −

= − = − = −

= − = − = − = −
  (100) 

for n = 0, 1, …, (N/r) – 1. 

www.intechopen.com



The Ultra High Speed LMS Algorithm Implemented on  
Parallel Architecture Suitable for Multidimensional Adaptive Filtering 

 

81 

According to the method of least squares, the best fitting curve has the property that: 
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   (101) 

The parallel implementation of the least squares for the linear case could be expressed  

as: 
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   (102) 

for j0 = 1, …, r – 1 and in order to pick the line which best fits the data, we need a criterion to 

determine which linear estimator is the “best”. The sum of square errors (also called the 

mean square error (MSE)) is a widely utilized performance criterion. 
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which yields after simplification to: 
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   (104) 

where 
0

j

J  is the partial MSE applied on the subdivided data. 

Our goal is to minimize J analytically, which according to Gauss can be done by taking its 

partial derivative with respect to the unknowns and equating the resulting equations to 

zero: 

 
0

0

J

b
J

w

∂
= ∂


∂ =
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 (105) 

which yields: 
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With the same reasoning as above the MSE could be obtained for multiple variables by: 
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 (107) 

for j0 = 1, …, r – 1 and where 
0

j

J  is the partial MSE applied on the subdivided data. 

The solution to the extreme (minimum) of this equation can be found in exactly the same 

way as before, that is, by taking the derivatives of 
0

j

J with respect to the unknowns (wk), and 

equating the result to zero. 
Instead of solving equations 106 and 107 analytically, a gradient adaptive system can be 
used which is done by estimating the derivative using the difference operator. This 
estimation is given by: 

 
w

J
J

w

δ

δ
∇ =  (108) 

where in this case the bias b is set to zero. 

8.3 Search of the performance surface with steepest descent 
The method of steepest descent (also known as the gradient method) is the simplest example 
of a gradient based method for minimizing a function of several variables [12]. In this section we 
will be elaborating the linear case. 
Since the performance surface for the linear case implemented in parallel, are r paraboloids 
each of which has a single minimum, an alternate procedure to find the best value of the 

coefficient 
( )0j k

w  is to search in parallel the performance surface instead of computing the 

best coefficient analytically by Eq. 106. The search for the minimum of a function can be 
done efficiently using a broad class of methods that use gradient information. The gradient has 
two main advantages for search.  

• The gradient can be computed locally.  

• The gradient always points in the direction of maximum change.  
If the goal is to reach the minimum in each parallel segment, the search must be in the 
direction opposite to the gradient. So, the overall method of search can be stated in the 
following way:  
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Start the search with an arbitrary initial weight
( )0 0jw , where the iteration is denoted by the 

index in parenthesis (Fig 43). Then compute the gradient of the performance surface at
( )0 0jw , 

and modify the initial weight proportionally to the negative of the gradient at
( )0 0j

w . This 

changes the operating point to
( )0 1jw . Then compute the gradient at the new position

( )0 1jw , 

and apply the same procedure again, i.e.  

 
( ) ( ) ( )0 0 01

j j j
k k k

w w Jη
+

= − ∇  (109) 

where η is a small constant and 
( )0

j

k

J∇  denotes the gradient of the performance surface at the 

kth iteration of j0 parallel segment. η is used to maintain stability in the search by ensuring 
that the operating point does not move too far along the performance surface. This search 
procedure is called the steepest descent method (fig 43) 
 

 

Fig. 43. The search using the gradient information [13]. 

If one traces the path of the weights from iteration to iteration, intuitively we see that if the 
constant η is small, eventually the best value for the coefficient w* will be found. Whenever 
w>w*, we decrease w, and whenever w<w*, we increase w. 

8.4 The radix- r parallel LMS algorithm 
Based on what was proposed in [2] by using the instantaneous value of the gradient as the 
estimator for the true quantity which means by dropping the summation in equation 104 and 
then taking the derivative with respect to w yields: 
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What this equation tells us is that an instantaneous estimate of the gradient is simply the product 
of the input to the weight times the error at iteration k. This means that with one multiplication 
per weight the gradient can be estimated. This is the gradient estimate that leads to the 
famous Least Means Square (LMS) algorithm (Fig 44). 
If the estimator of Eq.110 is substituted in Eq.109, the steepest descent equation becomes 
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1
r rj j j rn j rn j
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I w I w e x
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+ +
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× × +=  (111) 

for j0 = 0,1, …, r -1. 
This equation is the r Parallel LMS algorithm, which is used as predictive filter, is illustrated 
in Figure 45. The small constant η is called the step size or the learning rate. 
 

 

Fig. 44. LMS Filter 

 

 

Fig. 45. r Parallel LMS Algorithm Used in Predictive Filter. 
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8.5 Simulation results 
The notion of a mathematical model is fundamental to sciences and engineering. In class 
of applications dealing with identification, an adaptive filter is used is used to provide a 
linear model that represents the best fit (in some sense) to an unknown signal. The LMS 
Algorithm which is widely used is an extremely simple and elegant algorithm that is able 
to minimize the external cost function by using local information available to the system 
parameters. Due to its computational burden and in order to speed up the process, this 
paper has presented an efficient way to compute the LMS algorithm in parallel where it 
follows from the simulation results that the stability of our models relies on the stability of 
our r parallel adaptive filters. It follows from figures 47 and 48 that the stability of r 
parallel LMS filters (in this case r = 2) has been achieved and the convergence 
performance of the overall model is illustrated in figure 49. The complexity of the 
proposed method will be reduced by a factor of r in comparison to the direct method 
illustrated in figure 46. Furthermore, the simulation result of the channel equalization is 
illustrated in figure 50 in which the blue curves represents our parallel implementation (2 
LMS implemented in parallel) compared to the conventional method where the curve is in 
a red colour. 
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Fig. 46. Simulation Result of the original signal 
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Fig. 47. Simulation Result of the first partial LMS Algorithm. 
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Fig. 48. Simulation Result of the second partial LMS Algorithm. 
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Fig. 49. Simulation Result of the Overall System. 
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Fig. 50. Simulation Result of the channel equalization (blue curve two LMS implemented in 
Parallel red curve one LMS). 
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