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1. Introduction 

1.1 Overview of gene therapy 
Progress in understanding the cellular and molecular bases of human health and disease 
in recent decades has spawned research in the fields of regenerative medicine and gene 
therapy. These novel approaches to medical treatments offer new possibilities of 
mitigating, and even curing, a plethora of medical conditions ranging from rare inherited 
monogenic disorders, metabolic diseases, infections and even complex disorders such as 
cancer. 
In a simplified form, gene therapy can be defined as any procedure aimed at genetically 
altering or modifying cells or tissues with exogenous genetic materials that encompasses 
RNA, DNA and even oligonucleotides. These molecules may be directly delivered, in vivo 
into patients, often with the goal of targeting particular tissues (or organs). Alternatively, 
patients’ cells may be isolated, expanded and modified ex vivo before reimplantation into the 
same subject (figure 1). 
Whilst gene therapy appears to be a relatively new concept in the field of biomedicine, the 
original conceptualization of treating diseases by genetic engineering dates back as early as 
the 1940s. Avery, MacLeod and McCarthy pioneered the notion and demonstrated that 
genes could be transferred within nucleic acids (Avery et al., 1944). Early visionary 
investigators such as Tatum (Tatum, 1966) envisioned “ that viruses will be effectively used 
for man’s benefit, in theoretical studies in somatic-cell genetics and possibly in genetic 
therapy...” And at the end of that same decade, the earliest experimentation of gene delivery 
in humans was carried out controversially by Rogers and colleagues, who explored the idea 
of using Shope papilloma virus to treat three patients with arginase deficiency (Wolff & 
Lederberg, 1994). The decades that followed witnessed tremendous advances in 
recombinant DNA technology and enabled the first approved human gene therapy clinical 
trial in 1990 for treating infants with adenosine deaminase deficiency (Blaese et al., 1995). By 
the turn of the millennium, almost 4000 patients had received gene therapy from more than 
500 clinical trials worldwide (Scollay, 2001), albeit with varying and limited successes. 
Nonetheless, these trials were helpful in highlighting several aspects of gene therapy that 
demanded improvements and refinements to achieve meaningful therapeutic efficacy and 
patient safety. 
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146 Gene Therapy - Developments and Future Perspectives 

Fig. 1. Gene-based therapy. Left: In vivo administration of vector to modify cells in target 
organs or tissues directly. Right: Ex vivo modification of primary somatic cells that are 
reimplanted into the same subject (autologous cell therapy). Viral or non-viral vectors may 
be used to deliver transgenes.  

Gene delivery can be achieved using either viral vectors or non-viral vectors. The latter may 
be episomally maintained or integrated into the host genome. To date, five main classes of 
viral vectors have been tested for clinical applications. These include retroviruses (RV), 
adenoviruses, adeno-associated viruses (AAV), lentiviruses and herpes simplex viruses 
(HSV) (Walther & Stein, 2000). Non-viral vectors most often utilize plasmid DNA which can 
be delivered into cells or tissues by physical methods such as electroporation, gene-gun 
bombardment, sonoporation, hydrodynamic injection or by chemical methods that utilize 
calcium phosphate,  polymeric carriers, cell-penetrating peptides, cationic and anionic lipids 
(Niidome & Huang, 2002). 
Gene therapy was initially conceptualized as ideal treatment for monogenic disorders such 
as adenosine deaminase, alpha-1-antitrypsin, ornithine transcarbamoylase and clotting 
factor (factors VIII and IX) deficiencies. These were considered ideal candidates as 
reconstitution of the missing protein in each case should alleviate or abolish the disease 
phenotype. The spectrum of gene therapy applications has now broadened considerably to 
every area of molecular medicine to include restoration of cellular and metabolic functions 
in various diseases, immuno-reconstitution of tumor cells in cancer immunotherapy, 
targeted cancer cell ablation in suicide gene therapy, treatment of infectious diseases, genetic 
manipulation, reprogramming of cancer and stem cell fate, reversing degenerative vascular 
and brain disorders, to name just a few. 
Although gene therapy is conceptually appealing, the high hopes of translating such 
treatments into standard clinical practice has yet to be fulfilled, in part as initial enthusiasm 
from a few clinical successes have been marred by adverse, and even fatal, iatrogenic 
complications in a limited number of treated patients. Reactions to these sentinel events 
reiterate the need to understand and evaluate the genotoxic risks for any given gene therapy 
approach and for pertinent biosafety improvements to be incorporated into current 
treatment modalities. This chapter reviews current improvements to gene therapy with a 
focus on biosafety and highlights the essential advances and developments that could 
garner greater clinical acceptance for gene therapy applications. 
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147 Recent Advances and Improvements in the Biosafety of Gene Therapy 

1.2 Gene therapy clinical trials- successes and adverse outcomes 
As of 2010, the Wiley Journal of Gene Medicine clinical trials database reported a total of 
1644 gene therapy clinical trials, the majority (64.5%) of which were directed at cancer and 
related diseases (last accessed on 7th February 2011) (figure 2) . Given the greater depth of 
understanding of molecular virology, the broad tropism of viral vectors and their superior 
efficiencies of gene transfer, transgene delivery via viral vectors has been the favoured and 
most feasible option (67 % of all trials). 

Fig. 2. Characteristics of clinical gene therapy trials. Categorisation of gene therapy trials 
according to indications, vectors used, gene types transferred and annual number of 
approved trials. (Images reproduced from Journal of Gene Medicine clinical trials database 
(http://www.wiley.com/legacy/wileychi/genmed/clinical/)). 

Despite the impressive number of gene therapy trials, it is worth noting that only a small 

number of these trials reported clinically meaningful and long term outcomes. The first 

clinical success was for the treatment of X-linked severe combined immunodeficiency 

(SCID-X1) (Cavazzana-Calvo et al., 2000), a disease characterised by immature development 

of the immune system due to mutations in the interleukin-2 receptor common gamma chain 

gene (IL2Rγ). Nine of ten treated patients achieved long term immune reconstitution 

following implantation with gene modified hematopoietic stem cells and marked clinical 

improvement (Hacein-Bey-Abina et al., 2003). More success stories echoed from similar 

clinical trials in London, U.K., of the same disorder (Gaspar et al., 2004). In the years that 

followed, long term therapeutic efficacy was also reported in clinical trials for another form 

of SCID disorder due to adenosine deaminase deficiency (SCID-ADA) (Aiuti et al., 2009). In 

2006, gene therapy scored more successes when impressive results were reported in two 

patients treated for X-linked chronic granulomatous disease (CGD) (Ott et al., 2006), caused 

by inactivating mutations of gp91phox  (CYBB) gene and characterised by neutrophil 
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dysfunction and recurrent serious infections. More recent and notable clinical success has 

been reported for gene therapy of Wiskott-Aldrich syndrome (Boztug et al., 2010), X-linked 

adrenoleukodystrophy (Cartier et al., 2009), Leber’s congenital amaurosis and Parkinson’s 

disease. 

Although these impressive clinical outcomes provided incontrovertible proof-of-principle, it 

soon became evident that treatment benefits could occur in tandem with significant adverse 

effects when serious iatrogenic complications were reported in a small number of patients. 

The first gene therapy death was reported in 1999 from an ornithine transcarbamoylase trial 

conducted at the University of Pennsylvania. This was ascribed to a massive immune 

response to the adenoviral vector used in that trial (Raper et al., 2003). Gene therapy 

suffered the heaviest blows in the years 2003 to 2006, and attracted close scrutiny by 

regulatory authorities and the medical fraternity when five successfully treated SCID-X1 

patients (from two different clinical trials) developed T-cell lymphoblastic leukemia, three to 

six years after treatment with autologous bone marrow-derived CD34+ hematopoietic cells 

transduced with a murine leukaemia virus (MLV) gammaretroviral vector to express the 

IL2Rγ gene (Howe et al., 2008; Hacein-Bey-Abina et al., 2008). Random integration of the 

MLV gamma retroviral vector that had strong enhancer elements in the long terminal repeat 

(LTR) regions resulted in the insertional activation of LIM domain only-2 (LMO2) proto­

oncogene.  This mutagenic event likely promoted clonal proliferation of T cells that 

culminated in acute lymphoblastic leukaemia. In a different trial in 2007, Targeted Genetics 

Corporation was forced to halt its gene therapy trial for rheumatoid arthritis involving intra­

articular injection of an adenoviral vector expressing tgAAC94, following the death of a 

patient. In this case however, investigations by the US Food and Drug Administration 

(FDA) exonerated gene therapy as the direct cause of death (Frank et al., 2009), although 

there was evidence of vector-induced immune response; and the trials have since 

recommenced. The inherent risks of insertional mutagenesis by viral vectors surfaced again 

in another clinical trial in the year 2006 for treatment of CGD. Two adult CGD patients 

infused with granulocyte colony-stimulating factor (G-CSF)–mobilized peripheral blood 

CD34+ cells transduced with MLV gammaretroviral vector expressing gp91phox had 

markedly improved neutrophil functions and resistance to life threatening infections. 

Regrettably, both subjects later developed myelodysplasia and one subject died from this 

complication (Stein et al., 2010). Myelodysplasia probably developed from random 

integration of the gammaretroviral vector that activated the expression of a proto-oncogene, 

MDS-EVI1) (Stein et al., 2010). As of this writing, the most recent case of adverse gene 

therapy outcome, brought to light by the American Society of Gene and Cell therapy 

(http://www.asgct.org/media/news-releases/?c=505) affected one of ten Wiskott-Aldrich 

syndrome patients treated at the Hannover Medical School using a gammaretroviral vector 

similar to that used in the SCID-X1 trials. This patient was reported to have developed 

leukaemia. A comprehensive clinical evaluation of this adverse event is yet to be disclosed. 

In summary, there is clear evidence that gene therapy can be clinically effective. Moreover, it 

offers the only treatment for certain serious life threatening diseases that are currently 

untreatable or poorly treated. An important issue that must be addressed if gene therapy is 

to mature from experimental treatment to standard of care is that of biosafety. The 

occurrence of serious iatrogenic outcomes, albeit uncommon, has brought into sharp focus 

the inherent risks of genetic modifications. 
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2. Biosafety considerations of gene therapy 

2.1 Genotoxicity potential of gene therapy 
The potential for genotoxicity in gene therapy is not unexpected. Initial studies investigating 
the integration site preferences of different viral vectors such as human immunodeficiency 
virus, avian sarcoma-leukosis virus and MLV gammaretrovirus, drew attention to the 
potential for insertional mutagenesis arising from random or quasi-random genomic 
integrations, aggravated by the marked propensity of these vectors to target transcription 
start sites and active genes (Mitchell et al., 2004). Even before reports of adverse events 
surfaced in clinical trials, a 2002 retroviral gene marking study in murine bone marrow cells 
already reported a high frequency of vector-induced hematopoietic disorders, including 
leukemia, caused in part by insertional activation of an oncogene (Li, Z. et al., 2002). 
Different strategies are being actively explored to reduce the genotoxic potential of current 
viral vectors. The main focus areas are to devise methods for: (a) appropriate tissue 
targeting of systemically delivered vectors, (b) disabling the capacity for generating 
replication competent viruses; (c) mitigating immune responses to vectors and/or transgene 
products; (d) avoiding germ-line modifications; (e) preventing unintended vector 
dissemination; and (f) directing the integration of transgenes into genomic safe harbors. 

2.2 Insertional mutagenesis 
Insertional mutagenesis refers to the induction of deleterious mutations to genes, promoters, 
enhancers or other regulatory elements that alter gene expression as a consequence of 
exogenous vector integration into the genome. Although a major concern of integrating 
vectors, even non-integrating vectors have a low but finite possibility of random genomic 
integration (Wang, Z. et al., 2004). 
Prior to cases of gene therapy induced oncogenesis in recent clinical trials, the risk of 
malignant transformation from integrating vectors was considered theoretically plausible 
but unlikely to occur in practice.  With hindsight, treatment-induced malignancies could 
have been predicted on the basis that as many as 1% of genes encoded in the genome are 
implicated in one or more forms of cancer (Futreal et al., 2004).  Although oncogenesis is a 
process that requires multiple genetic hits, random integration of vectors into multiple 
genomic sites could sufficiently generate the right “cocktail” of aberrations in different 
oncogenes and/or tumor suppressor genes (Hanahan & Weinberg, 2000),  Moreover, as the 
formerly regarded gene deserts are now known to be richly populated with different classes 
of non-protein-coding RNAs with key roles in cellular maintenance and cancer development 
(Farazi et al., 2011), evaluation of genotoxic risk of integration events requires extra caution. 
Viral vectors do not integrate randomly but have a propensity for transcriptionally active 
units and transcription start sites in mammalian cells (Mitchell et al., 2004). Such studies 
have been instrumental in developing integration maps or profiles of the different viruses, 
highlighting their potential risks based on their propensity to integrate near transcription 
start sites, into active transcriptional units, close to oncogenes or tumor suppressor genes. 
Even disruptive integrations into other genes such as those necessary for cell survival or 
metabolism may be deleterious. Thus, insertional mutagenesis is a real risk that needs to be 
seriously addressed rather than being dismissed as inconsequential as was the attitude prior 
to reports of adverse gene therapy clinical outcomes. 
Much has been learned about the molecular pathogenesis of oncogenesis associated with 
integrating viral vectors. MLV gammaretroviral vectors have a predilection for integrating 
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close to transcription start sites (Mitchell et al., 2004) and to perturb their expression 
possibly due to the strong enhancer effect  inherent in the LTRs (Modlich et al., 2006). 
However, this effect alone may not be sufficient for complete oncogenic evolution as a 
clinical trial for SCID-ADA in ten patients treated with a similar MLV retroviral vector 
reported no untoward outcomes (median duration of follow-up of 4 years) (Aiuti et al., 
2009). This has led to the speculation that other factors such as the nature of the expressed 
transgene (IL2Rγ versus ADA), the underlying disease, the cell types selected for transgenic 
modification and other patient-specific intrinsic factors could be necessary accessory factors 
to oncogenesis. 
In contrast to retroviral vectors, no overt adverse events have been reported thus far from 
the use of other viral vectors such as lentiviral, adenoviral, HSV or AAV vectors. Some 
studies even suggest that lentiviral vectors pose significantly lower risks of insertional 
oncogenesis compared to retroviral vectors due to differences in their integration 
preferences (Montini et al., 2006). Generally, non-integrating vectors such as adenoviruses, 
recombinant AAV and HSV which are predominantly maintained as episomes are not 
considered to be mutagenic given their minute possibility of inducing rare random 
integrations in the genome. On the other hand, AAV which can integrate into the AAVS1 
locus in the presence of viral proteins Rep68 or Rep78 (Smith, 2008), must be considered as 
having intermediate risks. 

2.3 Tools for evaluating potential for genotoxicity 
The reality of vector-induced oncogenesis need not be a fatal impediment to the goal of 
clinical gene therapy. Tools are now available to interrogate transgenically-modified cells ex 
vivo for undesirable genomic alterations and to evaluate tumorigenic potential. The ability to 
perform comprehensive biosafety assessments ex vivo before in vivo treatment could be a 
feasible approach to exploit the benefits of gene replacement while minimizing treatment 
risks to a clinically acceptable level. 
A first step to genotoxicity analysis of any given modality would be to review databases for 
adverse outcomes encountered in past or ongoing clinical trials which can be accessed at 
several websites e.g. Wiley clinical trials database (http:// www.wiley.com/ legacy/ 
wileychi/genmed/clinical/), the US National Institutes of Health ClinicalTrials.gov 
(http://www.genetherapynet.com/clinicaltrialsgov.html) and Clinigene (http:// 
www.clinigene.eu/search-published-human-gene-therapy-clinical-trials-database/). 
This section focuses on the biosafety assessment of ex vivo gene modified cells, with an 

emphasis on key features to monitor and molecular biology tools that aid the evaluation. 

The importance of bioinformatic tools in biosafety evaluation cannot be overemphasized. 

This section will also highlight useful programs, internet resources and databases. 

2.4 Mapping genome integration sites
It is imperative to document integration events in gene modified cells, and prudent to do so 
even for episomal vectors that have a low probability of random integration (Stephen et al., 
2008; Wang, Z. et al., 2004). Integration events are detailed with reference to their physical 
distance relative to promoter sites, transcription start sites, exons or introns, oncogenes, 
tumor suppressor genes, non-protein coding genes, CpG islands, repetitive elements and 
transcription factor and micro-RNA binding sites. Such integration profiles aid genotoxicity 
risk evaluation when comparing across vector types, modified cell types and the nature of 
transgenes. 
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Integration events within cells can be experimentally retrieved and identified by plasmid 

rescue, ligation mediated PCR (LM-PCR) (Laufs et al., 2003), inverse PCR (Silver & 

Keerikatte, 1989) or linear amplification mediated PCR (LAM-PCR)(Schmidt, M. et al., 2007). 

Sequence data can be analyzed for vector-flanking sequences by programs such as 

IntegrationSeq (Giordano et al., 2007) which may then be queried using programs such as 

NCBI-BLAST (http://blast.ncbi.nlm.nih.gov/) or UCSC-BLAT (http:// www. 

genome.ucsc.edu/) to identify their genomic positions (figure 3). In recent years, several 

programs have been developed to automate the process of genome mapping. 

IntegrationMap (Giordano et al., 2007), SeqMap (Peters et al., 2008) and QuickMap (Appelt 

et al., 2009) are examples of web-based programs that are useful for annotating genome 

mapping information such as proximity to genes, neighbouring gene identity, exon/intron 

localization, distance from transcription start sites, repeat element localization and Gene 

Ontology functions. QuickMap (http://www.gtsg.org), most recently developed, provides a 

more comprehensive evaluation which includes information about proximity to oncogenes, 

pseudogenes, CpG islands,  fragile sites, transcription factor and micro-RNA binding sites. 

Identity of potential cancer genes can be derived from lists compiled from the human cancer 

gene census (Futreal et al., 2004) or the retroviral tagged cancer gene database, RTCGD 

(http://rtcgd.abcc.ncifcrf.gov, mouse cancer genes). Another useful database with a 

comprehensive compilation of known oncogenes and tumor suppressor genes (Wang, G.P. 

et al., 2008) can be accessed at the following website (http:// microb230.med.upenn.edu/ 

protocols/cancergenes.html) hosted by the University of Pennsylvania School of Medicine. 

Another useful aspect of genomic profiling of integration sites is its application for the long-

term monitoring of the clonality of in vivo implanted gene modified cells (Wang, G.P. et al., 

2010). Integration profiles of gene modified cells determined pre-implantation can be 

periodically monitored post-implantation to detect the emergence of dominant clones. 

Deviation from a polyclonal pattern of growth could imply selection of a dominant clone of 

cells by virtue of a growth advantage or a greatly increased proliferation rate. This ought to 

alert close scrutiny for the likelihood of insertional oncogenesis. Gerrits et al. have recently 

demonstrated the use of tagged vectors with variable barcode signatures to track different 

clones in vivo (Gerrits et al., 2010). Such innovative techniques could be applied to enhance 

monitoring the clonality of implanted cells in vivo and increase the sensitivity of detecting 

potential oncogenic alterations. 

2.5 Characterizing the modified genome 

There are relevant concerns that integrating and non-integrating vectors can potentially alter 

the genomic architecture of cells. Copy number gains and deletions have been observed in 

transformed cancer cell-lines and to a lesser extent on cells treated with gene therapy vectors 

(Stephen et al., 2008). Recent advances to the array based technology have made it possible 

to study amplifications or deletions to the genome at very high resolutions with probes that 

span the genome on average at 2.5 kb intervals (Hester et al., 2009). As with most array 

based techniques, copy number analysis relies on a relatively homogeneous population of 

cells as events in a minor population of polyclonal cells may be masked or under­

represented in the analysis that would otherwise highlight the effects that are observed in 

the dominant population of cells. 
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Fig. 3. Experimental recovery of integration events and computational analysis of 
integration site distribution in mammalian cell genomes. Top: Integration events in cells 
may be retrieved by digesting genomic DNA (with restriction enzymes that do not cleave 
within the vector sequences). Appropriate adapters are ligated to restriction fragments to 
serve as priming sites for PCR amplification of integration junctions which can then be 
cloned and sequenced. (Adapted from Ciuffi et al., 2009.) Bottom: Vector flanking raw 
sequence data may be selected with programs such as IntegrationSeq and queried using 
UCSC-BLAT or NCBI-BLAST to retrieve relevant genomic information. Computational 
programs such as IntegrationMap, SeqMap and QuickMap automate the process of genome 
mapping and provide the necessary genomic information required for biosafety assessment. 
(Adapted from Peters et al., 2008.) 
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Another serious genomic alteration that can be mediated by gene therapy vectors is 
chromosomal aneuploidy and/or gross structural abnormalities such as deletions and 
translocations, which are common hallmarks of transformed cells. Several studies have 
reported unexpected but rare cytogenetic abnormalities in cells treated with AAV (Miller, 
D.G. et al., 2005), retroviral vectors (Modlich, 2005) and non-viral vectors such as phiC31 
phage integrase-mediated plasmid integration (Liu, J. et al., 2006). The inciting causes of 
such cytogenetic abnormalities are unclear, namely whether from direct effects of vector 
integration and repair or from recombination events secondary to vector integration. 
Gross chromosomal rearrangements in gene modified cells can be evaluated by spectral 
karyotyping or multi-color FISH. However, karyotyping requires that a sufficient number of 
metaphases should be examined if rare rearrangements are not to be missed. Array based 
comparative genomic hybridization detects copy number abnormalities (deletions or 
amplifications) at high resolution, provided a fairly homogeneous cell population is 
analyzed. However, even high resolution copy number analysis could not be expected to 
detect aberrations in a rare subpopulation of cells. Genome sequencing to identify vector 
integration junctions can potentially identify translocations at high (nucleotide level) 
resolution provided junctional fragments can be confidently identified. However, this 
method (currently performed at relatively high cost) generates large datasets that require 
specialized bioinformatic analysis and awareness of technical artifacts (Koboldt et al, 2010). 
In conclusion, effective cytogenetic analysis should combine sequencing techniques (for 
integration site retrieval), multicolor karyotyping, whole genome copy number and possibly 
deep genome sequencing analysis as a complementary suite of techniques to completely 
characterize the chromosomes of gene modified cells. 

2.6 Transcriptome and epigenome analysis 
A necessary complement to genome analyses is to determine effects of gene transfer 
(however accomplished, but especially if the transgene is known to have integrated) on the 
transcriptome of gene modified cells. In this regard, it is worth noting that vector insertions 
are often accompanied by deletions of genomic regions (Miller, D.G. et al., 2002) that may in 
turn alter the epigenetic status of the cell if key histone proteins or histone modifying 
enzymes are affected. Thus it may also be relevant to determine effects of gene transfer on 
the epigenome. 
Comparing the global transcriptomes of naïve and vector treated cells may help to identify 
genes whose expression are perturbed by vector treatment. Many technical platforms based 
on hybridization to gene-specific oligonucleotide probes are now available for genome-wide 
transcriptome analysis and, being unbiased, are the method of choice.  Such data, in 
practice, reveals significantly altered gene expression mainly in the dominant cell 
population, though not necessarily in minor subpopulations. Ideally the transcriptome of a 
homogeneous or, preferably, clonal population of cells with a single known vector 
integration is more informative. The presence of multiple integration sites in a clonal 
population confounds attempts to distinguish effects attributable to any particular 
integration. Likewise, the study of a heterogeneous cell population would mask the 
transcriptional features of a minor subpopulation within a mixed culture. Therefore, 
microarray studies would yield useful information only when a sufficient number of clonal 
populations from different integration sites are characterized. Given that viral vectors 
mediate integrations into multiple sites, such clonal studies would be highly impractical. 
Clonal studies are especially important when integrations have been identified close to 
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oncogenes. Transcriptome analysis aims not only to identify individual genes with 
significantly altered expression but should also map individual aberrations to molecular 
pathways. There is a plethora of non-proprietary microarray analysis and bioinformatic 
software tools for data evaluation and analysis. For example, useful tools are hosted by 
groups such as the Gene Ontology (http://www.geneontology.org/ 
GO.tools.microarray.shtml), Genomics and Bioinformatics Group from NIH 
(http://discover.nci.nih.gov/tools.jsp) and DAVID (http://david.abcc.ncifcrf.gov/ 
home.jsp). 
Epigenetic changes refer to the changes in the acetylation, methylation, sumoylation and 
phosphorylation patterns of histone proteins, which in turn may affect the dynamic 
chromatin architecture and determine the active or repressed status of genes. It also 
encompasses changes in CpG methylation status of DNA near promoter regions which may 
influence gene expression. Transgene integrations may directly attenuate gene expression, 
have a negative or positive effect on genes based on copy number aberrations of the genome 
or affect histone modifying enzymes which in turn may affect the epigenetic and gene 
expression status of cells. Global epigenetic status of cells are presently studied using a 
combination of global transcriptome analysis, cytosine methylation pattern, nucleosome 
positioning assay and chromatin immunoprecipitation (ChIP) based assays to determine 
transcription factor binding sites (Fazzari & Greally, 2010). The on-going human epigenome 
project (http://www.epigenome.org/) that aims to document the DNA methylation 
patterns of all human genes is likely to provide invaluable insights into the role of 
epigenetics in human diseases. However, the study of epigenetics is currently hampered by 
a lack of simple, high quality and high-throughput techniques.  Technical advances should 
deepen knowledge of this important domain of human genetics. 

2.7 In vitro and in vivo tumorigenicity studies 
Transformed cells acquire altered phenotypes that can be detected under in vitro conditions 
to distinguish them from untransformed cells. Anchorage independent growth, loss of 
contact inhibition, resistance to apoptosis, increased proliferation rate and extended cell 
passaging are common characteristics of transformed cells. 
Simple in vitro assays demonstrate the anchorage independent growth and increased 
proliferation rates of cells. The soft agar colony formation assay involves enumerating 
colonies (clonal propagation of cells) formed from individual cells in the absence of 
substrate adhesion. Anchorage independent cells typically form colonies while normal cells 
do not as they rely on surface attachment for proliferation. Assays that quantify 
incorporation of bromo-deoxyuridine (BrdU), reduction of tetrazolium compounds (e.g. 3­
(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and colony formation are 
direct or indirect measures of cellular proliferation rates. Modlich and colleagues (Modlich 
et al., 2009) recently introduced another assay, termed the in vitro immortalization assay, 
which tests tumorigenic potential of virally transduced murine hematopoietic stem cells 
(HSCs) based on their replating capacity, thus obviating the need to use animal models. 
Most in vitro biosafety assays seek to evaluate deviations from normal cellular 
characteristics. A more realistic evaluation of tumorigenicity would be to determine the 
potential to induce tumors in vivo.  Two main models are used to evaluate the tumorigenic 
potential either of ex vivo modified cells or systemically delivered viral vectors. In the first 
model, gene modified human cells are implanted into immunocompromised mice that are 
known to support the engraftment of xenogeneic cells.  It is helpful to know that different 
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strains of immunocompromised mice have different capacities to mount immune responses 
depending on which components of the immune system are still functional. Mouse strains 
that are most severely immunocompromised can be expected to have high sensitivity as 
tumorigenic hosts because low numbers of implanted cells will give rise to visible tumors. 
Such sensitive models are useful for the detection of rare populations of oncogenic cells in a 
heterogeneous population of otherwise untransformed cells. The absence of tumor 
formation should not immediately exonerate cells of their tumorigenic potential.  It is 
essential to establish from immunohistology of the implantation sites or in the case of HSCs 
implantation, immunocytometric blood analysis that the implanted cells have indeed 
engrafted in vivo in animals that fail to form tumors. The second model is useful to evaluate 
the genotoxic potential of HSCs transduced with different gene therapy vectors. It is based 
on the transduction and transplantation of HSCs derived from a tumor-prone mouse model 
that lacks the tumor suppressor, cyclin dependent kinase inhibitor 2A (cdkn2a) gene 
(Montini et al., 2009). This assay thus evaluates tumorigenic risk in an already tumor-prone 
cell line and was used to compare the oncogenic potential of retroviral and lentiviral vectors, 
and to assess the benefits of introducing self-inactivating (SIN) long terminal repeats (LTR) 
in these vectors. However, a caveat is that due to the intrinsic oncogenic potential of the 
cdkn2-/- HSCs, the effects of subtle but relevant insertional mutagenic events may be 
masked or misinterpreted. Besides murine models, long-term studies can also be performed 
in pre-clinical animals such dogs and non-human primates (Kim, Y.J. et al., 2009) where the 
clonality of implanted cells can be dynamically monitored by documenting integration 
profiles of recovered cells to ascertain if dominant clones with clone-specific integration 
patterns have emerged. 

3. Recent developments in biosafety enhancement of gene therapy 

Comprehensive molecular studies of adverse outcomes of gene therapy trials have 

advanced our understanding of mechanisms that likely caused clinical complications. This 

has, in turn, spurred the development of safer vectors.  In parallel, more sensitive 

experimental techniques for biosafety evaluations enable higher confidence in pre-clinical 

assessments of biosafety before treatments are implemented in clinical trials. This section 

reviews recent developments that enhance biosafety of gene therapy. 

3.1 Improvements to viral vectors 
Gene transfer via viral vectors remains the most prevalent choice in clinical trials of gene 

therapy. Knowledge of genotoxic risks that are inherent in viral life cycles and their biology 

have guided modifications aimed at improving the biosafety of viral vectors. The basic 

approaches are summarised in figure 4. They include the use of viral vectors that do not 

integrate or that do so with a more random and less selective integration spectrum, the 

inclusion of self-inactivating LTR elements and chromatin insulators to reduce 

neighborhood effects of integrated vectors on gene expression and the use of cell- or tissue-

specific promoters for physiological and tissue-specific gene expression. 

3.1.1 Replication defective vectors 
Apart from certain oncolytic cancer gene therapies that use conditionally replicating viruses, 
most clinical applications rely on replication-incompetent viral vectors as virus replication in 
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Fig. 4. Strategies to improve biosafety of integrating viral vectors. Integrating viral vectors 
have been shown to mediate transactivation of genes close to integration sites. This risk can 
be reduced by using self-inactivating vectors devoid of strong LTR enhancers, cellular 
promoters, incorporating chromatin insulators and other boundary elements and lastly by 
the selective use of viral vectors with intrinsically safer integration profiles. (Adapted from 
Kohn and Candotti, 2009.) 

vivo could pose a serious health and mutagenic hazard to patients. Replication-defective 

vectors are generally designed to lack viral genes necessary for their replication and 

packaging and therefore need to be produced in helper cell lines which provide the 

necessary components (gag/pol, env and rev, as is the case for HIV-lentivirus) for their 

packaging in trans. Unintended homologous recombination between the replication-

defective vector and packaging constructs or endogenous viral sequences in the human 

genome may potentially cause reversion to a replication-competent virus. Such a risk has 

been greatly mitigated through improved packaging constructs or packaging cell lines that 

have little or no homology to the vector that encodes the therapeutic gene to greatly 

minimise the likelihood of recombination. 

Other avenues of improvements have been in the methods used to rigorously screen vector 
batches for contamination with replication competent viruses. Assays that detect 
recombination between gene transfer vector and helper vectors based on their known 
structures are available for detecting replication competent-AAV (Tenenbaum et al., 2003), 
replication competent adenovirus (Chuah et al., 2003) and replication competent retrovirus 
(Sinn et al., 2005). However, the development of accurate assays for RCL (replication 
competent lentivirus) detection has been more challenging due to the difficulty of predicting 
their genomic organizations. Nevertheless, recent assay developments such as the product-
enhanced reverse transcriptase (PERT) assays (Sinn et al., 2005) and combination of p24 
ELISA and psi-gag PCR (Cornetta et al., 2010) ought to increase the sensitivity and accuracy 
of screening for RCL contamination in clinical grades of viral stocks. 
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157 Recent Advances and Improvements in the Biosafety of Gene Therapy 

In summary, improvements to packaging cell-lines or helper constructs have minimized the 
risk of reversion to replication competency while improved screening methods should help 
prevent the unintentional clinical administration of viral vectors contaminated with 
replication competent viruses. 

3.1.2 Self-inactivating vectors 
Retroviral and lentiviral vectors have intrinsic promoter and enhancer activities in their LTR 
regions which have been implicated in the aberrant activation of neighboring genes. This 
potential to activate oncogenes, combined with other concurrent factors is the basis for 
insertional oncogenesis. Several studies have shown that the risks of insertional gene 
activation can be drastically reduced by deleting the strong internal promoter/enhancer 
elements in the U3 regions of the LTR of retroviral and lentiviral vectors. The concept of self-
inactivating (SIN) vector requires the replacement of the U3 regions of the 5’ LTR with a 
heterologous promoter (such as CMV) and partial deletion of the U3 enhancer elements in 
the 3’LTR. The process of viral vector integration involves copying of the 3’LTR (now 
devoid of enhancer elements) to the 5’LTR and deletion of the 5’LTR-CMV promoter. The 
final result is a transcriptionally inert 5’LTR incapable of transactivating genes (Schäfer-
Korting et al., 2010). Neoplastic transformation rates of bone marrow derived murine HSCs 
transduced with lentiviral and retroviral vectors with and without SIN elements have been 
compared (Montini et al., 2009; Modlich et al., 2009; Bosticardo et al., 2009). These studies 
demonstrated significantly reduced but not complete abrogation of oncogenicity (Bosticardo 
et al., 2009) of vectors bearing the SIN elements. These studies also highlighted that even 
with SIN vectors, insertional mutagenesis was still possible from internal 
enhancer/promoter elements and the choice of the internal promoter may reduce overt 
genotoxicity. Thus, although the development of SIN vectors has been an important step in 
improving biosafety, further refinements such as the use of cellular promoters devoid of 
enhancer elements and with decreased potential to induce activation of neighboring genes 
are necessary.   

3.1.3 Chromatin insulators and cellular promoters  
SIN vectors depend on an internal promoter to drive transgene expression. However, 
enhancer effects of the internal promoter in transactivating neighboring oncogenes has been 
a possible mechanism for neoplastic transformation associated with SIN vectors (Bosticardo 
et al., 2009; Modlich et al., 2009). The internal promoter of choice should ideally drive a high 
level of transgene expression without affecting the transcriptional status of neighboring 
genes. Thus, the use of moderately active internal promoters such as the phosphoglycerate 
kinase (PGK), elongation factor-1ǂ (EF1ǂ) or WAS promoter has been recommended to 
reduce the likelihood of neighborhood effects causing inadvertent gene activation 
(Zychlinski et al., 2008). The potential of vector-encoded promoters to transactivate host 
genes may be evaluated using in vitro assays (Weber & Cannon, 2007). 
Another potential biosafety feature that has been explored is the inclusion of chromatin 
insulators to shield neighboring genes from the effects of vector-borne enhancers (Nienhuis 
et al., 2006). Insulator elements serve as barriers that separate transcriptionally active 
genomic regions (euchromatin) from heterochromatin and also prevent long-range 
interactions between enhancer/ regulatory elements and neighboring promoters, thereby 
reducing the risk of unintended transactivation of proximate genes. Insulator elements are 
typically cloned into the 3’ LTRs from where they are copied into the 5’LTRs following 
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genomic integration, thus flanking and isolating the transgene cassette. Zychlinski et al. 
reported moderately positive results with reduced transformation of murine HSCs when a 
250 basepair (bp) core element of chicken hypersensitive site 4 (cHS4) insulator was 
incorporated into the viral vector (Zychlinski et al., 2008). More encouraging results of 
reduced transactivation were reported of a 77 bp element consisting of the ǃ-globin 5’ HS4 
insulator and a homologous region from human T-cell receptor BEAD-1 insulator 
(Ramezani et al., 2008). However, insulators may function in a tissue-specific manner or may 
be effective only against certain promoters/enhancers. Thus more work is needed to screen 
different insulator elements and test them in different cell types and with different 
promoter/enhancer configurations. Incorporation of strong polyadenylation signals in LTRs 
of vector is another option that has been explored to ensure the proper transcriptional 
termination of transgenes and to minimise the risk of internal promoters transcribing 
downstream coding sequences (Nienhuis et al., 2006). However, this carries the potential 
risk of premature transcript termination and transcriptional inactivation of neighbouring 
genes. Although the biosafety afforded by improved transcriptional termination is largely 
speculative, Schambach et al. did report encouraging results of improved transcriptional 
termination using upstream sequence elements in lentiviral and gammaretroviral SIN 
vectors (Schambach et al., 2007). Further evaluations in in vitro and in vivo models are 
necessary to determine if tightly regulated transcriptional termination translates to a 
reduced risk of insertional oncogenesis. 
In summary, stringent selection of cellular promoters devoid of enhancer elements, 
inclusion of chromatin insulators and improved transcriptional termination should 
significantly enhance the biosafety of current SIN vectors. 

3.1.4 Integrase defective vectors 
Risks of insertional mutagenesis can be better managed if the frequency of genomic 
integration is reduced or if episomally maintained vectors are utilized. Virally encoded 
integrases bind to attachment regions (att) in the LTRs and mediate genomic integration of 
retro- and lentiviruses.  Recent years have seen the developments of integrase defective 
vectors (IDV) which are generated either by mutating the viral integrase genes or att regions 
of the LTR (Sarkis et al., 2008). These altered vectors combine the efficient transduction 
capability of viruses with the higher biosafety of non-integrating vectors, although IDVs are 
not completely devoid of integration potential. Integrase defective retro- and lentiviral 
vectors have been developed, with the latter being more prevalent in use as lentiviral 
transduction is not limited to mitotic cells.  
Integrase defective lentiviral vectors (IDLV) have been generated via mutations to integrase 
proteins at their catalytic domains, LTR-interacting N-terminal domains or non-specific 
DNA-binding C-terminal domains.  Of these, the D64V and D116N mutations in the 
integrase catalytic domains have been more widely studied and reported to reduce residual 
integrase activity by 100- to 1000-fold compared with wild-type vectors (Apolonia et al., 
2007) but with uncompromised transgene expression in vivo and about 2- to 10-fold decrease 
in expression in vitro (Apolonia et al., 2007).  IDLV transduced cells can maintain stable 
transgene expression in the non-dividing state and may find useful applications in gene 
transfer to post-mitotic cells such as in muscle, liver and retina. They may also be useful in 
immuno gene therapy applications such as DNA vaccination where only transient 
expression of the transgene is required. Another application being explored is the use of 
IDLV as an episomal gene delivery technique for expressing  site-specific integration factors 
such as zinc finger nucleases (ZFNs) (Lombardo et al., 2007), transposons (Vink et al., 2009) 
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and recombinases (Moldt et al., 2008). Lastly, IDLV may be developed as a safer alternative 
to non-integrating viral vectors such as AAV which are known to integrate quasi-randomly 
into the genome at low frequencies (Smith, 2008). 

3.1.5 Novel and hybrid viral vectors 
Ideal gene therapy vectors should be capable of accommodating large inserts and of efficient 
gene transfer in a broad range of cell types, while maintaining stable transgene expression 
with negligible genotoxicity. Much effort has been directed to designing and combining the 
positive traits of different viral vectors in a bid to refine therapeutic gene delivery. 
As mentioned in the preceding section, IDVs combine the traits of broad tropism and 
efficient transduction of wild-type viruses with improved biosafety of episomal vectors. 
IDLV combined with Sleeping Beauty transposon/transposase, ZFNs and FLP/FRT 
recombinases are hybrid vectors tailored to integrate transgenes in a site-specific manner as 
directed by the transgene expressed proteins. Such a design also ensures that integrations 
are altered from the quasi-random pattern of the wild-type lentivirus to those directed by 
the coding proteins. Another example of a chimeric lentiviral vector with altered integration 
specificity was described by Gijsbers et al. (Gijsbers et al., 2010) who demonstrated 
retargeted integration specificity when artificial chromatin tethers were fused to a lentiviral­
integrase interacting protein called lens epithelium-derived growth factor/p75 
(LEDGF/p75). By replacing the DNA/chromatin interacting domain of LEDGF/p75 with 
heterochromatin 1ǃ (CBX1), lentiviral integrations were retargeted to genomic loci bound by 
CBX1. This study also raises possibilities of designing both viral and non-viral vectors with 
LEDGF/p75 fusion proteins targeting safer genomic sites. 
Hybrid HSV/AAV vectors have been constructed in an attempt to combine the large insert 
cloning capacity of non-integrating HSV vectors (up to 150 kb) with the site-specific 
integration property of AAV vectors into a genomic hotspot, the AAVS1 locus, and to a 
certain extent, randomly (De Oliveira & Fraefel, 2010). Other HSV-based hybrid vectors 
include the episomally maintained HSV/EBV and randomly integrating HSV/RV vectors. 
Given the propensity of MLV gammaretroviral vectors to mediate insertional mutagenesis, 
vectors with safer integration profiles are being developed and investigated actively. For 
instance, the non-pathogenic foamy spumaretrovirus has shown promise in treating canine 
leukocyte deficiency without any reported adverse outcomes for up to 2 years (Bauer et al., 
2008). These vectors also had a more favourable integration profile i.e. decreased frequency 
of integrating near oncogenes. While novel hybrid vectors appear promising, continued 
long-term efficacy and biosafety studies are necessary before they can be serious candidates 
for clinical gene therapy. 

3.2 Improvements to integrating non-viral vectors 
Non-viral vectors have found useful applications largely in the laboratory and pre-clinical 
settings but represent only  24% of all vectors used in clinical gene therapy trials. The fact 
that viruses have evolved over millennia to become effective infectious agents in humans 
understandably makes them superior in many aspects as gene transfer agents. The ultimate 
goal of designing synthetic non-viral vectors is to combine the positive traits of viruses 
without the negative traits of genotoxicity. Significant improvements have been made to 
methods of non-viral vector delivery (Conwell & Huang, 2005) with reported efficiencies 
that rival those achieved with viral transductions. Two classes of non-viral vectors may 
contribute to improved biosafety of gene therapy, namely episomally maintained vectors 
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and integrating vectors with safer integration profiles. The ultimate goal of an ideal gene 
therapy vector in the context of treating many genetic diseases would be to ensure durable 
and regulated transgene expression either from an autonomously replicating artificial 
chromosome/stable plasmid or from a limited number of transgenes integrated into safe 
harbors in the genome. This section will review the progress in the developments of non-
viral integrating vectors with safer integration profiles. 

3.2.1 Transposase and recombinase  
Transposases and recombinases are two classes of site-specific genome modifying agents. 
These enzymes recognise and bind to short stretches of DNA sequences within the vector 
and in the genome to mediate the integration of exogenous vector DNA into the genome. 
Analysis of the integration spectrum of transposases and recombinases identified some that 
mediate quasi-random and sequence specific integrations into the genome, a distinct 
advantage over randomly integrating viral vectors. Transposases and recombinases are also 
less immunogenic (Yant et al., 2000), have lower enhancer/promoter activity (Walisko et al., 
2008) and have fewer epigenetic effects at genomic integration sites (Zhu et al., 2010), 
relative to viral vectors. Given their capacity to function in mammalian cells, these non-viral 
integrating systems evoke exciting possibilities for development into safer alternatives than 
randomly integrating vector systems. Several different classes and strains of transposases 
and recombinases have been discovered and studied as gene therapy agents. One major 
limitation is their relatively relaxed stringency of site-specific integrations which again 
raises the spectre of insertional mutagenesis. Therefore, a major effort has been directed at 
developing non-virally targeted gene integration systems with improved specificity. A note 
of caution is the low risk of unintended integration of the transposase or recombinase, 
which could have deleterious effects on the genome. Such risks may be minimised or 
abrogated by using mRNA rather than DNA to deliver the recombineering proteins. The 
next sections highlight advances and developments of the more commonly used 
transposases and recombinases.  

3.2.1.1 Transposase – Sleeping Beauty, Piggy Bac, Tol2 

Sleeping Beauty (SB) transposon, derived from tc1/mariner superfamily, is one of the most 
widely investigated transposase systems to date. SB transposase mediates genomic 
integration of vector sequences flanked by 2 inverted terminal repeats (ITR) at both 
transposon ends, preferentially into TA dinucleotides located within DNA segments with 
increased local bendability (Geurts et al., 2006), via a “cut-and-paste” mechanism. 
Integrations are quasi-random , without any preference for transcriptionally active regions 
(Huang et al., 2010). Optimised SB has a transposition efficiency ranging from 2.5 to 17% 
(Ortiz-Urda et al., 2003). Stable transgene integration using this system has enabled long 
term transgene expression in a variety of mammalian cells and animal models (Izsvák et al., 
2009). Owing to the randomness of integrations, SB systems have been used also in the 
genetic screening and identification of potential oncogenes in in vitro and in vivo models. It is 
worth reiterating that these SB systems are different from those used in gene therapy 
applications. SB systems used in oncogene screening and discovery are deliberately 
modified via incorporation of strong transcriptional enhancers and splice acceptor sites to be 
potently mutagenic (Collier et al., 2005). Thus far, the use of SB as a gene therapy agent in 
animal models has not been associated with any tumorigenesis (Ohlfest et al., 2005). 
Inherent limitations of the SB system include limited cloning capacity, inhibition of 
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transposition at high transposase concentrations and lack of targeting specificity of 
integrations.  
Initial studies with naive SB system revealed their inherently low transposition efficiencies. 
Many modifications have since been introduced to create hyperactive versions of SB with  
increased transposition activity such as SB10 (Ivics et al., 1997), SB11 (Geurts et al., 2003) and 
SB100X (Mátés et al., 2009). The hyperactive SB100X, which was reported to have a 100-fold 
increased transposition activity, was discovered by high-throughput screening of mutants 
created by a PCR-based DNA shuffling strategy. Using these improved versions of SB, 
efficient transposition has been reported in a variety of human primary cells such as cord 
blood derived CD34+ hematopoietic progenitor cells (Xue et al., 2009) and  primary T cells 
(Huang et al., 2010). 
The issue of non-specific targeting by SB has been another prime focus of research aimed at 
inducing site-specific integration. An ideal modification would enable SB to direct 
transposition to a single pre-defined “safe harbor” in the genome. Skewing the random 
integration pattern of SB towards a more targeted profile would be hailed as an 
improvement. Several groups have attempted to do this by incorporating specific DNA-
binding domains (DBD) either to the SB transposase (Yant et al., 2007), the transposon 
bearing the gene of interest (Ivics et al., 2007) or via a fused  DBD-protein binding domain 
(PBD) that interacts with the transposase without modifying it (Ciuffi et al., 2006). The first 
strategy of fusing DBDs such as E2C (a synthetic zinc finger protein that recognizes an 18 bp 
target site in the 5’-untranslated region of the human ERBB2 gene) and Gal-4 to the 
transposase has met with limited success. With the second strategy, Ivics and collaborators 
were able to demonstrate re-targeted integrations by incorporating a fusion of two DBDs to 
direct the transposon bearing the gene of interest to specific genomic sites where 
transposition could be mediated by the transposase (Ivics et al., 2007). The third strategy of 
utilizing a fusion of peptides to interact with the genomic locus of choice (via DBD) and the 
transposase (via PBD) without compromising transposase activity has also been reported by 
the same group (Ivics et al., 2007). However, it must be noted that none of these site 
targeting modifications has yet been successfully translated to human gene therapy 
applications, possibly due to the relatively poor efficiencies of re-targeting specificity. 
The non-viral integrating SB system offers an alternative strategy for stably modifying cells 
for gene therapy applications. Their lack of propensity for integrating into active 
transcriptional units may make them safer than retroviral and lentiviral vectors. This has led 
to the idea of hybrid vectors that combine SB transposition with improved delivery by 
integrase defective lentiviruses (Vink et al., 2009). However, until effective solutions are 
developed to improve the specificity of integrations, the SB system may only have limited 
appeal for clinical gene therapy. The only human clinical trial (phase I/II, NIH-OBA no. 
0804–922) utilizing the SB system is based on redirecting the specificity of T-cells by stable 
expression of CD19 specific-chimeric antigen receptors mediated by the SB11 transposase 
system (Hackett et al., 2010). However, caution should be exercised before more transposon­
based systems are translated to clinical applications, especially in view of the unexpectedly 
high copy number of random integrations of transposase plasmid in human primary T cells 
(Huang et al., 2010). 
Piggy Bac (PB) transposase, isolated from the cabbage looper moth (Trichoplusia ni) is 
another class of transposase which is active in human and murine cells (Ding et al., 2005). PB 
system has been effectively used to reprogramme induced pluripotent stem (iPS) cells 
(Woltjen et al., 2009) and to mutagenize mice for cancer gene discovery (Rad et al., 2010). PB 
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demonstrated higher transposase activity than SB11 and could also be modified to 
incorporate DBD without loss of transposase activity (Wu et al., 2006). Several improved 
versions of PB have been reported. Liang et al. (Liang et al., 2009) demonstrated increased 
chromosomal transposition with a codon optimised PB and, more recently, reported the 
development of a hyperactive PB with a 7-fold increase in integration activity and showed 
its application for generating  murine iPS cells (Yusa et al., 2011). 
The Tol2 transposon of the hobo/Activator/Tam3 (hAT) family of elements derived from 
the medaka fish (Orizyas latipes) is active in human cells (Grabundzija et al., 2010). Like PB, 
Tol2 also tolerates overproduction inhibition and unlike the SB system has a large cloning 
capacity (up to 18 kb). However, both PB and Tol2 systems have significantly increased 
integrations into transcription start sites (TSS), CpG islands, DNaseI hypersensitivity and 
were able to alter transcriptional levels of neighboring genes close to integration sites in 
human T cells (Huang et al., 2010). This suggests a greater risk of insertional mutagenesis 
compared with the SB system. In this respect, the PB and Tol2 transposases may be better 
suited for applications where high frequencies of mutagenesis are desired, such as cancer 
gene discovery in mice (Rad et al., 2010). 

3.2.1.2 PhiC31 phage integrase 

The Streptomyces lividans bacteriophage derived phiC31 integrase, belonging to another class 
of site-specific recombinases (SSR) known as serine recombinases , works through a “cut­
and paste” mechanism to mediate unidirectional integration of an attB (34 bp bacterial 
attachment site) bearing vector sequence to attP (39 bp phage attachment site) or pseudo 
attP sequences found in mammalian genomes. Unlike the reversible cyclization 
recombination (Cre) recombinase/flippase (flp) systems, phiC31 integrase-mediated 
genomic integration results in irreversible insertion of vector sequences flanked by attL and 
attR sequences which are refractory to further recombination by the integrase. The phiC31 
integrase system has been effectively employed in recombinase mediated cassette exchange 
(RMCE) studies to insert transgenes into pre-integrated wild-type attP sites and also, more 
importantly, for stable gene transfer into endogenous pseudo attP sites in mammalian 
genomes. Its property of mediating irreversible unidirectional site-specific recombination 
into a limited number of chromosomal sites in human cells spurred intense interest as a 
relatively safer method for stable gene transfer for clinical applications. PhiC31 integrase has 
been successfully employed both in vitro and in vivo to induce stable expression of 
therapeutic transgenes. Ortiz-Urda et al. demonstrated functional correction of type VII 
collagen deficiency and laminin V deficiency in skin samples from patients with recessive 
dystrophic epidermolysis bullosa and junctional epidermolysis, respectively (Ortiz-Urda et 
al., 2002; Ortiz-Urda et al., 2003), Thyagarajan et al. generated ES lines with stable transgene 
expression (Thyagarajan et al., 2008) and Ishikawa et al. showed the possibility of correcting 
X-linked SCID deficiency by expressing IL2 receptor gamma chain in T cell-lines from SCID­
X1 patients (Ishikawa et al., 2006). Successful correction of deficiencies of 
fumarylacetoacetate hydrolase (Held et al., 2005), alpha-1-antitrypsin, factor IX (Olivares et 
al., 2002) and dystrophin (Bertoni et al., 2006) have also been demonstrated in murine 
models. Experimental data and bioinformatic analyses point to 370 actual and potential 
genomic sites for phiC31 integrase-mediated integrations (Chalberg et al., 2006). The limited 
number of potential sequence-specific integrations coupled with the potential for long term 
gene expression suggests that phiC31 integrase could be a safer alternative to randomly 
integrating vectors. However, several studies have raised the possibility that phiC31 
integrase could induce infrequent chromosomal translocations (Liu et al., 2006), possibly by 
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promoting recombination between two endogenous pseudo attP sites in different 
chromosomes. Work done by our group (Sivalingam et al., 2010) suggests that the 
frequencies of chromosomal aberrations may differ in different cell types. Using spectral 
karyotyping, we observed translocations in only 4 of 300 metaphases of primary cells 
treated with phiC31 integrase, a frequency similar to the low background of chromosomal 
abnormalities reported in normal human somatic cells (Varella-Garcia et al., 2007). 
Moreover, chromosomal translocations have been observed in vitro in cells treated with 
vectors already approved for clinical trials such as the AAV vector (Miller et al., 2005), albeit 
without any pathological  consequences in vivo. Concerns of potentially pathogenic 
chromosomal rearrangements have somewhat dampened interest in phiC31 integrase as an 
agent to be translated into clinical therapy. Although there is still a push to develop gene 
therapy vectors with impeccable safety profiles, our work suggests that phiC31 integrase 
has a relatively benign biosafety profile compared to randomly integrating retroviral and 
lentiviral vectors. Attempts to increase the site-specificity of phiC31 integrase include 
mutagenised versions of phiC31 integrase which display increased prevalence of integration 
at a pseudo attP site in chromosome 8p22 (Sclimenti et al., 2001) or other pseudo attP sites 
(Liesner et al., 2010), and versions with higher integration frequencies (Keravala et al., 2009). 
Thus, ex vivo gene therapy approaches utilising phiC31 integrase could be rendered even 
safer by using integrases with greater site-specificity and pre-screening gene modified cells, 
preferably with high-throughput methods, to exclude suspect cells and select cells with safe 
characteristics. 

3.2.2 Targeted gene integration 
Although transposases and SSRs integrate vectors non-randomly,  some have questioned if 

these systems are truly  sequence-specific or merely quasi-random as these systems are 

known to mediate integrations into degenerate sequences with very little homology to wild-

type sequences. The terms site-directed or targeted gene integration could be used to 

describe modifications that are intended to direct integration to specific genomic regions 

recognised by the modifying agent which is usually a DNA-binding protein (DBP). Altering 

or skewing the integration preference of SSRs towards a particular locus is an apparent 

advantage as it reduces the risk of integrations into unfavourable and/or unsafe genomic 

regions. Gene targeting can be mediated by DNA-protein interactions or DNA-base pairing 

interactions. Naturally occurring DNA-binding proteins such as zinc finger proteins (ZFP) 

or viral peptides such as Rep have been deployed to favor DNA-protein interactions defined 

by their inherent specificities. 

Several strategies have been proposed to achieve targeting specificity with DBPs. One 

approach is to tether a DBP to a recombinase by direct fusion or protein-protein interactions. 

This has the theoretical effect of enhancing  local concentrations of the SSR at sites specified 

by the DBP and could more effectively restrict integration activity to a specific genomic 

region of choice. Care should be taken to ensure that the tethered SSR is not adversely 

compromised functionally. Another less frequently investigated approach relies on binding 

of the DBP to the vector sequence as a means of targeting vector sequences to the locus of 

interest (Izsvák et al., 2010). This section will review examples of targeted gene integration. 

3.2.2.1 Targeting via DNA binding proteins 

A classical example of targeted gene integration is observed with the AAV system which 
has been reported to mediate 70 to 85% of integrations into the AAVS1 site in human 
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chromosome 19q13.3. Site-specific integration of AAV is attributed to viral Rep proteins 
(Rep68/Rep78) that recognize Rep binding elements in the inverted terminal repeats (ITRs) 
of AAV and in the AAVS1 site (Jang et al., 2005). This has led to the development of non-
viral gene targeting using vector sequences flanked by AAV ITRs that can be recognised, 
nicked and integrated into AAVS1 sites by Rep proteins expressed in trans (Pieroni et al.,  
1998). Philpott and collaborators (Philpott et al., 2002) reported that a 138 bp P5 integration 
efficiency element within the ITR was sufficient for efficient Rep binding. More recently 
Feng et al. (Feng et al., 2006) demonstrated that efficient RBE binding and AAVS1 targeted 
integration could be achieved with vector sequences flanked by a 16 bp fragment within the 
ITR (RBEitr). Rep based non-viral systems mediate AAVS1-specific integrations in in vitro 
clonal cultures at frequencies ranging from 12 to 60% (Howden et al., 2008; Pieroni et al., 
1998). On this basis, these systems have been tested and shown to operate in vivo (Liu, R. et 
al., 2010). In this sense, Rep protein may be regarded as a DBP that redirects vector 
sequences to a targeted genomic locus, notwithstanding the possibility for random 
integrations simultaneously. The persistent potential for random gene integrations coupled 
with the need for antibiotic selections to isolate cells with the desired targeted integrations 
and the relatively low targeting efficiencies are possible reasons why this strategy has not 
garnered much interest. 
Several groups have explored the possibility of combining the integration mechanisms of 
transposons, HIV-1 integrase, phage integrase or SSRs with the desired DNA binding 
specificities of DBPs. Early gene targeting studies relied on the use of a handful of well 
studied naturally occurring DBPs such as yeast Gal4 (binds upstream activating sequences), 
Escherichia coli Lex A (binds to Lex A operator sequence) (Katz et al., 1996), phage λ 
repressor (binds phage λ operator sites) (Bushman, 1994) and murine transcription factors 
such as Zif268 (Bushman & Miller, 1997). Although Gal4, lex A and λ repressor proteins 
were instrumental in demonstrating the feasibility of targeted gene integrations in vitro, they 
were not adaptable to clinical applications as they lack physiological binding sites in the 
human genome. However, they have been used to bind vector sequences bearing their 
recognition elements and, fused with other endogenous DBPs, can be engineered to 
recognise elements in the human genome (Ivics et al., 2007). Other naturally occurring 
cellular DBPs such as scaffold attachment factor (SAF) (Ivics et al., 2007) and LEDGF (Ciuffi 
et al., 2006) also bind to several human genomic regions (without precise sequence 
recognition) and facilitate integration in vitro. Recent work by Gijsbers and collaborators 
showed the potential for redirecting lentiviral integrations into transcriptionally inactive 
regions by modifying the natural LEDGF/p75-viral integrase interactions (Gijsbers et al., 
2010). Such retargeting strategies could potentially be adapted to engineer hybrid viral 
vectors with safer integration characteristics compared to current generations of viral 
vectors. 
Amongst transcription factors, the zinc finger proteins (ZFP) are an especially favored class 
of DBPs, given that the human genome codes for an estimated 4500 ZFPs. An inherent 
limitation of naturally occurring ZFPs is their tendency to recognize short DNA sequences 
which may be present at many sites in the genome. This prompted engineering artificial 
ZFPs that could be tailored to bind to unique genomic sites. Advances in protein structure 
elucidation and high-throughput techniques for studying DNA-protein interactions have 
ushered in new possibilities of creating user-defined custom ZFPs to target specific loci in 
the human genome.  Great expectations of the practical utility of customized ZFPs has 
spawned commercial investment in this technology which is the business platform of 
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Sangamo Biosciences which focuses on designing novel customized synthetic ZFPs for use 
as modulators of transcriptional control and as gene targeting agents in combination with 
nucleases (zinc finger nucleases). These artificial ZFPs could potentially retarget the 
integration spectrum of SSRs or viral integrases to enhance their biosafety.  
Although tethering DBPs to recombinases and transposases has enriched targeted gene 
integrations, such chimeric systems continue to suffer from the disadvantage of non-
directed integrations owing to residual activity of the recombinase/transposase and its 
inherent specificity. The holy grail of gene targeting is integration only at a single user 
defined safe harbour without incurring the disruptive consequences of insertional 
mutagenesis. This ideal may now be within reach with the advent of synthetic ZFPs. The 
combination of such synthetic ZFPs with existing recombinases and transposase has not yet 
been sufficiently evaluated. Recent years have also seen the development of other gene 
targeting systems based on homologous recombination which promise highly accurate gene 
integration but whose effectiveness has yet to be proven. 

3.2.3 Site-specific homologous recombination 
The transgene integration strategies discussed thus far rely on the activity of an enzyme or 
protein to direct and mediate the integration of vector DNA into the genome randomly or 
with limited specificities. Another highly site-specific strategy that has been utilized for 
many years to create transgenic cells and animals with targeted genome modifications 
exploits endogenous repair mechanisms of host cells to execute homologous recombination, 
thereby incorporating exogenous DNA into specific genomic sites. Effective homologous 
recombination requires transgenic DNA to be flanked by sequences homologous to the 
genomic sequences into which they are to be integrated. These exogenous DNA sequences 
are templates in the process of homologous recombination and are subsequently replicated 
along with the genomic locus during host cell divisions. The basal frequency of homologous 
recombination involving exogenous DNA is very low, occurring in 1 out of 105 - 107 treated 
cells. It was discovered that this frequency can be enhanced 1000-fold by creating site-
specific nicks in the genome (Rouet et al., 1994), thereby stimulating DNA repair at these 
sites. DNA is repaired by one of two main mechanisms i.e. non-homologous end joining or 
homologous recombination, although variations of these mechanisms are also possible. 
Error prone non-homologous end joining results in genomic DNA repair without transgene 
integrations while homologous recombination may result in site-specific integration of the 
transgene into the desired locus. In the context of gene therapy, the prospect of exploiting 
homologous recombination is appealing as it holds the potential for targeted gene repair 
and precise transgene integration into safe genomic loci. A patient’s cells could in theory be 
modified ex vivo to correct disease-causing mutations or to integrate a transgene for long 
term expression of a deficient or defective protein before being reimplanted into the same 
patients (autologous cell therapy). Recent advances exploring such strategies will be 
discussed in this section. 

3.2.3.1 Meganucleases 

A more efficient and reproducible strategy for gene editing or integration that has been the 
focus of recent research is the use  of highly site-specific endonucleases to induce double 
stranded DNA breaks into specific genomic sites in order to stimulate deletions via non­
homologous end joining or homologous recombination of exogenously delivered DNA into 
these sites. Three main classes of engineered endonucleases have emerged: zinc finger 
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nucleases which are chimeras of ZFP and catalytic domain of Fok I restriction enzyme; 
chemical endonucleases which consist of chemical or peptidic cleavers fused with DNA 
recognising polymers; and meganucleases (homing endonucleases) which are capable of 
recognizing and cleaving target DNA sequences, usually 14 - 40 bp in length. HO 
endonuclease which mediates mating type switch in Saccharomyces cerevisiae, I-CreI and I-
SceI meganucleases are examples of naturally occurring homing endonucleases. However, 
the applications of naturally occurring meganucleases have been limited either by the lack 
of recognition sites or by the presence of more than a single site in the human genome. The 
LAGLIDADG family of meganucleases includes I-SceI and I-CreI which are the largest and 
best characterised meganucleases, and are active as monomers or homodimers. Their 
catalytic cleavage centres are embedded within the DNA-binding domains and thus making 
non-specific cleavage very unlikely. Elucidation of the protein structures of endonucleases 
such as SceI and CreI have accelerated engineering of meganuclease variants with unique 
genomic recognition sites. Most effort have been directed to developing I-CreI and I-SceI 
variants with unique specificities and reduced off-target cleavage activity. Thus far two 
engineered meganucleases cleaving unique genomic loci in the human XPC (Arnould et al., 
2007) and Rag1 genes (Grizot et al., 2009) have been reported. Other improvements have 
been to engineer variant CreI (naturally homodimeric) meganuclease to function as obligate 
heterodimers (Fajardo-Sanchez et al., 2008) or as single-chain derivatives (Li et al., 2009). 
Computational approaches (Ashworth et al., 2006) have integrated structural and high 
throughput screening data to identify the cleavage properties of 18000 engineered 
meganucleases,  based mostly on CreI meganuclease ( Galetto et al., 2009). 
Thus far, homologous recombination of transgenes with meganucleases has been 

demonstrated in only a few cell types and a comprehensive evaluation of their genotoxicity 

potentials has not been reported. The future development of engineered variants that 

collectively offer a wide spectrum of unique integration sites may be useful but will need 

careful evaluation. At present, there is a need to engineer endonucleases having user-

defined specificities. This requirement may be more readily fulfilled with zinc finger 

nuclease technology given the potentially broader spectrum of genome-specific ZFPs that 

can be custom engineered.  

3.2.3.2 Zinc finger nucleases 

Zinc finger nucleases (ZFNs), first designed by Chandrasekaran and collaborators (Kim et 
al., 1996), are artificial chimeras composed of a tandem array of DNA-binding zinc finger 
proteins fused with the catalytic subunit of the non-specific FokI restriction endonuclease via 
a short linker peptide. Naturally occurring zinc finger transcription factors, such as the 
murine Zif268 or human SP1, provide the framework in which each Cys2-His2 zinc finger 
that specifically recognises a 3-bp DNA sequence can be replaced to generate a novel ZFP 
capable in theory of binding to unique genomic sequences. Such polydactyl ZFPs have been 
assembled by modular assembly (Segal et al., 2003) by which individual zinc fingers are 
combined in a modular fashion to form a tandem array designed to recognize a selected 
DNA sequence. Another strategy   is oligomerised pool engineering (OPEN) that takes into 
account the context dependence of sequence recognition and binding of each individual zinc 
finger as it may be influenced by its neighboring fingers (Maeder et al., 2008). Most recently, 
Sander and collaborators introduced yet another approach that takes into account context 
dependence of ZFPs. Termed the context dependent assembly (CoDA), this method involves 
first identifying two pairs of efficient ZFPs as identified by bacterial-2 hybrid assays. A 3­
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finger ZFP array is next assembled using, as the central zinc finger, the finger that was 
common between the two pairs (Sander et al., 2011). ZFNs are designed as pairs to bind to 
adjacent nucleotide sequences on opposite strands. Their binding and localization at the 
intended locus induces dimerization and activation of FokI endonuclease activity which 
induces double stranded DNA breaks at these specific sites. DNA breaks are repaired either 
by non-homologous end joining or by homology directed repair (presumably via synthesis 
dependent strand annealing). Initial concerns regarding the potential toxicity of off-target 
cleavage mediated by homodimers  of FokI catalytic monomers has been addressed by FokI 
variants engineered to function as obligate heterodimers (Miller et al., 2007; Szczepek et al., 
2007). 

Fig. 6. Genome editing with ZFNs. Site-specific cleavage of genomic DNA by ZFNs can be 
repaired by homology-directed repair to correct or induce point mutations and to insert 
single or multiple transgenes (in the presence of donor molecule).  Repair by NHEJ results in 
gene disruption via small insertions and/or deletions. Site-specific insertion of molecular 
tags and large genomic deletions may also be achieved with ZFN mediated cleavage of 
genomic DNA. (Adapted from Urnov et al., 2010.) 

Two major applications of ZFNs to gene therapy are permanent gene disruption by 
insertions/deletions events during the error-prone non-homologous end joining repair or 
site-specific transgene insertion via repair by homologous recombination or homology-
directed repair (figure 6). Since the turn of the millennium, ZFN technology has been 
harnessed to demonstrate feasibility of targeted gene corrections, transgene insertions and 
gene disruptions, in addition to pioneering a new approach for deriving transgenic plants 
and animals. ZFN technology has been used to derive transgenic crops with improved traits 
by mutagenesis of genes or targeted integration of herbicide resistance genes in species such 
as Arabidopsis thaliana, tobacco and Zea mays (Shukla et al., 2009; Townsend et al., 2009) and 
to derive specific gene knock-outs strains of mice and rats (Rémy et al., 2010). Given the 
ability to permanently disrupt specific genes, ZFNs have proved useful for elucidating gene 
functions during embryogenesis and development. Heritable targeted gene disruption has 
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been demonstrated in human embryonic stem cells, Danio rerio and Drosophilia (Hockemeyer 
et al., 2009; McCammon & Amacher, 2010; Carroll et al., 2010). ZFN-mediated gene knock­
out has been effectively employed to disrupt  the CCR5 locus in human hematopoietic stem 
cells as a possible therapeutic strategy to confer resistance to HIV-1 infection by adoptive 
cell therapy in vivo (Perez et al., 2008). This has led to the use of ZFN-modified T cells in 
three phase I human clinical trials - for glioblastoma (NCT01082926) and HIV-1 treatment 
(NCT00842634, NCT01044654) (Urnov et al., 2010). Targeted disruption of several other 
genes such as Bax and Bak has also been demonstrated in human cells (Cost et al., 2010). The 
ability to correct genetic mutations by base substitution and the theoretical potential for 
exquisitely precise site-specific gene insertions has opened a plethora of possibilities for 
gene therapy applications. Porteus and Baltimore first reported the possibilities of targeted 
ZFN mediated genome editing in human somatic cells with gene correction of a pre-
integrated GFP reporter gene (Porteus & Baltimore, 2003). Work by Urnov et al. has also 
been influential in demonstrating efficient correction of a IL2Rγ gene mutation in human 
cells, pointing to the prospect of future therapy for SCID-X1 (Urnov et al., 2005). Others 
have shown the feasibility of integrating   exogenous DNA up to 8 kb in size (Moehle et al., 
2007), and into other human genomic sites such as PIGA, PPP1R12C and POU5F1 in primary 
cells such as mesenchymal stromal cells (Benabdallah et al., 2010), cord blood derived 
CD34+ HSCs (Lombardo et al., 2007), embryonic stem cells and iPS cells (Hockemeyer et al., 
2009). 
A current limitation of ZFN technology for site-directed transgene insertion is concern about 

unintended genomic modifications and possible biological hazards therefrom. Although 

several groups have demonstrated that the likelihood of off-target genomic modifications is 

low, there has been no comprehensive genome-wide analysis to date to rigorously support 

these claims. Potential off-target interactions of ZFNs must be evaluated by genome-wide 

techniques such as CHIP-based methods combined with deep sequencing in order to detect 

rare integration events. Long term monitoring of ZFN-modified cells is essential, using 

small and large animal models to assess fully any potential genotoxicity. The current 

efficiency of targeted gene insertion using ZFNs is still relatively low and may not warrant 

its broad application in human gene therapy. This awaits more specific ZFNs with robust 

and efficient targeted genome modification activity. Several useful resources are currently 

available in the public domain to aid the design, construction and testing of specific ZFNs. 

Helpful information and software tools pertaining to ZFN design and construction as well 

as a collection of ZFN plasmids and reagents for constructing and testing ZFNs are readily 

available to the research community at The Zinc Finger Consortium 

(http://www.zincfingers.org). Information on individual C2H2 zinc fingers and engineered 

zinc finger arrays have been compiled into databases such as the Zinc Finger Database 

(ZiFDB; http://bindr.gdcb.iastate.edu/ZiFDB) (Fu et al., 2009). Web-based resources such 

as Zinc Finger Targeter (ZiFiT; http://bindr.gdcb.iastate.edu/ZiFiT/) (Sander et al., 2010) 

and more recently ZFNGenome (http://bindr.gdcb.iastate.edu/ZFNGenome) (Reyon et al., 

2011) provide excellent tools to aid the identification of potential ZF binding sites in user 

supplied target regions. They include software that calculate strengths of predicted ZFNs to 

be engineered by modular assembly or the OPEN method and also give information 

regarding potential off-target binding sites. Furthermore, Sangamo Biosciences and several 

other groups have described assays to evaluate the functional specificities of user-designed 

ZFNs Recent improvements to ZFNs have also focused on deriving FokI variants with 

increased cleavage activities, in an attempt to increase the rate of genome modifications 
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(Guo et al., 2010). Higher ZFN cleavage activity possibly due to increased protein stability 

was also achieved by conditioning cells to transient mild hypothermia (Doyon et al., 2010). 

We need better understanding of the factors that influence the efficiency of intracellular 

homologous recombination and how these can be exploited to obtain higher gene targeting 

efficiencies. More work is needed to identify and test safe harbors in the human genome and 

to design ZFNs targeting them. Lastly, improvements to vector designs such as CpG-free 

vectors, the use of suitable physiological promoters, codon-optimised transgenes and 

incorporation of relevant insulator and enhancer elements would be pertinent to achieve 

durable transgene expression and minimise risks of insertional gene mishaps. 

An ideal gene-based treatment for some monogenic disorders would be to derive self-
renewing cells expressing a corrected version of the defective gene via site-specific 
integration in a safe genomic locus. Such gene modified cells could be exhaustively 
evaluated for their genotoxic potential ex vivo before being administered into patients. Given 
the lexicon of site-specific ZFNs that is being developed, this could be a real possibility in 
the near future with ZFN-modified stem cells.  

3.3 Episomal vectors 
One of the most apparent advantages of extra-chromosomal vectors as gene transfer agents 
is the greatly decreased risk of insertional mutagenesis compared to integrating vectors. 
Episomal plasmids can be maintained at high copy number, have potentially higher 
transgene expression levels and are less likely to suffer transgene silencing or positional 
variegation effects associated with genomic integrations. 
The essential characteristics of extra-chromosomal vectors are episomal maintenance, 
autonomous replication and segregation into daughter cells. Episomal vectors can be 
categorised as either viral based if they rely on viral origins of replication and other virally 
encoded proteins for replication and partitioning into daughter cells, or chromosome based, 
if they depend on elements derived from the human genome (figure 7). Examples of viral 
based episomal vectors include those based on plasmid replicons of viruses such as simian 
virus 40 (SV40), bovine papillomavirus (BPV) and Epstein Barr virus (EBV) or those based 
on plasmid replicons carrying limited viral components such as oriP/EBV nuclear antigen 1 
(EBNA1). Chromosome based episomal vectors include the scaffold/matrix attachment 
region (S/MAR) based pEPI vectors and artificial chromosomes. 

3.3.1 Viral based episomal vectors 
Concerns relating to the oncogenic transforming properties of polyoma viruses such as SV40 
and the restricted mode of replication afforded by BPV have deterred the use of such viral 
replicon based vectors. The EBNA/oriP episomal vector has been one of the more 
commonly used viral based episomal vector systems tested for gene therapy. It relies on the 
EBV origin of replication (oriP) and the trans-acting factor, EBNA-1, for episomal replication 
within eukaryotic cells. The origin of replication consists of the dyad symmetry (DS) 
element and the family of repeats (FR) elements which serve as binding sites for EBNA-1. 
Interaction of EBNA-1 with DS elements mediates episomal replication while interaction 
with FR elements ensures nuclear retention of oriP bearing plasmids. Long term transgene 
expression has been demonstrated with the use of EBNA/oriP plasmids both in vitro and in 
vivo (Saeki et al., 1998). A major drawback is the concern that EBNA-1 may have oncogenic 
effects (Schulz & Cordes, 2009) although this has been questioned by a single report that 
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Fig. 7. Episomal vectors and artificial chromosomes.  EBV-based episomal vectors require 
EBNA-1 and oriP elements for nuclear retention and episomal replication while S/MAR 
elements support the same functions in chromosome-based pEPI vectors. Nuclear retention 
for both types of vectors is mediated by tethering to subnuclear structures and 
transcriptionally active sites in the chromosomes. Mini-chromosomes or artificial 
chromosomes bearing selective genomic regions, centromeres, telomeres and selection 
marker can be assembled de novo and have been shown to segregate into daughter cells 
during mitosis. (Redrawn from Lufino et al., 2008.) 

EBNA-1 does not activate cellular genes (Kang et al., 2001). Nevertheless, this prompted 
development of safer episomal vectors devoid of EBNA-1/oriP elements. Based on the 
known functions of DS/FR elements and EBNA-1, several groups investigated the 
functional features of episomal vectors substituted for these viral elements. Gerhardj et al. 
showed that episomal replication was possible even when the EBNA-1/oriP DS elements 
were replaced with small eukaryotic sequences (Gerhardt et al., 2006). Recently, Thomae 
and collaborators reported episomal replication and retention of an episomal plasmid 
(pCon) in which the DS elements were replaced with tet-operator sites and EBNA-1 
replaced with a fusion protein comprised of the high mobility group protein, HGMA1a, 
which is known to interact with the cellular replication machinery (Thomae et al., 
2008).These studies have shown the feasibility of developing episomal vectors devoid of 
EBNA-1/oriP elements but have yet to find favor as efficient and safer alternatives to 
existing EBNA-1/oriP episomal vectors. With their ultimate intended use in human clinical 
applications in view, the trend has now shifted to developing episomally replicating vectors 
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exclusively composed of functional eukaryotic chromosomal elements devoid of foreign or 
viral elements.   

3.3.2 Chromosome based episomal vectors 
Three main approaches have been adopted in attempts to develop chromosome based 
episomal vectors: plasmid vectors with mammalian origins of replication, plasmid vectors 
with chromosomal S/MAR and mammalian artificial chromosomes. 
Attempts to derive autonomously replicating plasmids by incorporating mammalian 
origins of replication had previously met with limited success, leading to speculation 
that epigenetic factors control the activation of mammalian origins of replication 
(Jackson et al., 2006). 
The idea of deriving episomally maintained plasmids by incorporating S/MAR was based 
on the assumptions that mammalian replication origins are bound to the nuclear scaffold or 
matrix before the onset of DNA replication. S/MAR sequences function by tethering DNA 
to subnuclear structures and transcriptionally active sites in the chromosomes through the 
interaction with nuclear matrix protein scaffold attachment factor A (SAF-A) (Stehle et al., 
2007) and are necessary for organization of chromatin loops that define the boundaries of 
chromatin domains (Jackson et al., 2006). The best characterised S/MAR based vectors are 
the pEPI vectors, which carry a 2kb- S/MAR element derived from human ǃ-interferon gene 
cluster. These vectors are maintained at copy numbers of less than 10 per cell, replicate once 
per cell cycle and have been shown to be maintained episomally for several hundred 
generations in cell lines (Papapetrou et al., 2005), primary cells and animal models. Episomal 
replication is stringently dependent on transcription upstream from and into the 2kb­
S/MAR element present within the plasmid during, but not after, episome establishment. 
Early generation S/MAR-based pEPI vectors have significant limitations associated with 
low rates of nuclear establishment, unintended genomic integrations, intrinsic vector 
instability, limited cloning capacity and loss of vector in dividing cells in the absence of 
initial selection pressure (Papapetrou et al., 2005). 
Several improvements have since been made to pEPI vectors. Hasse and collaborators 
reported higher and persistent transgene expression in vitro and in vivo when they modified 
the pEPI vector to contain 60% reduced CpG DNA motifs  and replaced the CMV promoter 
with EF1-alpha promoter (Haase et al., 2010). Another study looked into splitting pEPI 
vectors into a “mini-plasmid” containing prokaryotic vector sequences and a “mini-circle 
vector” comprised only of eukaryotic sequences including the transgene and a minimised 
S/MAR (Broll et al., 2010). The reduced size of S/MAR element allowed efficient and 
complete read-through of transcripts into the S/MAR regions and was associated with 
improved mRNA processing and higher expression levels. Furthermore, the use of plasmids 
devoid of prokaryotic sequences avoided the problems commonly associated with 
prokaryotic expression vectors such as heterochromatin formation, gene silencing and 
eventual loss from host cells (Haase et al., 2010). 
Theoretically, artificial chromosomes would fit the role of ideal episomal vectors, given its 

very large cloning capacity, superior mitotic and meiotic stability and efficient segregation 

into daughter cells. Initial work on Saccharomyces cervisiae led to the discovery of yeast 

autonomously replicating sequences and subsequently, to yeast centromeres and telomeres 

which eventually enabled construction of yeast artificial chromosomes. This defined the 

path for constructing human artificial chromosomes (HACs) after human centromeres, 

telomeres and origins of replication had been identified and isolated as essential features for 
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extra-chromosomal replication and retention. HACs can be constructed by a tedious process 

using a top-down or bottom-up approach. In the former, whole chromosomes in live cells 

are truncated by irradiation or telomere fragmentation into minichromosomes. The bottom-

up approach assembles artificial chromosomes from isolated functional elements i.e. 

centromeres, telomeres and replication origins. Transgenes of interest are usually cloned 

into these artificial chromosomes by recombination using the Cre-recombinase/loxP or 

FLP/FRT systems (Kotzamanis et al., 2005). HAC and minichromosomes are delivered into 

cells by microcell mediated chromosome transfer (MMCT) or micro-injection. Several 

groups have demonstrated long-term transgene expression in several cell types modified 

with HACs and minichromosomes (Grimes et al., 2001). The major disadvantages of HAC 

are the difficulty of constructing and producing them and the low efficiency of intracellular 

delivery, given their very large size compared to other gene transfer vectors. Nevertheless, 

successful gene transfer of a 245 kb BAC vector has been demonstrated even with non-viral 

vectors based on a “LID vector” design comprised of lipofectin (L), integrin-targeting 

peptide (I) and DNA of interest (D), with efficiencies ranging from 10 -15% in 293 and MRC­

5v2 cells. HACS are most efficiently delivered by MMCT. The efficiency of delivery and 

integrity of delivered chromosomes can be improved by the use of polycations such as poly-

L-lysine and poly-ethylenimine. Viral delivery systems for extra-chromosomal vectors 

include vectors with EBV and CMV based amplicons, adenoviruses and HSV vectors. 

Another class of gene transfer vectors capable of accommodating large genomic segments 
are the high-capacity extra-chromosomal vectors. These vectors drive the expression of 
genes of interest from a genomic DNA locus of extensive size that could be expected to be 
superior as well as to have greater fidelity of physiological control owing to the combined 
effects of regulatory elements, non-coding regions, chromatin opening elements and native 
promoters compared to cDNA expression from minimal promoters. Recent improvements 
in extra-chromosomal vectors include the development of large capacity F-factor based 
bacterial artificial chromosomes and P1-derived artificial chromosomes that incorporate 
EBV retentions systems (oriP and EBNA). Recent studies have also shown stable transgene 
expression from BAC vectors coupled with S/MAR elements (Lufino et al., 2008). 
Episomal non-viral vectors represent a class of vectors that could function as efficient and 
safe gene therapy agents for persistent long term expression not only in ex vivo modified 
cells but also in vivo. The exciting possibility of utilizing them with adult and embryonic 
stem cells for ex vivo gene therapy warrants investigation. However, as with other gene 
transfer techniques, caution must be exercised to rigorously estimate the small but troubling 
risk of potentially random vector insertion (Wang et al., 2004). 

3.4 Suicide genes as safety mechanisms for treatment modalities 
The benefits of gene therapy for life threatening diseases for which there is currently no 

effective treatment justify  their continued evaluation in clinical trials despite the known 

risks of iatrogenic complications. It is clear from the preceding sections that most research 

efforts have been directed at enhancing the biosafety of gene therapy vectors. An additional 

strategy to intervene and reverse adverse vector effects is to include secondary safety 

mechanisms capable of rapidly triggering the selective elimination of rogue transgenic cells. 

Suicide gene therapy or gene-directed enzyme prodrug therapy relies on the expression of 

transgene products from “suicide genes” that convert inactive prodrugs into cytotoxic 

drugs, thus selectively eliminating transgenic cells that express the suicide gene. Several 
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suicide genes such as herpes simplex virus 1 thymidine kinase (HSV-TK), bacterial cytosine 

deaminase (CD), bacterial carboxypeptidase-G2 (CPDG2), purine nucleoside phosphorylase 

(PNP) and nitroreductase (NR) and their cognate prodrugs have been tested for their 

efficacy as agents of selective cell destruction (Denny, 2003). Problems such as suicide gene 

silencing, incomplete elimination of targeted cells, cytotoxicity to non-gene expressing cells 

and immune response to suicide genes have reduced the efficacy of such approaches. 

Continued improvements to existing suicide genes and prodrugs as well as development of 

novel genes capable of selective elimination of cells with reduced cytotoxicity to normal cells 

are necessary improvements to suicide gene therapy for clinical applications. Recent 

developments in suicide gene therapy strategies will be briefly discussed in this section. 

3.4.1 HSV thymidine kinase 
The HSV-TK suicide gene and its prodrug, gancyclovir (GCV) is one of the most extensively 

studied and the only clinically validated suicide gene/prodrug system. HSV-TK 

phosphorylates the non-toxic acyclic analogs of deoxyguanosine such as GCV and acyclovir 

(ACV) into a toxic form that becomes incorporated into DNA. This leads to eventual cell 

death by inhibiting DNA synthesis and disrupting DNA replication in sensitive cells. The 

use of HSV-TK has found broad applications in vitro as negative selection in homologous 

recombination studies and has been successfully used in phase I-II clinical trials for 

prevention of graft versus host disease following allogeneic stem cell transplantation (Lupo-

Stanghellini et al., 2010). It has also been investigated extensively in cancer gene therapy to 

eliminate tumor cells. An on-going phase III clinical trial by Ark Therapeutics 

(www.arktherapeutics.com) is evaluating HSV-TK combined with surgery and 

chemotherapy in patients with high grade gliomas (cited by Preuß et al., 2010). However, 

there are certain disadvantages of the HSV-TK/GCV system. These include GCV toxicity at 

clinical doses, insensitivity of HSV-TK expressing cells to GCV due to inactive spliced HSV­

TK variants (Garin et al., 2001), cellular toxicity of high levels of HSV-TK  that 

phosphorylate endogenous thymidine (Balzarini et al., 2006) and the inherent 

immunogenicity of viral epitopes presented by HSV-TK protein (Berger et al., 2006). Several 

improvements have been made to improve the performance  of HSV-TK such as reduced 

splice variants (Chalmers et al., 2001), improved GCV sensitivity (Black et al., 2001) and 

decreased affinity for endogenous thymidine (Balzarini et al., 2006). Notable HSV-TK 

variants with improved sensitivity to GCV include the SR39 (Black et al., 2001) and Q7530A 

(Mercer et al., 2002) mutants. Splice corrected versions of HSV-TK (scHSV-TK) have been 

derived by mutating internal splice sites within wild-type HSV-TK gene to prevent the 

emergence of GCV-resistant cells expressing inactive HSV-TK splice variants (Chalmers et 

al., 2001). Another recent development is the use of a codon-optimized HSV-TK A168H 

mutant, TK007 which causes faster and more robust GCV mediated killing of cells while 

having less non-specific cytotoxicity (Preuß et al., 2010) due to the reduced affinity for 

endogenous thymidine. These improved versions of HSV-TK could function effectively as 

benign suicide genes that would be activated to selectively eliminate implanted gene 

modified cells in the event of a serious adverse complication e.g. oncogenic transformation. 

However, outstanding issues such as immunogenicity of HSV-TK and the possibility of 

immune-mediated rejection of gene modified cells reiterate the need to investigate other 

novel human-based and possibly non-immunogenic suicide genes as better alternatives. 
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3.4.2 Suicide genes in development 
The immunogenic nature of non-mammalian suicide genes such as HSV-TK and cytosine 
deaminase and the unintended immune mediated elimination of suicide gene expressing 
cells has prompted the search for novel human and/or non-immunogenic genes able to 
function as suicide genes. A human T-cell surface antigen, CD20, was one of the first human 
suicide genes to be investigated for its capacity to eliminate CD20 expressing T-cells using 
anti-CD20 antibodies. The CD20/anti CD20 mAb may be suitable for use in gene modified 
HSCs but requires high cellular expression of CD20 antigen and may also deplete cells 
normally expressing CD20 (Lupo-Stanghellini et al., 2010). Other systems that could be 
useful include the FK-506 binding protein (FKBP-FAS)/AP20187, AP1903 dimerization 
system that relies on the selective induction of apoptosis by expressing proapoptotic Fas­
ligand molecules intracellularly, to be activated by non-toxic chemically induced 
dimerization of the FKBP-FAS molecules. Another notable non-immunogenic system 
(iCasp9) relies on activating apoptosis in selected cells by fusing the death domains of 
Caspase-9 with FKBP elements, which can be induced to dimerize and activate apoptosis 
(Tey et al., 2007). This system is currently being evaluated in an on-going clinical trial for 
graft versus host disease (cited by Lupo-Stanghellini et al., 2010). 
In summary, the incorporation of safety switches in the form of suicide genes to eliminate 
gene modified cells would be essential and beneficial features in future clinical gene 
therapy. Ongoing efforts to develop suicide genes with increased prodrug sensitivity and 
reduced unintended toxicity, as well as exploring novel systems to selectively induce cell 
death ought to be helpful adjuncts to improve the biosafety of  human gene therapy – 
currently mainly in clinical trials. 

4. Challenges and future prospects 

Although there have been major innovations and improvements to gene therapy in the past 
decade, the key challenges of sustained efficacy, biosafety and immunogenicity remain 
important challenges that need to be dealt with. Several early clinical trials have emphasized 
the primary need for increased transduction efficiencies and durable expression of delivered 
transgenes to achieve clinically meaningful treatment efficacy. Viral vectors now have 
significantly improved tissue specificity and transduction efficiencies. Delivery methods of 
non-viral vectors have also significantly advanced to attain near-comparable efficiencies. 
The use of ex vivo modified stem cells with self-renewing capacity in vivo may overcome the 
constraints of utilizing nondividing cells for ex vivo gene therapy for selected diseases. 
Continuous improvements are being integrated into vector designs to enable durable 
transgene expressions and minimise transgene silencing in vivo. Biosafety concerns of 
immunogenicity and insertional mutagenesis, although uncommon, are nonetheless barriers 
to clinical acceptance and there are ongoing concerted efforts to address these problems.  It 
is important to ensure that improvised or novel vectors (viral or non-viral) are 
comprehensively tested and evaluated for their genotoxic potential. Absence of evidence is 
not evidence of absence of genotoxic risk. Genotoxicity risks should be evaluated using a 
range of tools to address interrogate cells at multiple levels i.e. transcriptome, genome, 
epigenome and chromosomes. High-throughput screening methods are highly desirable to 
increase the sensitivity and accuracy of characterization. Currently, integrating vectors are 
favoured choice given their ability to mediate high levels of and long-term transgene 
expression. The caveat is the random or quasi-random nature of gene integrations mediated 
by most currently used integrating vectors. The risks of insertional mutagenesis may be 
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minimized by using episomally maintained vectors and by gene targeting strategies, ideally 
by targeted gene addition into a safe and unique genomic locus. At present such alternative 
strategies have not achieved sufficient efficacy to be translated into clinical applications. 
Continued efforts and greater resources therefore need to be channelled into developing 
episomal vectors and site-specific integrating vectors. 
Whilst gene therapy aims primarily to correct inherent deficiencies in cells and organ 
systems, the emerging field of regenerative medicine offers the prospect of producing 
replacements for diseased or defective cells. Since Yamanaka and collaborators (Takahashi 
& Yamanaka, 2006) demonstrated the ability to convert somatic cells, such as fibroblasts, 
into induced pluripotent stem (iPS) cells by combined expression of Oct4, Sox2, Klf4 and c-
Myc, there has been a flurry of reports on the ability of other combinations of transcription 
factors and safer reprogramming methods to attain similar outcomes. In view of concerns of 
the need for genomic integration of the transcription factor genes for continued expression, 
others have adapted the use of episomal vectors, RNA and even peptide versions of the 
transcription factors to generate iPS cells. iPS cells have the potential to be differentiated into 
cells of the endoderm, ectoderm and mesoderm and could prove to be useful for treating 
diseases where replacement with fully functional surrogate cells or regenerating stem cells is 
a therapeutic option. Thus the field of regenerative medicine is an exciting field that could 
rival or complement present forms of gene and cell-based therapy in future. 

5. Conclusion 

Beginning in the 1960s, convergent advances in human genetics and recombinant DNA 
technology spawned the seductively compelling notion of gene therapy to cure, or at least, 
ameliorate diseases caused by defective genes. Almost half a century later, the initial 
enthusiasm and euphoria have been greatly tempered by the sober recognition that while 
gene therapy is simple in concept, it is highly complex and challenging in execution. The 
early promises of human gene therapy raised unrealistically high expectations that gene 
medicine was round the corner. Compounded by well publicised serious iatrogenic 
complications from a small number of clinical trials, a pall quickly descended on the field 
from the late 1990s that led many investigators to flee from a field of research that came to 
be perceived as both unfeasible and unfundable. 
Gene therapy has now emerged from a much needed phase of reflection and correction. 
There is clear evidence that appropriately selected monogenic and acquired diseases can 
benefit from gene-based therapy.  Notwithstanding that there remains a risk to certain viral 
vectors, the decision to reinitiate gene therapy trials for SCID-X1 (NCT01129544) is 
acknowledgement of what gene therapy may offer to diseases that are currently difficult to 
treat effectively or at reasonable cost. Failures of gene therapy should not discredit the field 
but ought to be opportunities to deepen scientific understanding of the complex processes 
demanded for therapeutic success. Safety is a key consideration, particularly with respect to 
genotoxicity. The confluence of autologous cell therapy with conventional gene therapy 
appears to be a promising approach. Cells that are first modified ex vivo lend themselves 
readily to comprehensive biosafety assessments that are not feasible with conventional in 
vivo gene therapy.  The ability to thoroughly characterize cells for the desired phenotype, 
and for genotoxicity and other risks before in vivo implantation or administration should go 
some way to making such novel treatments safe. 
(The authors were unable to cite all relevant publications owing to page limitations.) 
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