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1. Introduction 

Alpha-1-antitrypsin (AAT) deficiency was first described in 1963 by Laurell and Eriksson 
(Laurell & Eriksson, 1963). They reported an absence of the alpha-1-band in electrophoresis. 
Alpha -1 -antitrypsin deficiency is one of the most common lethal hereditary disorder of 
Caucasians of European descent. Alpha -1- antitrypsin also known as α-1-proteinase 
inhibitor is an archetypal member of the serine proteinase inhibitors, ”serpins”. The function 
of alpha -1- antitrypsin is to protect the lower respiratory tract of lungs from proteolytic 
attack by neutrophil elastase (NE) (Carrell et al., 1982; Brantly et al., 1988). The low 
circulating levels of AAT expose the lungs to uncontrolled proteolytic attack  and 
predispose the Z homozygous to early-onset panlobular emphysema (Brantly  et al., 1988) 
and liver diseases (Sharp et al., 1969; Sveger, 1976; Eriksson et al., 1986). AAT is synthesized 
primarily by hepatocytes (Koj et al., 1978; Eriksson et al., 1978) and also by other cells such 
as monocytes, macrophages, breast carcinoma cells and cornea (Boskovic & Twing, 1998; 
Geboes et al., 1982; Perlmutter et al., 1985; Ray et al., 1977). In addition, there is a local 
production of AAT within the lungs by alveolar macrophages and epithelial cells. AAT is 
present in the plasma at concentrations of 190-280 mg/dl. AAT is a single chain 
glycoprotein of molecular weight 52kDa containing 394 amino acid residues with the active 
site residue methionine located at amino acid position 358. AAT also contains three 
oligosaccharide chains linked to Asn 46, Asn83 and Asn247 respectively. AAT is encoded at 
the PI locus on chromosome 14 (14q24.3-q32.1) (Cox, 1982, 1985; Schroeder et al., 1985). The 
PI locus is 12.2 kb in length with 4 coding exons (II, III, IV, and V), 3 noncoding exons (IA, 
IB, IC) and 6 introns; the region coding for the reactive site loop is located in exon V. AAT 
shows co-dominant pattern of inheritance (Eriksson, 1965). Accumulating evidence shows 
that AAT may also exhibit anti-inflammatory activities independent of its protease inhibitor 
function (Dabbagh et al., 2001; Jeannin et al., 1998; Ikari et al., 2001; Weiss et al., 1993; 
Bucurenci et al., 1992). For example AAT has been shown to stimulate fibroblast 
proliferation and procollagen synthesis (Dabbagh et al., 2001) and up-regulate human B cell 
differentiation into IgE-and IgG4-secreting cells (Jeannin et al., 1998). AAT also inhibits 
neutrophil superoxide production (Bucurenci et al., 1992), induces the release of 
macrophage derived interleukin-1 receptor antagonist (Churg et al., 2001) and reduces 
bacterial endotoxin and TNFα  lethal effect in vivo (Jie et al., 2003; Libert et al., 1996). AAT 
also increases the expression of cytokine IL-10 (Janciauskiene et al., 2007). A novel finding 
indicates that AAT protects the insulin secreting β-cells of pancreas from apoptosis (Zhang 
et al.,2007). 
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AAT consists of three β sheets (A-C) , nine helices (A-I) and a mobile reactive site loop that 
presents the peptide sequence as a pseudosubstrate for target proteinase (Elliott et al., 1996a, 
1998, 2000; Ryu  et al., 1996; Kim  et al., 2001). The active site, Met 358-Ser359, acts as a bait 
for neutrophil elastase (Johnson & Travis, 1978). After docking, the serine proteinase cleaves 
the P1-P1’(Met 358-Ser359) of AAT (Wilczynska et al., 1995) and the proteinase is then 
inactivated by mousetrap action that swings it from upper to lower pole of the inhibitor in 

association with the insertion of reactive site loop as an extra strand (s4A) in β-sheet A 
(Wilczynska et al., 1997; Stratikos & Gettins, 1997, 1998,1999; Huntington et al., 2000). This 
process is accompanied by loss of secondary structure in the serine proteinase and also 
dramatic rearrangements of the active site. Distortion around the active site of proteinase 
moves the loop containing the catalytic serine 6A° away from the catalytic histidine residue 
and thereby disrupts the oxyanion hole (Huntington et al., 2000). These effects results in the 
inhibition of deacylation reaction. However, after a very long period of time the inhibitory 
complex breaks down and the active proteinase is released from the complex (Plotnick et al., 
2002). 
AAT is a highly pleomorphic gene with approximately 125 single nucleotide 
polymorphisms (SNPs) (Wood & Stockley, 2007) in which a proportion of variants show 
altered AAT levels or function. These polymorphic variants occur due to amino acid 
substitutions/deletions which results in charge differences. Based on charge differences, 
these variants have been identified by isoelectric focusing in the pH range of 4.0-5.0. The 
most anodal variant is termed as “B” and the most cathodal variant as “Z” (Brantly, 1992; 
Cox, 2001). The normal variants migrate in the middle region in an isoelectric focusing; 

hence they are termed as “M”. Although, approximately 50 normal ΑAT variants have been 
described (Boskovic & Twing, 1998) of these only four normal variants namely M1(Val213), 
M1(Ala213), M2 and M3 are relatively common with an allelic frequencies among 
Europeans of Northern European descent of greater than 95% (Kueppers & Christopherson , 
1992; Dykes et al.,1984 ). The M1 (Val213) allele is the most common (allelic frequency 44%-
49%) followed by M1 (Ala213) (20%-23%), M2 (14-19%) and M3 (10%-11%) (Kueppers & 
Christopherson, 1992; Dykes et al., 1984; Nukiwa et al., 1987a). The phylogenetic tree of four 
of these variants shows that M3 variant is an ancestral protein (Salahuddin, 2010). Variants 
may also be classified based upon their effect on AAT levels and function. These are normal, 
deficient, null (nil detectable) or dysfunctional. Deficient variants are susceptible to lungs or 
liver diseases, whilst null alleles show only lungs diseases. Dysfunctional alleles which 
while present at a detectable level do not function normally such as the F variant. The 
majority of clinical diseases of AAT occur due to deficiency and null alleles. 
Since AAT molecule has a Met358 residue at its active site, therefore it is readily oxidized by 

cigarette smoke and thereby resulting in recruitment of inflammatory cells to the lungs. 

Oxidation of Met358 causes in decrease in association rate constant of AAT for NE by more 

than 1,000-fold (Travis, 1988).Therefore, cigarette smoking in Z homozygous patients 

renders an already poorly defended lungs completely defenseless. One unanswered 

question relating to the pathogenesis of the emphysema is variation in the extent of the 

disease in individuals matched by age, AAT serum levels, AAT phenotype, and smoking 

history. This possibly occurred due to variations in the genetic expression of the NE gene. 

The Z variant is a more common deficiency variant in Northern Europe whereas S variant is 
more common in South-West Europe.  In Z AAT deficiency variant there is a single base 
substitution (GAG →AAG) in the codon for residue 342. This causes in amino acid 
substitution of Glu342 by Lys342 (Jeppsson, 1976). In native state the Glu 342 forms salt 
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bridge with Lys 290. This salt bridge maintains stable closure of β-sheet A. Mutation of Glu 

342 to Lys342 disrupts the structure of β-sheet A. Thus, the β-sheet A undergoes expansion 

and easily accepts reactive site loop of neighbouring AAT molecule as β-strand and 
consequently polymers of Z AAT are formed. These polymers tangle in the endoplasmic 
reticulum of the liver to form inclusion bodies (Lomas et al., 1992; Skinner et al., 1998). The 
accumulated polymerized protein is retained in the periportal cells of the liver as diastase-
resistant periodicacid/ schiff positive inclusions. The polymerized insoluble protein present 
in the endoplasmic reticulum of hepatocytes eventually causes neonatal hepatitis, juvenile 
cirrhosis and hepatocellular carcinoma (Geboes et al., 1982; Perlmutter et al., 1985; Ray et al., 
1977). Owing to the polymerization in the ER of hepatocytes, the AAT is not secreted into 
the blood stream therefore the levels of circulating AAT in plasma decrease   to <11 μM or 
<570 μg/ml and are unable to protect the lungs from proteolytic degradation. Thus, Z AAT 
homozygous is predisposed to develop early onset panlobular emphysema (Boskovic & 
Twing, 1998). Only a subset of patients with AAT deficiency experience liver disease.  In 
these patients a cascade of aberrant signals are also triggered within the hepatocyte, most 
likely due to the result of an unfolded protein response.  However, the downstream details 
remain unclear. The mode of polymerization seen in ZAAT also underlies the Mmalton 
(52Phe deleted) (Matsunaga et al., 1990) and Siiyama (Ser53Phe) variants of AAT (Seyama et 
al., 1991, 1995; Lomas et al., 1993).The S variant (Glu264Val) shows a slower rate of polymer 

formation because the structural changes in β -sheet A are not substantial (Elliott et al., 
1996b; Mahadeva et al., 1999) resulting in a milder form of serum deficiency with no clinical 
consequences. If an individual has the genotype PiSZ, then their clinical phenotype for liver 
disease (Mahadeva et al., 1999) and lung disease in smokers (Turino et al., 1996) is 
intermediate between that of PiZ and PiS subjects. There are many null-allelic variants of 
AAT that are absent in plasma, and are termed as QO rather than Pi. In QOgranite falls 
genotype there is deletion of a single base pair that leads to the premature stop codon and 
unstable mRNA (Nukiwa et al., 1987b). Likewise there is deletion of 2 bp in exon IV in 
QOhong kong causing in a premature stop codon, and unstable mRNA hence a truncated 
protein (Sifers  et al., 1988). Thus, both QO granite falls and QO hong kong show 
accumulation in the endoplasmic reticulum of the liver resulting in plasma deficiency. 
Similarly, an amino acid substitution at the active site (Met358Arg), in dysfunctional 
Pittsburgh AAT results in reduced neutrophil elastase inhibitory activity as well as 
inhibition of factor IXa, kallikrein and factor XIIf (Scott et al., 1986) 
Gene therapy is a therapeutic strategy in which genetic material, in the form of cDNA 
/RNA is transferred to an individual to correct a hereditary disorder or to treat and/or 
prevent an acquired disease (Anderson, 1992; Miller,1992; Crystal,1992; Mulligan, 1993). 
Gene therapy depends upon vectors for carrying normal gene. These vectors integrate with 
host genome and all cells resulting from cell division of the host cell will contain the copy of 
the correct gene in place of the defective one. Gene therapy can be classified into three 
distinct classes: 1) gene addition also known as gene replacement, ii) gene reprogramming 
and iii) gene repair. Gene addition is currently the most popular technique which is 
clinically tested. Gene addition is used for curing diseases that occur due to loss-of-function 
mutations. This technique involves delivery of a corrected copy of the defective gene 
without removal of the endogenous mutated gene. Advantages of gene addition lie in its 
simplicity, whereas a disadvantage is lack of regulated gene expression in some cases. For a 
less complex diseases, gene replacement strategies are most suitable. However, for more 
complex diseases in which the gene product requires regulated gene expression, gene 
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reprograming is more appropriate. The gene reprogramming approach involves inhibition 
of the expression of mutated gene by modification of messenger RNA (mRNA). Although, 
this approach also expresses an additional genetic material within cells, the net result is 
correction (or reprogramming) of endogenous mutant gene. This is in contrast to the 
expression of additional intact functional gene in gene addition technique. A disadvantage 
of this technique is inefficient nature of the reprogramming. The third approach namely, 
gene repair is a more developed technique than gene addition or reprogramming 
approaches. This technique in contrast to gene addition involves correction of mutant 
sequences at the genomic DNA level but is limited owing to its low efficiency. There are 
various types of viral and non-viral vectors. The examples of some viral vectors are 
retroviruses, adenoviruses and adeno-associated viruses (AAVs) and examples of non-viral 
vectors is liposomal vector and other means by which it is transported into the cell are 
naked DNA injection and gold-particle bombardment. 
For the treatment of patients with AAT deficiency with impaired lungs function is weekly 
infusion of AAT protein derived from human plasma (Heresi & Stoller, 2008). However, this 
method has several disadvantages like high cost, inconvenient route of administration, risks 
of blood borne diseases and time-consuming nature of the therapy thus provide an impetus 
to develop alternative treatment modalities such as gene therapy. Indeed a phase I AAT 
gene therapy clinical trial has been approved at the University Of Florida College Of 
Medicine, Gainesville, Florida, USA. The trial involves intramuscular injection of AAT gene 
using a recombinant adeno-associated virus (rAAV) vector and thus provides stable plasma 
levels (Song et al., 2002). In view of above, in this chapter I have discussed about viral and 
non-viral vectors in gene therapy, their advantages and disadvantages and their 
applications in alpha-1-antitrypsin deficiency diseases. 

2. Viral vectors for gene therapy 

2.1 Retroviruses 

Retroviruses (Retroviridae) are enveloped single stranded RNA viruses that have been 
widely used in gene transfer technique. The retrovirus is reverse transcribed from single-
stranded RNA genome into a double stranded DNA, which can integrate into host 
chromosomes (Fields & Knipe, 1986). The retrovirus genome contains three open reading 
frames that encode for group specific antigens (gag) that codes for core and structural 
proteins of virus, similarly, polymerase (pol) codes for reverse transcriptase, protease and 
integrase, and envelope (env) codes for retroviral coat proteins. All of the retroviral 
genomes have packaging signal Ψ and cis acting sequences known as long terminal repeat 
(LTR) present at each ends. These LTR and neighboring sequences act in cis during viral 
gene expression, and packaging, retro-transcription and integration of the genome (Figure 
1). The common example of retroviral vector is Moloney Murine Leukaemia Virus (Mo-
MLV). This virus has varying cellular tropisms depending upon the receptor binding 
domain of envelope glycoprotein. Retroviral vectors upon binding to the host cell receptor 
undergo conformational changes within envelope glycoprotein leading to their fusion with 
the host cell membrane and thereby release capsid core into the cytoplasm. Once inside the 
cytoplasm the single stranded RNA genome is reverse transcribed into double stranded 
DNA proviral genome by an enzyme reverse transcriptase. The proviral genome 
subsequently forms a preintegration complex with the viral integrase and thereby it is 
transported to the nuclear membrane. The pre-integration complex enters the nucleus 
during mitosis as nuclear membrane is disrupted (Roe et al., 1993). 
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Fig. 1. Structure of retroviral and retroviral gene transfer and production. The gag, pol and 
env genes required for viral production are integrated into the packaging cells genome. The 
vector provides the viral packaging signal, commonly denoted Ψ, and a  target gene 
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After entering the nucleus, the viral integrase randomly integrates the proviral genome into 

the host chromosomal genome and consequently the viral genes are expressed by host 

replication machinery. Retroviral vectors are created by removal of the operon like retroviral 

gag, pol and env genes. These genes are replaced by therapeutic gene of interest (Figure.1). 

Up to eight kb of exogenous DNA can be inserted and expressed in place of the viral gene. 

The LTRs and Ψ sequence are the only viral sequences that are present in vector, and thus 

this vector is insufficient to express the viral proteins.  To express the viral proteins, it is 

necessary to supply the viral genes gag, pol and env in trans (Figure. 1). This can be achieved 

by creating packaging cell lines that express these genes. Removal of gag, pol and env genes 

in vivo reduce immune responses against the virus. The tropism of retroviruses can be 

modified by removing the native envelope protein and providing an alternative envelope 

glycoprotein in trans during virus production. This process is known as pseudotyping of 

virus. The pseudotyping of retrovirus thus provides broader tropism and enhanced stability 

upon concentration (Kang et al., 2002; Stein, et al., 2005; Wong et al., 2004). One problem 

encountered in gene therapy using retroviruses is that the integrase enzyme can insert 

genetic material of the virus at random position in the genome of the host. If genetic 

material is inserted in the middle of gene of the host cell, this gene will be disrupted causing 

insertional mutagenesis. If the gene is inserted during regulation of cell division, an 

uncontrolled division may occur like cancer or inactivation of tumour supressor gene. This 

problem has recently been solved by using zinc finger nucleases  (Durai et al., 2005) or by 

including certain sequences such as the beta-globin locus control region to direct integration 

to specific chromosomal sites. Other disadvantages include limited insert capacity (8kb), low 

titer, their inactivation by human complement factor and their inability to transduce non-

dividing cell. Their advantages are : ability to transduce dividing cell, inability to express 

viral proteins that could be immunogenic and their ability to achieve long term transgene 

expression.  

2.2 Adenoviruses 

Adenoviruses are medium-sized (90-100nm) non-enveloped icosahederal viruses composed 

of nucleocapsid and double-stranded linear DNA (Fields & Knipe, 1986).  There are over 51 

different serotypes in humans, which are responsible for 5-10% of upper respiratory 

infection in children and several types of infections in adult as well. They efficiently infect 

and express their genes in wide variety of cell types including dividing and non-dividing 

cell. The adenovirus has inverted terminal repeat (ITR) (Figure. 2) sequence at its both ends, 

and the gene transcript can be divided into two distinct phases: early genes (E) expressed 

before the onset of viral DNA replication and late genes (L) expressed after the onset of viral 

replication. One of the essential proteins in the viral replication process is the E1A gene 

product. The E1A is the first gene to be expressed after infection and has a keyrole as 

transactivator of all other adenoviral genes. Viral infection is mediated through binding of 

fiber knob protein of the virus to the primary Coxsackie-Adenovirus Receptors (CAR) 

(Bergelson et al., 1997) present on the cell surfaces.  This is followed by interaction between 

the cell surface integrins alpha v beta 3 and alpha v beta 5 and virion penton base (Wickham 

et al., 1993). Consequently, the adenovirion is endocytosed through clathrin-coated pit into 

an endosome. After this the pH of endosome decreases leading to conformational changes in 

varion capsid proteins which culminate in the release of viral capsid into the cytoplasm.  
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The viral capsid translocates from cytoplasm to nucleus of cell where viral genome is 

released and undergoes replication and transcription as an extrachromosomal element 

(Figure 2). Adenoviruses infects a variety of quiescent and proliferating cells in different 

species and can mediate normal gene expression. The transgene expression is mostly 

transient due to host immune responses (Yang et al., 1996; Stein et al., 1998). The adenoviral 

vectors have been shown to give therapeutic levels of human alpha-1-antitrypsin (Kay et al., 

1995). 

First generation recombinant adenovirus vectors (rADs) are generally derived from the 

human adenovirus serotypes 2 and 5 and these vectors are rendered replication-defective 

through deletion of the E1-region. Large foreign DNA is inserted in place of E1 deleted 

region of adenoviral genome (Figure.2 ). These rADs are propagated in cell line expressing 

E1 segment (Figure 2). For insertion of larger transgenes, first generation rADs may also 

carry deletions in the E3 region (Bett et al. , 1994).  Several such cell lines like HEK 

293(Graham et al.,1977) and 911(Falloux et al., 1996) have been developed that are cable to 

propagating replication defective rADs vector. 

Recently, new varieties of rADs vectors have been developed that are less immunogenic 

than first generation rADs vectors. These vectors lack or are defective in the E2, E3 or E4 

regions and can be propagated in trans-complementing cell lines (Englehardt et al., 1994a, b; 

Yang et al .,1994; Brough et al., 1996).Additionally, there are vectors called gutless vectors 

that are devoid of all viral genes and contain only ITR and packaging signal of wild type 

virus. These gutless vectors can carry up to 35kb of foreign DNA (Kochanek et al., 1996; 

Parks et al., 1996; Schneider et al., 1998). In order to propagate, these gutless vectors need 

helper virus containing all genes for virus assembly in trans (Parks et al., 1996). Gutless 

adenoviruses have been shown to give rise to sustain transgene expression compared to first 

generation adenoviruses (Morsy et al., 1998).  

2.3 Adeno-associated viruses 

Adeno-associated Viruses (AAVs) belong to the family Parvoviridae. AAVs are small 
single-stranded DNA genome containing inverted terminal repeats (ITRs) at both ends of 
the DNA strands and contains two open reading frames (ORFs): rep and cap. The rep is 
composed of four overlapping genes encoding rep proteins required for the AAV life 
cycle and the cap contains overlapping nucleotide sequences of capsid proteins namely 
VP1, VP2 and VP3. These capsid proteins interact together to form a capsid of 
icosahederal symmetry. The ITRs are the only cis acting elements required for efficient 
encapsidation and integration of the viral genome into the genome of the host cells 
(Samulski et al., 1989). The wild-type AAV is non-pathogenic. AAVs infects broad host 
range. The AAVs genome integrates into specific locus on human chromosome 19 (Kotin 
& Berns, 1989). The AAV vectors can transduce both mitototic and post mitototic cells 
(Summerford & Samulski, 1998; Summerford et al., 1999). The AAV does not integrate 
into the genome rather it transduces cells and expresses the transgene as an episome. 
Disadvantages of AAV vector is that it is unable to replicate unless sequences are 
provided in trans by a helper virus such as adenovirus and HSV. Other disadvantage of 
this vector is limited packaging capacity for transgene (4.7 kb). These adenovirus 
(Schiedner  et al., 1998; Morral, et al., 1998)  and rAAV vectors have been shown to 
achieve stable levels of alpha-1-antitrypsin greater than  800 μg/ml. 
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Fig. 2. Structure of adenoviral vector and principle of adenovirus production. Adenovirus 
vectors are based on serotypes 2 and 5. Therapeutic genes are placed into the deleted E1 
region of the viral genome, driven by internal promoters. The function of E1 for production 
of viral particles is provided by the complementing cell line expressing E1.  
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3. Non-viral vectors for gene therapy  

Non-viral vectors for gene delivery has several advantages over viral vectors. Viruses cause 
an immune response that can make repeated administrations ineffective. Non-viral vectors 
on the other hand do not elicit a specific immune response. Non-viral vectors do not 
randomly integrate DNA into the genomic DNA of the host. Nonviral vectors can also carry 
more DNA than viral vectors, allowing the delivery of larger genes. In addition, nonviral 
vectors are easier and less expensive to manufacture. Moreover, vector like plasmids are 
non-pathogenic and therefore they carry less risk to harm than most viral vectors. 
Disadvantage of using nonviral vectors for gene therapy are its low efficiency of transgene 
expression and short duration of expression. Non-viral vectors can be divided into two 
distinct categories: physical and chemical. Physical methods involve forcing the plasmid 
into cells through electroporation, sonoporation, or particle bombardment. Chemical 
methods employ lipids, polymers, or proteins that will complex with DNA, condensing it 
into particles and directing it to the cells. Many types of DNA deliveries have been 
proposed. They are i) naked DNA ii) cationic lipids iii) cationic polymers. 

3.1 Naked DNA 

Naked DNA (in the form of a plasmid) can be transferred by directly injecting into muscle cells 
(Wolff et al., 1990).Though, it is not very efficient, but can result in prolonged low level 
expression in vivo. The simplicity of this method and sustained expression has led to the 
development of DNA vaccines. Several approaches have been developed to enhance the 
efficiency of gene transfer via naked DNA including gene gun (Yang et al., 1990) and 
electroporation (Rols et al., 1998). These physical approaches allow DNA to directly penetrate 
cell membrane and bypass endosome/lysosome, thus avoiding enzymatic degradation. 
Further, it has been reported that intramuscular injection of plasmid DNA followed by 
electroporation results in an impressive level of gene expression (Rizzuto et al., 1999). 

3.2 Cationic lipids 

Gene transfer can be achieved either by direct intratissue injection of naked plasmid DNA or 
by intratracheal and intravenous injection which generally requires the use of a delivery 
vector or vehicle. Various types of synthetic vectors have been developed for gene transfer. 
Among these, cationic lipid- and polymer-based systems have been the most extensively 
studied. Cationic lipids are amphiphilic molecules consisting of hydrophilic and 
hydrophobic regions, i.e., a (charged) cationic (amine) headgroup, attached via a linker (for 
example glycerol) to a hydrophobic double hydrocarbon chain or a cholesterol derivative. 
Positively charge head group of cationic lipids and cationic polymers form complexes with 
negatively charged phosphate backbone of DNA through electrostatic interactions thereby it 
spontaneously form compact structures called lipoplexes. The cationic lipid-DNA 
complexes are protected from extracellular or intracellular nucleases. Furthermore, positive 
charges of lipolexes, tend to electrostatically interact with the negatively charged molecules 
of the cell membrane. This may facilitate their cellular uptake. Transfection efficiency of 
cationic lipids depend on the structure of cationic lipids (the geometric shape, the number of 
charged groups per molecules, the nature of lipid anchor, and linker bondages), the charge 
ratio used to form DNA–lipid complexes, the size of DNA, conformation of DNA and the 
properties of the colipid (Wasungu & Hoekstra, 2006). These colipids are mostly cholesterol 
and dioleoylphosphatidylethanolamine (DOPE). The role of these colipids in cationic 
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liposome-mediated gene transfer depends upon the structure of cationic lipid. Some cationic 
lipids require DOPE for a normal level of transfection, while other cationic lipids like double 
fatty chains are capable of forming bilayer or micellar structures that do not depend upon 
helper lipid for transfection. Most cationic lipids are more or less toxic to cells, and inclusion 
of colipid DOPE reduce the charge ratio thereby reducing toxicity. 

3.3 Cationic polymers 

Cationic polymers have also been extensively used for gene transfer. When cationic 
polymers are mixed with DNA, they form nanosized complexes that are known as 
polyplexes. These polyplexes are more stable than lipoplexes. Among cationic polymers, PEI 
is most effective polymer used for transfection. PEI was first used in gene transfer in 1995 
(Boussif et al., 1995). These PEI exist as either linear or branched polymer. PEI contains high 
content of amine groups most of which are nonprotonated at the physiological pH. These 
nonprotonated amines exert buffering effect, which effectively stop the acidification of the 
endosomal pH by neutralizing the protons that are pumped by membrane transporter, 
ATPase (Akinc et al., 2005; Yamashiro et al., 1983). This eventually leads to influx of chloride 
counter ions within the compartment and thereby osmotic pressure develops that causes the 
swelling and breakdown of the endosomal membrane. Transfection capacity and toxic 
nature of PEI depends on its molecular weight (MW), configuration, and the charge ratio of 
polymer to DNA used. Several studies have demonstrated that high molecular weight PEI 
(greater than 25,000 Da) is toxic and less efficient in transfection while polymers prepared 
from medium to low MW (5,000–25,000 Da) are less toxic and more efficient in transfection 
(Fischer et al., 1999). Besides this, branched  PEI shows high toxicity and low transfection 
efficiency compared to polyplexes prepared from linear chain of PEI (Wightman et al., 2001).  

4. Gene therapy applications in alpha-1 -antitrypsin deficiency diseases 

The deficiency of AAT in plasma causes reduced protection against neutrophil elastase in 
lungs, this eventually leads to emphysema. A logical approach to treat this disease is to raise 
the levels of AAT in plasma to above 11µM (570–800 μg/mL; 57–80 mg/dL). One specific 
treatment for AAT deficiency available at present is augmentation therapy which involves 
administration of plasma purified AAT intravenously. According to Hubbard and Crystal 
(1990), approximately only 2–3% of the infused AAT actually reach the lungs. Therefore, 
alternative routes of administration, such as inhalation of nebulized AAT powder or 
aerosolized AAT solution (Hubbard et al., 1989; Hubbard & Crystal, 1990; Sandhaus, 2004; 
Taylor & Gumbleton, 2004), provided the protection against lungs diseases. However, for 
treating lungs and liver diseases alternative therapy namely gene therapy provides long term 
solution (Flotte, 2002; Stecenko & Brigham, 2003; Sandhaus, 2004). Several vectors containing 
cDNA of AAT have been constructed for treating AAT deficiency diseases. These vectors are 
retroviral (Kay et al., 1992), adenoviral (Jaffe et al., 1992; Rosenfeld et al., 1991; Morral et al., 
1998; Schiedner et al., 1998; Kay et al., 1995) and adeno-associated viral (Lu et al., 2006; Song et 
al.,1998;2001) Besides this, AAT gene can also be transferred by liposomal vectors (Alino et al., 
1994; Canonico et al., 1994), naked DNA injection and gold-particle bombardment (Qiu et al., 
1996). 
First clinical trial has demonstrated that AAT gene could be transferred in humans (Brigham 
et al., 2000). Patients with AAT deficiency received a single dose of non-viral cationic 
liposome and AAT complex into one nostril, while other nostril acts as a control. Protein 
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was detected in nasal lavage fluid, with maximum levels on fifth day, which is 
approximately one third of the normal levels. This rise in AAT was not seen in fluid from 
the control nostril. Besides this, levels of the pro-inflammatory cytokine, IL-8, was decreased 
in the treated nostril. Surprisingly, when purified AAT protein was intravenously 
administered, the decrease in pro-inflammatory cytokine, IL-8, levels was not observed in 
normal nasal implying that different routes of administrationmay lead to variations in the 
production level of IL-8.  
The retroviral vector containing cDNA of human AAT with constitutive promoter have also 
been used as a delivery system. After packaging into an infectious virus, the provirus was 
integrated into murine fibroblasts and it expressed and secreted human AAT. This AAT was 
found to be glycosylated, reacted normally with human NE, and had a normal half-life in 
plasma.   When these cells were transplanted into the peritoneal cavity of nude mice, one 
month latter human AAT was present in plasma and most notably it was present in lung 
epithelial lining fluid (Garver et al., 1987).Thus, this vector has a potential to cure lungs 
disease associated with AAT deficiency. The disadvantage of retroviral vector system is that 
transgene expression is low. Therefore researchers have to resort to better vector systems 
like adenovirus and adeno-associated virus. 
The adenoviral vectors containing human AAT cDNA have been delivered to different 
organs and cells. For example replication-deficient adenoviral vector containing an 
adenovirus major late promoter and a recombinant human AAT gene (Ad-AAT) was 
infected to  epithelial cells of the cotton rat respiratory tract both in vitro and in vivo 
(Rosenfeld et al., 1991).  Results in vitro demonstrated that human alpha-1-antitrypsin was 
synthesized as well as secreted. Whereas in vivo intratracheal administration of Ad-AAT to 
these rats, resulted in the synthesis and secretion of human AAT by lung tissue, and AAT 
was detected in the epithelial lining fluid for at least 1 week. This mode of administration of 
Ad-AAT has a potential to cure emphysema. Similarly, when replication defective 
adenovirus vector containing human AAT cDNA was transferred to human endothelial 
cells in vitro and in the lumen of intact human umbilical veins ex vivo (Lemarchand et al., 
1992), the infection resulted in the expression of AAT transcripts and synthesis and secretion 
of AAT both in cell culture (0.3-0.6 μg) and in the vein perfusates (13 μg/ml). The 
therapeutic level of AAT was achieved in vein perfusate. In another study recombinant 
adenoviral vectors containing human alpha-1-antitrypsin cDNA under the transcriptional 
control of the phosphoglycerate kinase (PGK) or RSV-LTR promoters was constructed and  
transduced in mouse hepatocytes in vivo (Kay et al., 1995). The therapeutic serum level of 
human alpha-1-antitrypsin of up to 700 micrograms/ml was achieved in vivo. Thus, this 
vector has a capacity to cure liver and lungs diseases, but it cannot knock down the 
expression of misfolded Z AAT in liver. The adenoviruses are pathogenic in nature as well 
as immunogenic, therefore they have limited applications in treating AAT deficiency 
diseases. 
Recombinant adeno-associated viral vectors have been most successful delivery system so 
far, as they are capable of achieving therapeutic levels of AAT (Lu et al., 2006; Song et al., 
1998) and are less likely to induce an inflammatory response than adenoviral vectors. 
Studies have been conducted to examine delivery of rAAV-AAT vectors to muscle, lung, or 
liver (Song et al., 1998, 2001; Virella-Lowell et al., 2005; Liqun Wang et al., 2009). Although,  
maximum expression could be achieved by each delivery route, however the use of muscle 
injection has several advantages over other  approaches , such as a more favorable profile of 
anti-capsid effector T-cell responses (Manno et al., 2006; Brantly et al., 2009) and a lower 
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level of dissemination to distant sites (Manno et al., 2003; 2006). A phase I trial of 
intramuscular injection of a rAAV2-AAT vector has recently been completed but levels of 
gene expression were found to be very low and generally undetectable. Studies have  shown 
that  AAV1 capsid transduction and expression in muscle was substantially more efficient 
than AAV2 (Xiao et al., 1999; Chao et al., 2001; Gao et al., 2002; Rabinowitz et al., 2002; 
Hauck & Xiao, 2003). The phase I trial of a rAAV1-AAT vector has been initiated (Brantly et 
al., 2009.). There are several problem associated with rAAV: firstly scarcity of available 
AAV2 receptors on the apical surface of airway epithelium, secondly degradation of AAV in 
the cytoplasm, and thirdly lack of integration of rAAV has limited its efficacy in clinical 
trials. Several alternative AAV serotypes such as rAAV5, rAAV8, rAAV9, or AAV2 capsid 
mutants with specifically targeted ligands have been developed. These alternative capsids 
may bypass the binding and internalization barriers and achieve improved gene expression 
from a single administration. Among these tested rAAV serotypes, the rAAV8 was found to 
be more powerful gene therapy vector as it efficiently transduced many different tissues in 
vivo and transduced  a high percentage of cells in the lung when delivered intratrachealy 
(Liqun Wang et al., 2009). It should be noted these approaches whilst potentially protecting 
the lungs and other tissues, will not influence the liver disease. 
The Z AAT variant undergoes polymerization; therefore it accumulates in the ER of 
hepatocytes. Hence it is associated with liver disease; therefore gene therapy aiming at 
inhibiting the expression of the Z AAT gene in liver represents a promising therapeutic 
approach.  A number of methods aimed at turning off production of the abnormal Z AAT 
protein are being considered. These include the use of and siRNA, ribozyme technology, 
gene repair, PNA and SDF. In a recent report, small-interfering RNAs (siRNAs) was 
designed to downregulate endogenous Z AAT within hepatocytes. Three different siRNA 
sequences were cloned into a recombinant adeno-associated virus (rAAV), either singly or 
as a trifunctional (3X) construct. Each of these vectors demonstrated activity independent of 
other. These studies showed a decrease in total human Z AAT when rAAV-3X-siRNA 
packaged into AAV8 capsids was used, thus removing ZAAT accumulation from liver. The 
rAAV8-3X-siRNA vector may hold promise as a potential therapy for patients with AAT 
liver disease (Cruz et al., 2007a).  Similarly, ribozyme-mediated specific gene replacement 
also represents a novel mode of gene therapy that aims to treat the AAT deficiency by 
inhibiting the expression of the mutated gene and at the same time also replacing the 
defective gene with a normal AAT gene in the liver (Ozaki et al., 1999). Unfortunately, this 
approach has not been successful todate. A technology called gene repair has been 
developed which uses chimeric RNA/DNA oligonucleotides to ‘‘patch’’ a single gene 
mutation. RNA complementary to the area surrounding the point mutation is synthesised 
with a contiguous DNA oligonucleotide made of the corrected sequence. In model systems, 
chimeraplast constructs were capable of correcting targeted single site gene mutation (Cole-
Strauss et al., 1999). Another mode of gene therapy utilizes second- as well as third-
generation oligonucleotides based on a peptide nucleic acid (PNA). These PNA are analogs 
in which the phosphodiester backbone is replaced by repetitive units of the pseudo-peptide 
polymer N-(2-aminoethyl) glycine to which the purine and pyrimidine bases are attached by 
a methyl carbonyl linker (Pellestor & Paulasova, 2004). PNAs hybridize to complementary 
DNA or RNA in a sequence specific manner. These PNAs are more stable and form hybrid 
with DNA by displacing one strand of DNA thereby inhibiting gene transcription. Similarly, 
when these PNAs bind to RNA they act as an antisense (McLean et al., 2009). The potential 
of PNA in treating AAT deficiency diseases remains to be seen. Furthermore, small DNA 
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fragments (SDFs) have been used for correcting the sequence of variant AAT. This strategy 
involves small fragment homologous replacement (SFHR) in which the sequences can be 
directly altered, inserted or deleted. These SDFs can directly convert the mutant sequence to 
a wild-type genotype, thereby restoring the normal phenotype.  Indeed SDFs of normal M 
and Z AAT sequences were synthesized and transfected into peripheral blood monocytes of 
PiM subjects and PiZ subjects. The defective gene was corrected in Z AAT monocytes in 
vitro and consequently this treatment was associated with an increase in AAT secretion. This 
technology has potential to protect both lungs and liver (McLean et al., 2009; McNab et al., 
2007). The rAAV2 vectors, such as those used in current clinical trials, appear to be 
incapable of stably transducing more than 5% of the hepatocyte population. Recently, AAV2 
and pseudotyped vectors for serotypes 1, 5, and 8 carrying the human AAT transgene were 
injected into C57Bl/6 mice. Circulating hAAT  level was found to be highest  for AAV8 
injected animals. Most notably, up to 40% of total liver cells stained positive for the 
transgene in AAV2/8 subjects. This suggests that different types of AAV use different 
cellular pathways for infection and AAV8 serotype is a powerful gene therapy vector 
(Conlon et al., 1982).  
The transfection efficacy of several non-viral plasmid vectors containing the full genomic 

hAAT gene with its natural promoter (pTG7101) and others containing the cDNA of hAAT 

gene driven by cytomegalovirus immediate-early promoter or the 0.5 kb upstream of hAAT 

gene sequence has been studied by hydrodynamic tail-vein injection (20 mg/mouse) (Alino 

et al., 2003).These studies demonstrated that only pTG7101 plasmid results in expression of 

hAAT in plasma. Further, it was found that hAAT remains long-term stable in plasma, with 

therapeutic concentrations of hAAT (40.9 mg/ml). In addition, 4 months after transfection, 

the efficacy of transgenic expression (amount of RNA/DNA) in mouse liver was 50–80% 

that normally expressed by the mouse gene. Researchers have constructed non-viral 

plasmid vector which contained AAT gene and eukaryotic replication initiation sequences 

from Epstein–Barr virus, EBNA1 and from its family of binding sites. Using hydrodynamic 

injection approach, they found greater than 300 mg/ml of AAT in serum, and increased in 

serum AAT concentrations occurred for greater than nine  months after  a single dose of 

administration of the vector (Stoll et al., 2001). These studies demonstrated that naked 

plasmid DNA injection is a good technique for curing AAT diseases. Similarly, intravenous 

injection of linear DNA encoding the AAT gene driven by an RSV promoter into mice is 

reported to achieve 10–100 fold higher serum AAT concentrations than similar 

administration of circular DNA with expression persisting for at least 9 months (Chen et al., 

2001). Thus, the linear form of the DNA may contribute to more excessive and prolonged in 

vivo expression than the circular DNA.  

Studies have shown that lipoplex technology can deliver normal AAT gene to human 

respiratory epithelium in vivo (Brigham et al., 2000). This mode of therapy is safe, but their 

limitations are similar to those of other nonviral gene therapy. Despite of some progress, the 

lipid vectors are still inefficient in targeting the genes to distant tissues. Efforts are in way to 

improve these vectors which include modification of their surface to improve their 

biocompatibility with biological fluids and tissue specificity, and inclusion of active 

components that help to overcome the cellular barriers in transfection.  

Adult stem cell-based gene therapy holds several unique advantages including avoidance of 

germline or other undesirable cell transductions. Moreover, stem cells have a capacity for 

both self-renewal indefinitely and differentiation, making them an ideal vehicle for 
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permanent delivery of normal genes to those affected by loss-of-function genetic mutations. 

Research using stem cells have also shown some potential for treatment of AAT disease, 

though these approaches will require further development before clinical use. Since stem 

cells can differentiate into liver cells that are capable of expressing AAT (Zhou et al., 2007; 

Moriya et al., 2007; Saito et al., 2006), thus transplanting these cells into deficient patients 

might facilitate normal production of AAT. This approach however would not prevent 

accumulation of misfolded AAT in the liver, therefore it would not necessarily affect liver 

disease. Alternatively, an approach targeting the lung might be used, in this technique 

human embryonic stem cells are differentiated into alveolar epithelial type II cells (Wang et 

al., 2007). This alveolar type II cells capable of producing AAT could be transplanted to AAT 

deficient patients for producing AAT.  

5. Future prospects 

To further enhance this transduction of viral vectors researchers have developed a novel 

AAV vector that packages a double-stranded (ds) genome (Richard, 2011). These vectors by-

pass the rate limiting step of second-strand synthesis resulting in both increased and faster 

transgene expression. In liver, researchers have been able to demonstrate dsAAV 2 

transduction is 90% whereas dsAAV 8 transduction is over 95% using a lower dose. Thus, it 

is evident that suppression of PiZZ gene expression along with the successful gene addition 

strategy should eliminate both liver and lungs diseases respectively. It should be noted that 

although AAV2 and AAV8 transduce the liver with high efficiency the overall tropism is 

broad and is not restricted to liver cells. Several steps including viral binding, endocytosis, 

trafficking and uncoating are required for cell specific transduction and research are on way 

to relate structure to function using a shuffled serotype capsid library (Richard, 2011). Thus, 

transduction by these alternative serotypes vectors could be restricted to liver cells.  

Additionally, to down-regulate Z-AAT researchers have also begun to examining innovative 

approach for long-term expression of therapeutic RNAs using the recombinant adeno-

associated virus (rAAV) vector, including spliceosome-mediated RNA trans-splicing 

(SMaRT) (Cruz et al., 2007b). This technology has a potential to correct Z AAT mutation at 

the molecular level. Recent reports indicate that chemical chaperones, such as 4-

phenylbutyric acid (4-PBA), can assist the proper folding of Z AAT (Burrows et al., 2000). 

This implies that transduction of rAAV-Hsp70 vectors construct  into liver cells of animals 

and humans could  increase the folding of mutant AAT in a native configuration and 

facilitate degradation of the misfolded protein (Flotte, 2011). Lastly, by analyzing all of the 

data of preclinical and clinical studies, more efficient vector systems could be designed in 

future to cure AAT deficiency diseases.  

6. Conclusions 

These viral and non-viral vectors showed advantages as well as disadvantages in curing 

AAT deficiency diseases. Among tested rAAV serotypes, the rAAV8 was found to be more 

powerful gene therapy vector for treating lungs and liver diseases. For liver diseases several 

approaches have been implemented like siRNA, ribozyme technology, gene repair, PNA 

and SDF. Their usefulness in clinical trials remain to be seen. The newly developed AAV 

vector that packages ds DNA looks promising for treating AAT deficiency diseases. 
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