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1. Introduction 

Last decades have witnessed a tremendous expansion in knowledge and availability of the 

genome sequence, which was of great importance for advancements in the field of gene 

therapy. This led to improved strategies based on use of nucleic acids with sequences 

complementary to specific target genes in treatment of many diseases. Especially, 

advancements have been achieved in discovery and use of diverse RNA molecules other 

than messenger RNAs (mRNAs), transfer RNAs (tRNAs), or ribosomal RNAs (rRNAs). 

Such RNA molecules, known as non-coding RNAs (ncRNAs), serve diverse biological roles 

some of which are still elusive (Gesteland 2006). Generally, the ncRNA molecule is 

functional even when it does not encode for a protein. Recent evidence provided by many 

projects including the Encode project (The Encyclopedia Of DNA Elements) suggests that 

larger part of the genomes of mammals and other complex organisms is transcribed into 

ncRNAs. These ncRNAs are transcribed from both exon and intron DNA regions, and 

include small interfering RNAs (siRNAs), micro RNAs (miRNAs) and small nucleolar RNAs 

(snoRNAs), while many of such molecules remain yet to be discovered. A vast amount of 

evidence demonstrates that ncRNAs play essential roles in cellular physiology. Some 

biological processes known to be regulated by ncRNAs include transcriptional regulation of 

genes, gene silencing, messenger RNA stability and translation, development, proliferation, 

haematopoiesis, apoptosis, protein translocation and chromosome replication (Bühler 2007, 

Mattick 2006, Lee 1993). 
There is no doubt that RNA regulatory networks are critical for determining our most 
complex traits, and they play an important role in disease pathogenesis as well.  The specific 
disease phenotypes might indeed result from deficiency of one or more specific ncRNA 
instead from  protein structural defects, as is usually expected. A challenge for the future 
might thus be to map the whole cells/organisms complement of ncRNAs and to understand 
their biological role. Up to now, the use of ncRNAs as a research tool has greatly improved 
gene therapy approaches for various diseases (Gallaso 2010), but also substantially 
improved drug discovery and target validation. In this book chapter, we will therefore focus 
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72 Gene Therapy - Developments and Future Perspectives 

on the use of a particular approach, namely RNAi for improved gene silencing for both, 
therapeutic approaches and identification of new therapeutic targets. 

2. RNA interference 

RNA interference (RNAi) is an evolutionary conserved cellular defence mechanism that 
protects plants and vertebrates from viruses and transposable genetic elements, but is also 
involved in direct development and gene expression in general (Lecellier 2004,Vastenhouw 
2004, Meister 2004). Two types of ncRNA molecules – micro RNA (miRNA) and small 
interfering RNA (siRNA) are involved in the RNAi mechanism through binding to mRNA 
molecules. Through this process, either increase or decrease of mRNA activity or repression 
of translation occurs (Hannon 2002). Small interfering RNAs are 20-25 nucleotides long 
double-stranded RNA molecules, that play a variety of biological roles. The most notable 
one is its involvement in the RNAi pathway, where it interferes with the expression of a 
specific gene (Devi 2006, Elbashir 2001a). siRNA may also be involved in RNAi-related 
pathways, such as shaping the chromatin structure. Similarly, miRNAs are short non-
coding, 19-22 nucleotides long, functional RNA molecules that play important regulatory 
roles by sequence-specific base pairing on the 3′ untranslated region (3′-UTR) of target 
messenger mRNAs, promoting mRNA degradation or inhibiting translation (Bartel 2004). 
RNAi is thus a post-transcriptional gene silencing mechanism employed to silence an 
endogenous gene, e.g. by the introduction of a homologous dsRNA. The selective and 
rapid degradation of the transcript ensured in the RNAi pathways makes it a valuable 
laboratory technique in biotechnology and medicine for controlled silencing of genes. For 
that purpose, synthetic dsRNA are usually introduced into cells to suppress expression of 
specific genes of interest (Elbashir 2002). 
The RNAi pathway is initiated by the Dicer enzyme, which cleaves long double-stranded 
RNA (dsRNA) molecules (500-1000 nucleotides) into short siRNA fragments of ~20 
nucleotides or pre-miRNAs into mature miRNA (Figure 1) (Elbashir 2001b). While miRNAs 
have incomplete base pairing to a target and inhibit the translation of many different 
mRNAs with similar sequences, siRNAs have perfect complementarity and induce mRNA 
cleavage only in a single, specific target (Pillai 2007). Interestingly, about one-third of human 
protein-coding genes are controlled by miRNAs (Du 2005), while siRNAs participate in 
chromosome dynamics and formation of heterochromatin (Mattick 2005). Exogenous 
siRNAs may be derived from experimentally introduced double-stranded RNAs (dsRNAs) 
or viral RNAs (Fire 1998). Endogenous siRNA (endo-siRNA) precursors are derived from 
repetitive sequences ,transposons, sense–antisense pairs or long stem-loop structures 
(Babiarz 2008; Watanabe 2008). RNAi interference can be exerted through naturally 
occurring antisense transcripts (NATs) that are complementary to other RNA transcripts 
(Osato 2007). They are involved in alternative splicing, genomic imprinting, and X-
chromosome inactivation as well (Zhang 2004). Based on the locus of their transcription, 
NATs can be divided into two groups, namely cis-NATs and trans-NATs. Cis-NATs are 
transcribed from the same genomic locus as their target, but from the opposite DNA strand, 
therefore forming a perfect match with their targets (Wang 2005). So far, five orientations 
have been identified, among which the so-called ‘head to head’ orientation where both 
transcripts align their 5' ends is considered to be the most common (Lavorgna 2004). On the 
other hand, trans-NATs are transcribed on different genome locations and are 
complementary to multiple transcripts resulting, however, in a number of mismatches 
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73 Small Interfering RNAs: Heralding a New Era in Gene Therapy 

Fig. 1. Pre-micro RNA and shRNA are expressed in the nucleus, exported to the cytoplasm  
and processed into a mature form by the ‘Dicer’ enzyme. It is possible to exogenously  
introduce synthetic RNAi constructs directly into the cytoplasm and to specifically silence  
the target gene. Long double-stranded RNA (dsRNA) and hairpin structures are cut into  
smaller strands, namely interfering siRNA by Dicer, leaving ~2nt overhangs at the 3′ end  
and phosphate group at the 5′ end. The guided strand is incorporated into the RNA-induced  
silencing complex (RISC), while the passenger strand is discarded. Active RISC complex  
uses the guide strand to cleave complementary target, which causes mRNA degradation  
and translational repression. The same RISC complex may carry out several cleavage cycles.  
Long primary transcripts of miRNA genes (pri-miRNA) are cleaved by Drosha to produce a  
stem-loop structured precursor, pre-microRNA (pre-miRNA). Subsequently, it leaves the  
nucleus through the nuclear pores and enters the cytoplasm, where is being processed by  
Dicer. Mature ds miRNA is loaded onto the RISC. Only one strand is successfully  
incorporated into the RISC, while the other is eliminated. Interaction between miRNA and  
target RNA is characterized by imperfect base pairing. Namely, the guide miRNA strands  
usually form bulge structures due to mismatches with its target sequence. Consequently,  
there is no perfect complementarity between base pairs. In this way, miRNA together with  
the RISC induce repression of protein translation (Jackson 2003; Bartel 2004).  

(Carmichael 2003). miRNAs are typical representatives of trans-NATs involved in  

transcriptional silencing, translation repression, deadenylation and heterochromatin  

formation. miRNA genes are found in introns of non-coding or coding genes and in exons of  

non-coding genes.  

Both miRNAs and siRNAs molecules have two strands, one named the ‘passenger strand’  
and the other called the ‘guide strand’. The passenger strand is the one to be degraded,  
while the guide strand further incorporates into the RNA-induced silencing complex (RISC)  
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(Lee 2004) in an ATP-independent process performed directly by the protein components of 
the RISC (Leucschner 2006; Gregory 2005). This complex contains the Argonautes (Ago) 
proteins that cleave the passenger strand and liberate the guide strand from the siRNA 
duplex (Liu 2004; Meister 2004). Activated RISC is then capable of cleaving target mRNAs. 
The guide strand recognizes homologous sequence of the target mRNA. When mRNA is 
associated with the guide strand (template) in the RISC complex, it is cleaved by the Ago 
proteins (Matranga 2005, Leuschner 2006). In this process, template siRNA remains intact 
and serves for subsequent cycles of mRNA cleavage. The mRNAs cleaved by the RISC are 
degraded by cellular exonucleases. In this way, the translation of mRNA is ceased (Hall 
2005). 
The third group of interfering RNA molecules is comprised of Piwi-interacting RNAs 
(piRNAs) that are processed from single-stranded RNA precursors transcribed from 
intergenic repetitive elements, transposons or large piRNA clusters. They are associated 
with the Piwi subfamily proteins, and therefore do not depend upon Dicer. piRNAs are 
highly abundant in germ cells and at least some of them are involved in transposon 
silencing through heterochromatin formation or RNA destabilization (Vagin 2006). The 
precise mechanisms and the functions of most piRNAs are still unknown. 

2. Barriers to RNAi-based therapies 

Various RNAi therapy approaches in vivo are hampered by unwanted side effects such as 
induction of immune response and toxicity, including the activation of Toll-like receptors 
(TLRs), type I interferon responses and competition with the endogenous RNAi pathway 
components (Marques 2005). Several reports have shown that chemical modifications of 
siRNA can attenuate immune reaction by abrogating interferon (IFN) and cytokine 
induction (Judge 2005, Sioud 2005, 2006). Family of Toll-like receptor proteins (TLRs) are 
known to be involved in the recognition of pathogen molecules such as viral dsRNAs, and 
are central to the activation of immune cell response. TLRs recognise siRNAs in a sequence-
dependent manner in the endosome prior to the siRNAs cytoplasm internalization. In 
particular, the so-called ‘off-target’ effects of siRNAs are widely recognized as an issue 
associated with the use of siRNAs (Jackson 2003). Off-target effect is undesired down-
regulation of non-targeted transcripts, either by miRNAs or siRNAs. This phenomenon 
mainly occurs due to lack of complementarity between siRNAs and target mRNAs. RNAi 
machinery tolerates single mutations located in the centre of siRNA molecules without 
losing the gene silencing ability. In this manner, some siRNAs have the ability to silence 
other genes besides complementary target genes. These problems may, however, be 
partially overcome by the use of computer algorithms in combination with the experimental 
validation procedures that ensure optimized siRNA sequences complementary to the target 
mRNA inducing minimal immune responses. 
Additionally, silencing ‘off-target’ genes other than interferon-induced pathway  represents 
nowadays the major problem in designing effective siRNA approaches, which impedes the 
clinical usage of RNAi (Jackson 2003, Persengiev 2004, Birmingham 2006). Indeed, cross-
hybridization of interfering RNA molecules may partially match the sequence of non-target 
genes and consequently knockdown these genes. miRNAs require only a small match at the 
5' end of the anti-sense strand as to induce such “off-target” effect while similarly, the 
insertion of the sense siRNA strand into the RISC complex instead of the anti-sense strand 
should significantly contribute to unwanted gene silencing as well (Jackson 2003). Finally, 
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“off-target” effects may occur due to the seed-sequence-dependent binding, where “off­
targeted” genes contain matches between the seed region of siRNA and their sequences in 
the 3'UTR (Jackson 2006a). Increase of the RNAi specificity has, however, been achieved by 
minimizing sense strand incorporation into activated RISC and selective thermodynamic 
stabilization of the sense strand 5′ ends by incorporation of locked nucleic acids (LNA) 
(Schwarz 2003, Elmen 2005). 
Though the siRNA macromolecules have strong negative anionic charge deriving from the 
phosphates on their surface that enables spontaneous passage across the negatively charged 
cell membrane, a variety of biological barriers should be overcome for in vivo delivery. 
These barriers include filtration, phagocytosis and degradation in the bloodstream, passage 
across the vascular endothelial barrier, diffusion through the extracellular matrix, uptake 
into the cell, escape from the endosome and unpackage and release  of siRNA to the RNA 
interference (RNAi) machinery (Whitehead 2009). 
For example, naked siRNAs are relatively unstable in blood and serum in its native form, 
though more stable in comparison to single-stranded RNAs (Whitehead 2009). What 
happens to siRNAs when entering blood is rapid degradation by ribonucleases, a rapid 
renal excretion and non-specific uptake by the reticuloendothelial system. According to 
studies in rats that received naked siRNA intravenously, a rather short half-life of 6 min and 
a clearance of 17.6 mL/min was documented (Soutschek 2004). Poor pharmacokinetic 
properties of siRNA arise from endogenous RNAses degradation and rapid elimination by 
kidney filtration due to small molecular masses (~7 kDa) (Soutschek 2004). 
Recently, even a novel elimination pathway for siRNAs in vivo has been identified, where 
liver-enriched siRNA is secreted into the gallbladder and then excreted into the intestine 
(Huang 2011). After their delivery into the bloodstream, siRNAs are subjected to rapid 
clearance from blood through liver accumulation and renal filtration, but up until now, it 
has been believed that the siRNAs elimination could be carried out only by the renal system. 
Unpredictable biological stability and cellular uptake of siRNAs may be partially 
surmounted by chemically modifying the siRNA structure including backbone, base and 
sugar modifications without affecting gene silencing. 
If however, administered siRNAs survive in the plasma, they encounter a problem of 
extravagation through the tight vascular endothelial junctions (Juliano 2009). Interestingly, 
transport of macromolecules across tumour endothelium was found to be more efficient 
than transport across normal endothelium that was leaky and had discontinuous vascular 
structures with poor lymphatic drainage (Jang 2003). Additionally, siRNA diffuses through 
the extracellular matrix, a dense network of collagen and carbohydrates surrounding a cell 
(Zamečnik 2003), and it finally reaches its last destination - the cytoplasm of the target cell. 
Here, siRNAs incorporate into RNAi machinery and encounter target mRNAs. At this point, 
endosomes represent a natural barrier to internalisation and subsequent degradation of 
siRNAs (Boussif 1995, Oliveira 2007). However, the use of acid-responsive delivery carriers 
may improve escape of siRNA from endosomes, as the endosome environment is naturally 
mildly acidic. In addition, fusogenic peptides that undergo acid-triggered conformational 
changes may also accelerate endosomal escape of nucleic acids, and are liberated from 
carriers in the last stage of delivery (Medina-Kauwe 2005, Cho 2003). 

3. Chemical modifications 

Delivery of siRNAs in their unmodified form has several advantages over chemically 
modified forms ensuring maximal efficiency (maximized RNAi per siRNA molecule) and 
avoiding potentially inefficient and time/labour-consuming modification process. 
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Nevertheless, the use of chemical modifications was found to reduce cleavage of RNA 
duplexes by nucleases, scale down the activation of innate immune response, lower the 
incidence of off-target effects, and improve pharmacodynamics (Behlke 2008). For example, 
phosphorothioate (PS) linkage is one of the simplest modifications of the siRNA backbone. 
Studies showed that toxicity and loss of silencing activity could pose a hurdle when 
phosphorothioate-modified siRNAs are employed (Manoharan 2004, Mahato 2005). A better 
alternative to backbone modification is the boranophosphonate linkage, which is more 
effective at silencing than phosphorothioate siRNAs, and is 10 times more nuclease resistant 
in comparison with unmodified siRNAs. Furthermore, boranophosphate siRNAs are more 
potent than unmodified siRNAs, and act through the standard RNAi pathway (Hall 2004). 
Another chemical modification of interest is ribose ring-like modification of RNA at 2′­
position of the ribose ring. These modifications include 2′-O-methyl (2′-OMe), 2′ deoxy-2′­
fluoro modifications and locked nucleic acid. They increase siRNA stability against 

endonucleases and reduce immune response activation (Chiu 2003). In addition, 2′-OMe 

modifications at specific positions within the siRNA region reduce the number of off-target 

transcripts and the magnitude of their regulation without significantly affecting silencing of 

the intended targets (Jackson 2006b). Interestingly, 2′-OMe modifications reduce the 

hybridisation free energy that compensates for somewhat weaker base pairing (Inoue 1987, 

Lesnik 1993). It was proved that 2′-OMe modifications greatly prolonged siRNA half-live in 

the plasma (Chiu and Rana 2003), but a number of siRNAs currently used in clinics had 

been designed prior to findings on 2′-OMe modification benefits to siRNA application in 

vivo. Further on, ribose modification or locked nucleic acid (LNA) also protracts the 

functional half-life of siRNA in vivo by two different mechanisms: 1) enhancing the 

protection of RNA from degradation by enzymes, and 2) stabilizing the siRNA duplex 

structure indispensable for silencing activity (Elmen 2005). Such modified RNA nucleotide 

is modified via a methylene bridge connecting the 2′ oxygen with the 4′ carbon of the ribose 

ring (Bondensgaard 2000, Braasch 2001), which produces a locked ribose conformation 

known to increase the hybridization properties of oligonucleotides (Kaur 2006). LNA is 

highly compatible with the siRNA intracellular machinery and preserves the molecule 

integrity (Braasch 2003, Elmen 2005). There is, however, a possibility that production of non-

natural molecules might occur upon degradation of chemically modified siRNAs, as these 

RNAs may produce unsafe metabolites or trigger unwanted effects. 

4. siRNA delivery systems  

Obstacles to efficient delivery of siRNA in vivo might be overcome by diverse approaches 

aimed at increasing cellular uptake, protecting from enzymatic degradation, bypassing the 

immune recognition and improving the pharmacokinetics properties. These delivery 

systems, namely bioconjugation, complex formation with lipids and polymers, viral vectors, 

encapsulation into lipid particles and non-pathogenic bacteria vector are designed to 

specifically localize siRNA in desired tissue, which minimizes side effects and decreases the 

concentrations of siRNA required for efficient gene scilencing in vivo. 

4.1 Bioconjugation 
Conjugation of siRNAs with lipids and polymers increases thermodynamic stability, 
protects siRNAs’ strands from nucleases and improves the biodistribution and 
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pharmacokinetic profiles of siRNAs along with their targeting to specific cell types (Cheng 
2006, Lorenz 2004, Soutschek 2004, Wolfrum 2007, DiFiglia 2007, Mahat 1999; Schepers 
2005). Therefore, conjugation of siRNA with lipids either enhances the uptake via receptor-
mediated endocytosis, or increases penetration across the cell membrane, as demonstrated 
by the studies where cholesterol-conjugated siRNAs were effectively delivered to cells in 
cell culture, liver and other organs (Cheng 2006). Indeed, cholesterol conjugation increases 
hydrophobicity and cellular association of nucleic acids (Lorenz 2004), and conjugation of 
cholesterol with anti-ApoB siRNAs efficiently lowers the level of ApoB mRNA in the mice 
liver and jejunum leading to decline in the blood cholesterol level (Soutschek 2004). Similar 
approach was successfully applied to deliver siRNAs in murine vaginal mucosal tissue for 
prevention and inhibition of potentially lethal herpes simplex type 2 infections. It seems that 
cholesterol-siRNA conjugates incorporate into circulating lipoprotein particles, and are 
efficiently internalized by hepatocytes via a receptor-mediated process. Pre-binding of 
cholesterol-siRNA conjugates to lipoparticles dramatically improves silencing efficiency in 
mice and distribution of lipoparticle cholesterol-siRNA conjugate in various tissues 
(Wolfrum 2007). Intrastriatal injection of cholesterol-siRNA conjugates silenced mutant 
huntingtin gene in a transgenic mouse model for Huntington's disease, attenuating neuronal 
pathology as well as delaying the abnormal behavioural phenotype (DiFiglia 2007). 
Furthermore, siRNAs may be conjugated to peptides termed protein transduction domains 

(PTDs). The latter have the ability to translocate across the cell membrane and therefore to 

efficiently deliver siRNAs into cells. PTDs consist of short amino acid sequences with 

stretches that have positively charged amino acids arginine and lysine, which facilitate their 

translocation through the plasma membrane. Such amphipathic molecules interact with 

negatively charged head groups of the plasma membrane via their positive amino acid 

residues. siRNA is finally released in the cytoplasm upon reduction of the disulfide bond. 

The uptake of peptides-siRNA conjugates is rapid, effective and occurs without the need for 

specific receptors, which provides an important role for these conjugates in siRNAs delivery 

into all kinds of mammalian cells in vivo (Mahat 1999, Schepers 2005). 

4.2 Complex formation with lipids and polymers 
Bioconjugation substantially improves delivery of siRNA, but still fails to ensure reversible 

binding of siRNAs for controlled release of siRNAs into target cells, protection of siRNAs 

from nuclease degradation and serum binding during transit through the circulation, escape 

from endosomal compartment, biocompatibility as to escape hosts immune response, and 

resistance to liver and kidney rapid clearance. 

Cationic polymers interact with siRNAs spontaneously and self-assemble in a process 

induced upon electrostatic interactions that results in formation of nanoparticles known as 

polyplexes. The efficiency of siRNA polyplexes to silence genes of interest depends on 

several factors such as capability to bind cellular membranes, cellular uptake rate and 

escape from endosomes. 

Several cationic polymers have been widely investigated as siRNA carriers in vitro and in 

vivo (Mahato 1997), and their design has been optimized in the cell cultures (Friend 1996, 

Xu 1996). 

Cationic polymers spontaneously form complexes with nucleic acids due to electrostatic 
interactions between positively charged amine groups of the polycations and negatively 
charged phosphate groups of the nucleic acids. These interactions enhance the uptake of 
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cationic polymers by cells and increase transfection efficiency (Han 2000). Among cationic 
polymers employed for gene delivery, polyethylenimine (PEI) is one of the most common 
ones in siRNA delivery in vitro and in vivo. PEIs of various molecular weights, degrees of 
branching and other modifications have been largely used for transfection of siRNAs in 
different cell lines and live animals. For instance, siRNA targeted towards the HER2 growth 
receptor was delivered intraperitoneally to subcutaneous tumours as siRNA/PEI complex, 
and significantly reduced tumour growth. Moreover, pain receptors for N-methyl-D­
aspartate were effectively knocked down in rats by specific PEI/siRNA delivered 
intrathecally (Tan 2005). PEIs should thus play an important role for non-viral siRNA 
delivery in vivo, if toxicity and limited biodegradability issues are appropriately addressed. 
On the other hand, cationic lipids are constructed by protonable polyamines linked to 
dialkyl or cholesterol anchors, and represent one of the most widely used strategies for in 
vivo delivery of siRNA (Whitehead 2009). Physicochemical properties of lipid/nucleic acid 
complexes (nanoparticles) are influenced by the relative proportions of each component, 
structure of the cationic lipids head group, co-lipid molar and charge ratio, particle size of 
complexes, and liposome size (Mahato 1998, Spagnou 2004). Electrostatic interactions 
between siRNA and cationic liposomes may provoke relatively uncontrolled interaction 
processes giving rise either to the excessive size of the formed lipid/siRNA complex and its 
poor stability, or to incomplete encapsulation of siRNA molecules posing a risk of their 
potential enzymatic or physical degradation prior to delivery into the cells (Spagnou 2004, 
Keller 2005). 
Still, cationic lipids complexed with siRNAs of interest were successfully used in nonhuman 
primates (Akinc 2008, Frank-Kamenetsky 2008), and are currently being evaluated in several 
clinical trials. 
Still, some shortcomings of using the lipid-siRNA biocunjugates remain. Major obstacles 
refer to the plasma stability for intravenous applications (Mahato 1998,1999, Keller 2005), 
where they interact with serum proteins, lipoproteins, heparin and glycosaminoglycans in 
the extracellular matrix precipitating the aggregation or release of nucleic acids from the 
complexes before reaching the target cell. Cationic lipids activate the complement system 
resulting in rapid clearance by macrophages (Mahato 1997). 
However, polyethylene glycol (PEG) coating of liposomal carriers (Lia 2005) substantially 
lowers their interaction with serum proteins and with the proteins of the complement 
system thus improving the complexes circulation time. It is now widely accepted that 
PEGylation-aided stabilization of the lipid/nucleic acid complexes leads to the reduction in 
macrophage clearance. 
Cationic lipids represent a convenient and flexible method for siRNA delivery. Indeed, 
various approaches to designing cationic lipid structure and liposome composition have 
been successfully developed in combination with diverse reliable methods for their 
preparation. This ensures increased in vivo efficiency tailored for different models and 
diseases.  
Recently, a promising siRNA delivery carrier, namely stable nucleic acid lipid particles - 
SNALPs, has been described (Zimmermann 2006). SNALPs consist of a lipid bilayer 
containing a mixture of cationic and fusogenic lipids that enable cellular uptake and 
endosomal release of siRNAs. These particles are additionally coated with the polyethylene 
glycol-lipid (PEGylated lipid) conjugate that provides neutral hydrophilic exterior and 
stabilizes the particle during formulation. The silencing effect of SNALP-conjugated siRNAs 
is more potent (>100-fold) than that of systemic administration of cholesterol-conjugated 
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siRNAs targeted against ApoB in mice. Another study confirming higher potency of 
SNALP-conjugated siRNAs was performed in mice (Morrissey 2005). Chemically modified 
siRNAs against hepatitis B virus (HBV) were conjugated with SNALPs and administered 
intravenously into mice carrying replicating HBV. The results confirmed improved efficacy 
and longer half-life of siRNA encapsulated in SNALPs in the plasma and liver compared to 
unformulated siRNA (Morrissey 2005). 
Another newly described delivery vehicle for siRNAs is the liposome-siRNA-peptide 
complex (LSPCs) that showed a potential in therapy of neurodegenerative disorders 
(Pulford 2010). For that purpose, intravenous injections were used for transvascular delivery 
of siRNA complexed with LSPCs across the blood-brain barrier to the brain. The LSPCs 
complex consisted of a modified peptide from the rabies virus glycoprotein that acts as a 
ligand for acetylcholine receptors (AchR), a small peptide that links siRNA with modified 
peptide and liposomal nanoparticle. This complex effectively delivered siRNA to neuronal 
cells expressing AchR in brain. Furthermore, LSPCs’ liposomes increased the stability of 
siRNA/peptide complex in serum during vascular transport. This approach proved 
promising in the treatment of prion diseases as well. For example, LSPCs coupled with the 
prion protein (PrP) siRNA were shown to significantly suppress cellular prion protein PrPC 

expression and to eliminate misfolded protease-resistant isoform of the cellular prion 
protein PrPRES in the AchR-expressing cells in vitro (Pulford 2010). Similarly, LSPCs injected 
intravenously in mice efficiently bypassed serum degradation and the PrP siRNAs were 
delivered to AchR- and PrPC- expressing neurons in brain. Still, these promising results 
need to be proved for the future human siRNA therapy and possible beneficialy effects in 
case of prion disease, neurodegenerative disorders such as Alzheimer’s disease or viral 
encephalitis. 
At last, it is worth to mention that it has become possible recently to quantitatively estimate 

the disassembling ratio of nanoparticles complexes with nucleic acids in complex biological 

media such as serum (Buyers 2009). The measurement is performed by the use of 

fluorescence fluctuation spectroscopy (FES) that quantifies nanomolar concentrations of 

released siRNA. First measurements showed that the gene silencing efficacy of siRNA 

polyplexes in the serum depends on the serum concentrations. These findings will aid in the 

development of siRNAs polyplexes and other nanoparticle nucleic acid as delivery systems. 

4.3 Viral and non-pathogenic bacterial vectors 
It is well-known that siRNA-mediated gene silencing is usually transient in cell culture and 

lasts for only a couple of days. Such short-term knockdown is not sufficient for studying 

phenotypic effects that require longer duration of knockdown of the target protein. 

Moreover, transient transfection of siRNA varies in efficiency between different cell types, 

but the key to resolving this problem is stable expression of RNAi effector molecules from 

plasmids or viral vectors (Amarzguioui 2005). There are several viral vectors used therein: 

double-stranded adeno-associated viruses (AAV), lentiviral  vectors and adenoviruses 

(Brummelkamp 2002a, Zufferey 1998, Andersson 2005, Yoo 2007). However, the most 

commonly used approach involves RNA polymerase III-mediated transcription of short 

hairpin structures (shRNA) with a stem of 19–29 bp and a short loop of 4–10 nt. Besides, 

siRNAs may be introduced by viral vectors and transcribed from separate expression units, 

from either the same or two separate plasmids. Finally, the effector molecules may be 

expressed as a chimera of siRNA and miRNA (Figure 2). 
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Fig. 2. Construction of expression cassettes for 1) shRNA and 2) siRNA 3) miRNA. PIII: pol 
III promoter, PCMV: pol II promoter S: siRNA sense strand, antiS: siRNA antisense strand, 
L: loop, T: terminator, 5′mi: 5′ pri-miRNA sequence, 3′mi: 3′ pri-miRNA, ext: extraneous 
transcript sequences. Correct excision of the siRNA from the heterologous transcript is 
directed by 50mi and 30mi sequences. 

AAV vectors are the safest and thus most promising viral gene delivery vehicles known to 
date (Grimm 2003). The wild-type AAV viruses are non-pathogenic in humans, persistently 
infect a large variety of dividing and non-dividing cells, and do not integrate into 
chromosomes. Despite these advantages, their clinical application is restricted due to their 
potential in some mutagenic and/or oncogenic transformations and host immune 
responses, and high production costs. 
Non-pathogenic bacteria may also be used as delivery vectors. For example, transkingdom 

RNAi (tkRNAi) uses non-pathogenic bacteria to produce and deliver therapeutic short 

hairpin RNA (shRNA) encoding plasmid DNA into target cells for precise gene silencing 

(Krühn 2009). Plasmid or TRIP vector contains shRNA of interest and is controlled by 

bacteriophage T7 promoter. TRIP vector also contains the Inv locus from Yersinia 

pseudotuberculosis that encodes invasin, which helps bacteria to enter into β-1 integrin­

positive mammalian cells. Listeriolysin O, an additional product of TRIP vector coded by 

the HlyA gene, makes it possible for shRNA to escape from entry vesicles. TRIP vectors are 

introduced into competent non-pathogenic Escherichia coli strains BL21(DE3). This technique 

showed very good results in silencing catenin-β1 in human colon cancer cells in vitro as well 

as in vivo (Xiang 2006). It is also suitable for targeting the multidrug resistance (MDR)­

mediating drug extrusion pump ABCB1 (MDR/P-gp) in multidrug resistant  cancer cells, 

but it is not yet as good as conventional siRNA (Nieth 2003, Stein 2008) and virally delivered 

shRNAs (Kaszubiak 2007). With additional ongoing improvements, tkRNAi may become a 

powerful tool for delivery of RNAi effectors for the reversal of cancer MDR in future. 

5. Targeted siRNA 

Considerable effort has been invested in targeted siRNA delivery in vivo. For that purpose, 

important requirements must be fulfilled including stability, prolonged circulation in the 

body, high accessibility to target tissues, specific binding to target cells, active endocytosis in 

the cell and siRNA activity in the target cells. Only then, one can expect maximized delivery 

and optimal concentration in the target tissue. Targeted siRNA design may also prevent 
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non-specific siRNA distribution. Ligands that recognize cell-specific receptors expressed by 

the target cells can be conjugated to polymers and cationic lipids in order to promote 

specific cellular uptake via receptor-mediated endocytosis (Dubey 2004, Lu 2005). Folate 

receptor is one of the most popular target molecules in cancer-specific gene and drug 

delivery (Gosselin 2002). Folic acid is essential for rapid cell growth, thus many cancer cells 

over-express folate receptors. They have binding sites for FA and monoclonal antibodies. FA 

is convenient for conjugation with liposomal and polymeric siRNA carriers with or without 

the polyethylene glycol spacer. In the study presented by Kim et al. (Kim 2006), FA-

conjugated polyethylenimine enhanced gene silencing via receptor-mediated endocytosis. 

Another group of receptors that are potential targets for efficient siRNA delivery are 

integrins and transferrin. The arginine-glycine-aspartic acid (RGD) motif has been used for 

target delivery of drugs and genes because of its ability to bind to integrins expressed on the 

activated endothelial cells found in tumour vasculature (Schiffelers 2004, Kim 2004). In 

addition, cyclodexstrin-based polycation delivery system can be used to target metastatic 

tumours (Hu-Lieskovan 2005). Aptamers can be used for site-specific delivery of siRNA, as 

they possess high affinity and specificity for their target. Prostate-specific membrane antigen 

(PSMA)-specific aptamers can be internalized into PSMA expressing-like prostate cancer 

cells (Hicke 2000, Pestourie 2005).  Antigen-conjugated siRNA carriers are an alternative 

(Park 2002, Mamot 2005). HER-2 siRNA-carrying liposomes decorated with transferrin 

receptor-specific antibody fragments silenced the HER-2 gene in xenograft tumours in mice, 

significantly inhibiting tumour growth (Pirollo 2007). 

6. Local and systemic delivery 

The administration of siRNA can be local or systemic depending on the types of target 

tissues and cells. siRNA can be directly applied to some organs like eye or skin, as well as 

muscle via local delivery. Systemic siRNA delivery is the only way for metastatic and 

haematological cancer cells. Local delivery has several advantages, such as low effective 

doses, simple formulation, low risk of inducing systemic side effects and facilitated site-

specific delivery (Dykxhoorn 2003). Local injections of siRNA into the eye were used in 

initial clinical trials for age-related macular degeneration (Oh 2009). Moreover, intranasal 

siRNA administration for pulmonary delivery and direct injection into the central nervous 

system were also tested in clinical trials (Howard 2006, Bitko 2005, Zhang 2004). Systemic 

delivery by intravenous (i.v.), intraperitoneal (i.p.) or oral administration is convenient for 

target sites that are not readily accessible. This especially refers to metastatic tumours. Thus, 

for example, Yano et al. (Yano 2004) showed that human bcl-2 oncogene targeting siRNA 

complexed with cationic liposomes  injected i.v. inhibited tumour growth in a mouse liver 

metastasis model.. Another research carried out by Morrissey  et al. (Morrissey 2005) 

revealed efficient and persistent antiviral activity after injection of siRNA encapsulated in 

lipid vesicle  into the hepatitis B virus mouse model. Moreover, in systemic delivery, siRNA 

must maintain active form in circulation and be able to reach target tissues after passing 

through multiple barrier organs. 

siRNA technology is a promising application of naturally occurring processes in the human 

body. There is evidence that mature miRNAs, mRNA and signal peptides are loaded into 

exosomes (Thery 2002), small membrane-bound particles derived from the endocytic 

compartment that are secreted and act as intercellular mediators of biological information 
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(Graner 2009). Barr virus (EBV)-infected cells secrete exosomes containing EBV-miRNA that 

are transferred to uninfected neighbouring cells (T-cells) in the peripheral blood of patients 

helping to spread the virus (Rechavi 2009). Cancer cells can affect function of immune 

system via exosomes by inhibiting functions of T cells and natural killer cells (Zhang 2011), 

thus avoiding immunosurveillance. The fact that mast cells-derived exosomes can carry 

mRNAs for more that 1300 genes and more than 100 miRNAs (Zhang 2011) clearly 

demonstrates the potential of this intercellular genetic exchange mechanism as a target in 

treatment of various diseases. Knowledge of this process will be highly beneficial in terms of 

siRNA therapy application.  

7. RNAi as a research tool 

Knocking down the genes of interest by using siRNAs has turned out to be an important 
laboratory tool for large-scale RNAi screens, especially in the field of medical research. 
There are several methods for siRNA generation. Direct chemical synthesis is an obvious 
choice for creating siRNA library, but this could be a rather expensive option for most 
researchers, so that the only large-scale synthetic siRNA library was made for Novartis by 
Qiagen and Dhamarcon. Vector-based approach has lower cost enabling not only high 
transfection efficiency and delivery of siRNA expression cassettes but also the selection of 
transfected cells. The basic idea is to use pol III promoters followed by DNA coding for 
shRNA that structurally resembles miRNA (Brummelkamp 2002, Miyagishi and Taira 2002, 
Sui 2002, Xia 2002, Yu 2002). It is possible as well to use dual Pol III promoters (Chen 2005, 
Zheng 2004) or even two tandem Pol III promoters (Lee 2002), which is less popular method 
due to its more laborious construction. Some other promoters like T7 and CMV can be used 
for constructing siRNA vectors (Xia 2002, Holle 2004). Bacteriophage T7 promoter is not 
functional in mammalian cells. CMV promoter, on the other hand, is RNA polymerase II 
promoter, which is stronger promoter than Pol III resulting in more transcribes from the 
same vector that are capped at the 5’-end and tailed at the 3’-end with a long poly (A) 
sequence. These modifications are well-tolerated, indicating that such approach might be 
used for in vivo research purposes. If lentivirus and retrovirus are used, it is possible to 
make stable knockdown cells as a consequence of genome integration. So far, three large-
scale siRNA libraries have been constructed, two for academic research (Paddison 2004, 
Berns 2004, Michiels 2002) and one for industrial sector by Galapagos, with more libraries 
covering a whole mammalian genome on the horizon. siRNA libraries are usually designed 
to explore and study target genes central to important biological pathways, which is 
important for development of novel therapeutic options. Because disease pathogenesis is 
driven by the alteration in multiple genes and/or pathways, it is expected that modulation 
of gene activity by siRNA might produce a therapeutic benefit. Thus, Galapagos library 
targeted over 4,900 human druggable transcripts like G-protein-coupled receptors, ion 
channels and nuclear hormone receptors. Bernards and colleagues constructed human RNAi 
library (the 'NKi library') covering 7,914 human genes (Michiels 2002). Genes implicated in 
cancer and other diseases, as well as genes coding for major cellular pathways like cell cycle, 
transcription regulation, stress signalling, proteolysis and metabolism are included in the 
library. However, a rather robust method in the laboratory environment turned out to pose 
quite a lot of technical challenges when used for treatment in vivo. For example, siRNAs are 
large molecules (~13kDa) with phosphodiester backbone bearing strong negative anionic 
charge that hampers diffusion through the anionic cell membrane surface. Until nowadays, 
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numerous delivery strategies have been developed  to circumvent this  problem, some of  
them being successfully employed for introduction of siRNAs into cells in vitro and in vivo. 
These systems are based on the use of diverse compounds or materials and viruses 
complexed to siRNAs, e.g.. chitosan-based siRNA nanoparticle delivery (Howard 2006), 
adenovirus-mediated siRNA delivery (Uchida 2004), antibody-mediated delivery of siRNAs 
via cell-surface receptors (Song 2005), or bioconjugation (Cheng 2006). Improved siRNA 
delivery (Whitehead 2009) resulted in efficient silencing of disease-associated genes, 
including allelic variants in tissue culture and animal models (De Paula 2007) that fostered 
interest in developing RNAi-based reagents for clinical applications, e.g.. cancer treatment, 
viral infections, autoimmune diseases and neurodegenerative diseases. However, blood 
stability, targeted delivery, poor intracellular uptake and non-specific immune stimulation 
are major bottlenecks in modern approaches to delivery of RNAi reagents in clinics. On the 
other hand, low siRNA production costs (Hall 2005) in comparison to antibodies and other 
therapeutic proteins make them appealing novel drugs. siRNAs possess favourable 
pharmacokinetic properties, can be delivered to a wide range of organs, and are increasingly 
considered as a basis for development of next generation targeted drugs. 
Diverse RNAs may be also useful to mimic  or antagonize miRNAs that are central to 

regulation of oncogenic or tumor suppressor pathways (Chen 2005). For example, Nohata et 

al. (Nohata 2011) observed that restoration of miR-1 in cancer cells inhibits cell proliferation, 

invasion and migration, supporting the hypothesis that miR-1 functions as a tumour 

suppressor in head and neck squamous cell carcinoma (HNSCC). Furthermore, transgelin 2 

(TAGLN2), a potential oncogene, is directly regulated by miR-1. Silencing of TAGLN2 

significantly inhibited cell proliferation and invasion in HNSCC cells (Nohata 2011). 

Recent clinical trials using siRNAs to cure age-related macular degeneration (Bevasiranib by 

Opko Health, Inc., Miami, USA; phase III) and respiratory syncytial virus infection (ALN­

RSV01 by Alnylan, Cambridge, USA; phase II) have proved the therapeutic potential of 

RNAi pathways. In other studies with siRNA employed for treatment of disease in vivo, 

multiple non-specific effects were also observed. One of them occurs due to delivery of 

siRNA into target cells by lipid-mediated transfection, resulting in combined transfection 

and siRNA-specific effects (Fedorov 2005). Furthermore, common non-specific effect is the 

interferon-induced response (Sledz, 2003). For example, in patients with blinding choroidal 

neovascularisation receiving intravenous injections of siRNA, targeting vascular endothelial 

growth factor to block angiogenesis induced strong immune system response (Kleinman 

2008). These common issues might be adequately addressed by careful optimization of 

concentration, delivery method and siRNA design. Nonetheless, proof of concept for RNAi­

mediated specific gene silencing efficacy in humans was recently reported in a clinical trial 

of melanoma (Davis 2010). Nanoparticle-mediated siRNA delivery was employed for 

treatment of melanoma patients. Intracellular localized nanoparticles were detected in all 

tumour biopsies obtained upon treatment in amounts that correlated with dose levels of 

administered nanoparticles. Furthermore, a reduction of specific messenger RNA - M2 

subunit of ribonucleotide reductase (RRM2) and the protein (RRM2) levels were observed as 

well (Davis 2010). 

In conclusion, implementation of siRNA in clinical applications for treatment of disease 

through RNAi will be beneficial for such disorders that exert the symptoms via dominant-

negative or gain-of-function mechanism. Here, we clearly foresee the challenge of inducing 

endogenous degradation of mutant RNAs while leaving wild-type transcripts unaffected. 
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