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1. Introduction

It is well-known that many financial time series such as stock returns exhibit leptokurtosis
and time-varying volatility (Bollerslev, 1986; Engle, 1982; Nicholls & Quinn, 1982). The
generalized autoregressive conditional heteroscedasticity (GARCH) and the random
coefficient autoregressive (RCA) models have been extensively used to capture the
time-varying behavior of the volatility. Studies using GARCH models commonly assume
that the time series is conditionally normally distributed; however, the kurtosis implied by
the normal GARCH tends to be lower than the sample kurtosis observed in many time series
(Bollerslev, 1986). Thavaneswaran et al. (2005a) use an ARMA representation to derive the
kurtosis of various classes of GARCH models such as power GARCH, non-Gaussian GARCH,
non-stationary and random coefficient GARCH. Recently, Thavaneswaran et al. (2009) have
extended the results to stationary RCA processes with GARCH errors and Paseka et al. (2010)
further extended the results to RCA processes with stochastic volatility (SV) errors.
Seasonal behavior is commonly observed in financial time series, as well as in currency
and commodity markets. The opening and closure of the markets, time-of-the-day and
day-of-the-week effects, weekends and vacation periods cause changes in the trading volume
that translates into regular changes in price variability. Financial, currency, and commodity
data also respond to new information entering into the market, which usually follow
seasonal patterns (Frank & Garcia, 2009). Recently there has been growing interest in using
seasonal volatility models, for example Bollerslev (1996), Baillie & Bollerslev (1990) and
Franses & Paap (2000). Doshi et al. (2011) discuss the kurtosis and volatility forecasts for
seasonal GARCH models. Ghysels & Osborn (2001) review studies performed on seasonal
volatility behavior in several markets. Most of the studies use GARCH models with dummy
variables in the volatility equation, and a few of them have been extended to a more flexible
form such as the periodic GARCH. However, even though much research has been performed
on volatility models applied to market data such as stock returns, more general specifications
accounting for seasonal volatility have been little explored.
First, we derive the kurtosis of a simple time series model with seasonal behavior in the mean.
Then we introduce various classes of seasonal volatility models and study the moments,
forecast error variance, and discuss applications in option pricing. We extend the results
for non-seasonal volatility models to seasonal volatility models. For the seasonal GARCH
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model, we follow the results obtained by Doshi et al. (2011) and extend it to the RCA-seasonal
GARCH model. The multiplicative seasonal GARCH model is appropriate for time series
where significant autocorrelation exists at seasonal and at adjacent non-seasonal lags. We also
propose and derive the expressions for the kurtosis of seasonal SV models and other models
such as the RCA with seasonal SV errors.
We also derive the closed-form expression for the variance of the l-steps ahead forecast error in
terms of (ψ, Ψ) weights, model parameters and the kurtosis of the error distribution. We show
that the kurtosis for the non-seasonal model turns out to be a special case. Option pricing with
seasonal GARCH volatility is also discussed in some detail. The moments derived for the
seasonal volatility models and the l-steps ahead forecast error variance provide more accurate
estimates of market data behavior and help investors, decision makers, and other market
participants develop improved trading strategies.

2. Seasonal AR models with GARCH errors

We first start with a seasonal AR(1) model with simple GARCH errors of the form,

yt − µ = β(yt−s − µ) + ǫ2
t−1ǫt (1)

where s represents the seasonal period and ǫt is a sequence of independent random variables.
The following lemma, given in Ghahramani & Thavaneswaran (2007), can be used to derive
the second and fourth moments of the process in (1).
Lemma 2.1. For a stationary process and finite eighth moment, the expected value and

kurtosis K(y) of the process (1) is given by:
(a)

E(yt − µ)2 =
E(ǫ4

t−1)E(ǫ
2
t )

1 − β2
,

(b)

K(y) =
E[(yt − µ)4]

Var(yt)2
=

6β2[E(ǫ4
t−1)E(ǫ

2
t )]

2 + E(ǫ8
t−1)E(ǫ

4
t )(1 − β2)

(1 + β2)(E(ǫ4
t−1)E(ǫ

2
t ))

2
,

(c) if ǫt are assumed to be i.i.d. N(0,σ2
ǫ ), then E[ǫ2n

t ] = ((2n)!/2n(n!))σ2n
ǫ and hence

K(y) =

[

35 − 29β2

(1 + β2)

]

.

3. AR Models with seasonal GARCH errors

AR models are the most common representation used in time series analysis. Multiplicative
seasonal GARCH errors of the form GARCH(p, q)x(P, Q)s have been suggested by
Doshi et al. (2011). Consider the following model,

yt = βyt−1 + ǫt (2)

ǫt =
√

htZt (3)

θ(B)Θ(L)ht = ω + α(B)ǫ2
t (4)

where {Zt} is a sequence of independent and identically distributed (i.i.d.) random variables

with zero mean and unit variance, α(B) = θ(B)Θ(L) − φ(B)Φ(L), φ(B) = 1 −
p

∑
i=1

φiB
i,
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θ(B) = 1 −
q

∑
i=1

θiB
i, Φ(L) = 1 −

P

∑
i=1

ΦiL
i, Θ(L) = 1 −

Q

∑
i=1

ΘiL
i, L = Bs, and all coefficients are

assumed to be positive.
Letting ut = ǫ2

t − ht and σ2
u = var(ut), (4) may be written as,

φp(B)ΦP(L)ǫ2
t = ω + θq(B)ΘQ(L)ut, (5)

which has a seasonal ARMA(p, q)x(P, Q)s representation for ǫ2
t . Note that when

P = Q = 0, (5) simplifies to an ARMA(max{p, q}, q) representation for ǫ2
t , corresponding to

the general GARCH(p, q) model.
We assume that |β| < 1; thus, yt as given in (2) is stationary. The moving average
representation is yt = ∑

∞
j=0 ψjǫt−j where {ψj} is a sequence of constants and ∑

∞
j=0 ψ2

j < ∞.

The ψj’s are obtained from (1 − βB)ψ(B) = 1 where ψ(B) = 1 + ∑
∞
j=1 ψjB

j.

We also assume that all the zeros of the polynomial φ(B)Φ(L) lie outside the unit circle; thus,
ǫ2

t as given in (5) is stationary. The moving average representation is ǫ2
t = µ + ∑

∞
j=0 Ψjut−j

where {Ψj} is a sequence of constants and ∑
∞
j=0 Ψ2

j < ∞. The Ψj’s are obtained from

Ψ(B)φ(B)Φ(L) = θ(B)Θ(L) where Ψ(B) = 1 + ∑
∞
j=1 ΨjB

j.

Next, we provide the kurtosis, the forecast, and the forecast error variance for an
AR(1)-seasonal GARCH(p, q)x(P, Q)s.
Lemma 3.1. For the stationary AR(1) process yt with multiplicative seasonal GARCH
innovations as in (2)– (4) we have the following relationships:

(i) E(y2
t ) =

E(ǫ2
t )

1 − β2
, (6)

(ii) E(y4
t ) =

6β2[E(ǫ2
t )]

2 + (1 − β2)E(ǫ4
t )

(1 − β2)(1 − β4)
, (7)

(iii) K(y) =
E(y4

t )

[E(y2
t )]

2
=

6β2(1 − β2)

1 − β4
+

(1 − β2)2

1 − β4
K(ǫ). (8)

The kurtosis for ǫt, K(ǫ), is given below.

Lemma 3.2. For the stationary process (3) with finite fourth moment, the kurtosis K(ǫ) is given
by:

(a) K(ǫ) =
E(Z4

t )

E(Z4
t )− [E(Z4

t )− 1]
∞

∑
j=0

Ψ2
j

.

(b) The variance of the ǫ2
t process is given by γǫ2

0 =
∞

∑
j=0

Ψ2
j σ2

u

where σ2
u =

µ2(K(ǫ) − 1)
∞

∑
j=0

Ψ2
j

and µ = E(ǫ2
t ) =

ω
(

1 −
p

∑
i=1

φi

)(

1 −
P

∑
i=1

Φi

) .

Part (a) is derived in Thavaneswaran et al. (2005a) where examples are given with Ψ-weights
derived for non-seasonal GARCH models. The Ψ-weights for examples of seasonal GARCH
models, and the proof of part (b), are given in Doshi et al. (2011).
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Extending Doshi et al. (2011), we derive the K(y) for AR(1)-seasonal GARCH(p, q)x(P, Q)s

models as follows.
Example 3.1. For a stationary autoregressive process of order one, AR(1), with multiplicative
seasonal GARCH (0, 1)x(0, 1)s errors of the form:

yt = βyt−1 + ǫt

ǫt =
√

htZt

ǫ2
t = ω + (1 − θB)(1 − ΘL)ut

where ut = ǫ2
t − ht, θ is the moving average parameter and Θ is the seasonal moving average

parameter. The Ψ-weights are given in Doshi et al. (2011) as Ψ1 = −θ1, Ψs = −Θ, Ψs+1 = θΘ,
and Ψj = 0 otherwise. It can be shown that ∑

∞
j=0 Ψ2

j = (1 + θ2)(1 + Θ2). Then, the kurtosis of

yt is:

K(y) =
6β2(1 − β2)

(1 − β4)
+

(1 − β2)2

(1 − β4)

E(Z4
t )

E(Z4
t )− [E(Z4

t )− 1](1 + θ2)(1 + Θ2)
, (9)

which for a conditionally normally distributed Zt reduces to:

K(y) =
6β2(1 − β2)

(1 − β4)
+

(1 − β2)2

(1 − β4)

3

[3 − 2(1 + θ2)(1 + Θ2)]
.

Example 3.2. For a stationary autoregressive process of order one, AR(1), with multiplicative
seasonal GARCH (0, 1)x(1, 0)s errors of the form,

yt = βyt−1 + ǫt

ǫt =
√

htZt

(1 − ΦL)ǫ2
t = ω + (1 − θB)ut

where Φ is the seasonal autoregressive parameter and θ is the moving average parameter.
The Ψ-weights given in Doshi et al. (2011) are as follows: Ψ1 = −θ, Ψs = −Φ, Ψs+1 = −θΦ,
Ψ2s = Φ2, . . ., Ψks = Φk, Ψks+1 = −θΦk, where k = 1, 2, . . . It can be shown that ∑

∞
j=0 Ψ2

j =

(1 + θ2)/(1 − Θ2). Then, the kurtosis of yt is:

K(y) =
6β2(1 − β2)

(1 − β4)
+

(1 − β2)2

(1 − β4)

E(Z4
t )

E(Z4
t )− [E(Z4

t )− 1]

(

1 + θ2

1 − Φ2

)
,

which for a conditionally normally distributed Zt reduces to:

K(y) =
6β2(1 − β2)

(1 − β4)
+

(1 − β2)2

(1 − β4)

3(1 − Φ2)

(1 − 3Φ2 − 2θ2)
.
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Example 3.3. For a stationary autoregressive process of order one, AR(1), with multiplicative
seasonal GARCH (1, 0)x(1, 0)s errors of the form,

yt = βyt−1 + ǫt

ǫt =
√

htZt

(1 − φB)(1 − ΦL)ǫ2
t = ω + ut

where φ is the autoregressive parameter and Φ is the seasonal autoregressive parameter. The
Ψ-weights given in Doshi et al. (2011) are as follows: Ψ1 = φ, Ψ2 = φ2,. . . , Ψs−1 = φs−1, Ψs =

φ2 + Φ, . . . , Ψj = φΨj−1 + ΦΨj−s − φΦΨj−s. It can be shown that ∑
∞
j=0 Ψ2

j =
1 + 2φsΦ2 + Φ2

1 − φ2
.

Then, the kurtosis of yt is:

K(y) =
6β2(1 − β2)

(1 − β4)
+

(1 − β2)2

(1 − β4)

E(Z4
t )

E(Z4
t )− [E(Z4

t )− 1]

(

1 + 2φsΦ + Φ2

1 − φ2

)
,

which for a conditionally normally distributed Zt reduces to:

K(y) =
6β2(1 − β2)

(1 − β4)
+

(1 − β2)2

(1 − β4)

3(1 − φ2)

(1 − 3φ2 − 4φsΦ − 2Φ2)
.

Forecast error variance
Thavaneswaran et al. (2005a) derive the expression for the forecast error variance of various
classes of zero mean GARCH(p, q) processes, in terms of the kurtosis and Ψ-weights.
Thavaneswaran & Ghahramani (2008) extend the results for ARMA (p, q) processes with
GARCH (P, Q) errors. In this section we extend the results to AR models with multiplicative
seasonal GARCH(p, q)x(P, Q)s errors.
Theorem 3.1. Let yn(l) be the l-steps-ahead minimum mean square forecast of yn+l and let

e
(y)
n (l) = yn+l − yn(l) be the corresponding forecast error. The variance of the l-steps-ahead

forecast error of yn+l for the AR(1) model with seasonal GARCH errors as given in (2)- (4) is:

Var[e
(y)
n (l)] =

ω
(

1 −
p

∑
i=1

φi

)(

1 −
P

∑
i=1

Φi

)

l−1

∑
j=0

ψ2
j . (10)

Proof. The theorem follows from the fact that for a stationary process with uncorrelated error

noise ǫt the variance of the l-steps ahead forecast error is σ2
ǫ ∑

l−1
j=0 ψ2

j and from part (b) of

Lemma 3.2.
We now have expressions for the variance of the l-steps-ahead forecast error of yn+l for the
previously discussed AR(1)-GARCH(p, q)x(P, Q)s models:

AR(1)-GARCH(0, 1)x(0, 1)s Var[e
(y)
n (l)] = ω

l−1

∑
j=0

β2j

35Recent Developments in Seasonal Volatility Models
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AR(1)-GARCH(0, 1)x(1, 0)s Var[e
(y)
n (l)] =

ω

1 − Φ

l−1

∑
j=0

β2j

AR(1)-GARCH(1, 0)x(1, 0)s Var[e
(y)
n (l)] =

ω

(1 − φ)(1 − Φ)

l−1

∑
j=0

β2j.

In the literature on time series analysis, the error variance is estimated by the residual sum
of squares. If we denote the squared residual as Yt = (yt − β̂yt−1)

2, then we can forecast the
conditional variance, var(yt |yt−1, . . .) = ht, by using Y1, . . . , Yt−1.
Theorem 3.2. Let Yn(l) be the l-steps-ahead minimum mean square forecast of Yn+l and let

e
(Y)
n (l) = Yn+l − Yn(l) be the corresponding forecast error. The variance of the l-steps-ahead

forecast error of Yn+l is given by:

Var[e
(Y)
n (l)] = σ2

u

l−1

∑
j=0

Ψ2
j =

ω2
⎡

⎣

∞

∑
j=0

Ψ2
j

⎤

⎦

[

1 −
p

∑
i=1

φi

]2 [

1 −
P

∑
i=1

Φi

]2
[K(ǫ)− 1]

⎡

⎣

l−1

∑
j=0

Ψ2
j

⎤

⎦ (11)

where, from (8), K(ǫ) =
1 − β4

(1 − β2)2
K(y) − 6β2

1 − β2
.

Proof. The proof follows from part (b) of Lemma 3.2.
We now have expressions for the variance of the l-steps-ahead forecast error of Yn+l for the
previously discussed AR(1)-GARCH(p, q)x(P, Q)s models:

AR(1)-GARCH(0, 1)x(0, 1)s Var[e
(Y)
n (l)] =

(K(ǫ) − 1)µ2

(1 + θ2)(1 + Θ2)

l−1

∑
j=0

Ψ2
j

AR(1)-GARCH(0, 1)x(1, 0)s Var[e
(Y)
n (l)] =

(K(ǫ) − 1)µ2(1 − Φ2)

1 + θ2

l−1

∑
j=0

Ψ2
j

AR(1)-GARCH(1, 0)x(1, 0)s Var[e
(Y)
n (l)] =

(K(ǫ) − 1)µ2(1 − φ2)

1 + 2φsΦ + Φ2

l−1

∑
j=0

Ψ2
j

which are similar to the expressions given in Doshi et al. (2011). Here, K(ǫ) is given in Theorem

3.2. and expressions for K(y) are given in Examples 3.1, 3.2, and 3.3.

4. RCA models with seasonal GARCH errors

The random coefficient autoregressive (RCA) model as proposed by Nicholls & Quinn (1982)
has the form,

yt = (β + bt)yt−1 + ǫt (12)

where

(

bt

ǫt

)

∼ N

((

0

0

)

,

(

σ2
b 0

0 σ2
ǫ

))

and β2 + σ2
b < 1.
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Thavaneswaran et al. (2009) derive the moments for the RCA model with GARCH(p, q) errors.
Here we propose the RCA model with seasonal GARCH innovations of the following form,

yt = (β + bt)yt−1 + ǫt (13)

ǫt =
√

htZt (14)

θ(B)Θ(L)ht = ω + α(B)ǫ2
t (15)

where Zt, θ(B), Θ(L), α(B) were defined in Section 2.

The general expression for the kurtosis K(y) parallels the one in Thavaneswaran et al. (2009)
for non-seasonal GARCH innovations and can be written as follows.
Lemma 4.1. For the stationary RCA process yt with GARCH innovations as in (13)– (15) we
have the following relationships:

(i) E(y2
t ) =

E(ǫ2
t )

1 − (β2 + σ2
b )

, (16)

(ii) E(y4
t ) =

6(β2 + σ2
b )[E(ǫ

2
t )]

2 + [1 − (β2 + σ2
b )]E(ǫ

4
t )

1 − (3σ4
b + β4 + 6β2σ2

b )[1 − (β2 + σ2
b )]

, (17)

(iii) K(y) =
6(β2 + σ2

b )[1 − (β2 + σ2
b )]

1 − (3σ4
b + β4 + 6β2σ2

b )
+

[1 − (β2 + σ2
b )]

2

1 − (3σ4
b + β4 + 6β2σ2

b )
K(ǫ). (18)

If Zt is normally distributed, then the above equations can be written as:

(i) E(y2
t ) =

E(ht)

1 − (β2 + σ2
b )

, (19)

(ii) E(y4
t ) =

6(β2 + σ2
b )

[1 − (β2 + σ2
b )](1 − 6β2σ2

b − β4 − 3σ4
b )

[E(ht)]
2 +

3E(h2
t )

1 − 6β2σ2
b − β4 − 3σ4

b

, (20)

(iii) K(y) =
6(β2 + σ2

b )[1 − (β2 + σ2
b )]

1 − 6β2σ2
b − β4 − 3σ4

b

+
3(1 − β2 − σ2

b )

1 − 6β2σ2
b − β4 − 3σ4

b

E(h2
t )

[E(ht)]2
. (21)

Thavaneswaran et al. (2005a) show that:

E(h2
t )

[E(ht)]2
=

1

E(Z4
t )− [E(Z4

t )− 1] ∑
∞
j=0 Ψ2

j

,

which for a conditionally normally distributed ǫt reduces to
1

3 − 2 ∑
∞
j=0 Ψ2

j

.

Example 4.1. RCA(1) with multiplicative seasonal GARCH (0,1)x(0,1) process

yt = (β + bt)yt−1 + ǫt

ǫt =
√

htZt

ǫ2
t = ω + (1 − θB)(1 − ΘL)ut

37Recent Developments in Seasonal Volatility Models
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where ut = ǫ2
t − ht.The Ψ-weights are given in example 3.1. Then, the kurtosis of yt for a

conditionally normally distributed Zt is:

K(y) =
6(σ2

b + β2)(1 − β2 − σ2
b )

1 − 6β2σ2
b − β4 − 3σ4

b

+
3(1 − β2 − σ2

b )

(1 − 6β2σ2
b − β4 − 3σ4

b )[3 − 2(1 + θ2)(1 + Θ2)]
.

Example 4.2. RCA(1) with multiplicative seasonal GARCH (0,1)x(1,0) process

yt = (β + bt)yt−1 + ǫt

ǫt =
√

htZt

(1 − ΦL)ǫ2
t = ω + (1 − θB)ut

The Ψ-weights are given in example 3.2. Then, the kurtosis of yt for a conditionally normally
distributed Zt is:

K(y) =
6(σ2

b + β2)(1 − β2 − σ2
b )

1 − 6β2σ2
b − β4 − 3σ4

b

+
3(1 − β2 − σ2

b )

(1 − 6β2σ2
b − β4 − 3σ4

b )

[

3 − 2

(

1 + θ2

1 − Φ2

)]
.

Example 4.3. RCA(1) with multiplicative seasonal GARCH (1,0)x(1,0) process

yt = (β + bt)yt−1 + ǫt

ǫt =
√

htZt

(1 − φB)(1 − ΦL)ǫ2
t = ω + ut

The Ψ-weights are given in example 3.3. Then, the kurtosis of yt for a conditionally normally
distributed Zt is:

K(y) =
6(σ2

b + β2)(1 − β2 − σ2
b )

1 − 6β2σ2
b − β4 − 3σ4

b

+
3(1 − β2 − σ2

b )

(1 − 6β2σ2
b − β4 − 3σ4

b )

[

3 − 2

(

1 + 2φsΦ + Φ2

1 − Φ2

)]
.

Forecast error variance
Thavaneswaran & Ghahramani (2008) derive the expression for the variance of the forecast
error for a RCA(1) process with non-seasonal GARCH (1,1) errors. In this section we expand
the results for the more general RCA(1) process with seasonal GARCH(p, q)x(P, Q)s errors.
Theorem 4.1. Let yn(l) be the l-steps-ahead minimum mean square forecast of yn+l and let

e
(y)
n (l) = yn+l − yn(l) be the corresponding forecast error. The variance of the l-steps-ahead

forecast error of yn+l for the RCA(1) model with seasonal GARCH errors as given in (13)- (15)
is:

Var[e
(y)
n (l)] =

ω(1 − β2)
(

1 −
p

∑
i=1

φi

)(

1 −
P

∑
i=1

Φi

)

(1 − β2 − σ2
b )

l−1

∑
j=0

β2j. (22)

Proof. The yt process is second order stationary with autocorrelation ρk = βk and variance
σ2

ǫ /(1 − β2 − σ2
b ). Hence, yt has a valid moving average representation of the form y∗t =
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∑
∞
j=0 βjat−j, where at is an uncorrelated sequence with variance σ2

a . By equating the variance

of y∗t to the variance of yt we have σ2
ǫ /(1− β2 − σ2

b ) = σ2
a /(1− β2), and σ2

a = σ2
ǫ (1− β2)/(1−

β2 − σ2
b ).

Note: When σ2
b = 0, var[e

(y)
n (l)] in Theorem 4.1 reduces to var[e

(y)
n (l)] in Theorem 3.1 for the

AR model with seasonal GARCH errors.
We now have expressions for the variance of the l-steps-ahead forecast error of yn+l for the
previously discussed RCA(1)-GARCH(p, q)x(P, Q)s models:

RCA(1)-GARCH(0, 1)x(0, 1)s Var[e
(y)
n (l)] =

ω(1 − β2)

(1 − β2 − σ2
b )

l−1

∑
j=0

β2j

RCA(1)-GARCH(0, 1)x(1, 0)s Var[e
(y)
n (l)] =

ω(1 − β2)

(1 − Φ)(1 − β2 − σ2
b )

l−1

∑
j=0

β2j,

RCA(1)-GARCH(1, 0)x(1, 0)s Var[e
(y)
n (l)] =

ω(1 − β2)

(1 − φ)(1 − Φ)(1 − β2 − σ2
b )

l−1

∑
j=0

β2j.

Theorem 4.2. Let Yt = [yt − (β̂ + bt)yt−1]
2. Also, let Yn(l) be the l-steps-ahead minimum

mean square forecast of Yn+l and let e
(Y)
n (l) = Yn+l − Yn(l) be the corresponding forecast

error. The variance of the l-steps-ahead forecast error of Yn+l for the RCA(1) model with
seasonal GARCH errors as given in (13)- (15) is:

Var[e
(Y)
n (l)] = σ2

u

l−1

∑
j=0

Ψ2
j =

ω2
⎡

⎣

∞

∑
j=0

Ψ2
j

⎤

⎦

[

1 −
p

∑
i=1

φi

]2 [

1 −
P

∑
i=1

Φi

]2
[K(ǫ)− 1]

⎡

⎣

l−1

∑
j=0

Ψ2
j

⎤

⎦ (23)

where, from (18), K(ǫ) =
1 − (3σ4

b + β4 + 6β2σ2
b )

[1 − (β2 + σ2
b )]

2
K(y) − 6(β2 + σ2

b )

1 − (β2 + σ2
b )

.

Proof. The proof follows from part (b) of Lemma 3.2.

Note: When σ2
b = 0, K(ǫ) in Theorem 4.2 reduces to K(ǫ) in Theorem 3.2 for the AR model with

seasonal GARCH errors.
We now have expressions for the variance of the l-steps-ahead forecast error for the previously
discussed RCA(1)-GARCH(p, q)x(P, Q)s models:

RCA(1)-GARCH(0, 1)x(0, 1)s Var[e
(Y)
n (l)] =

(K(ǫ) − 1)µ2

(1 + θ2)(1 + Θ2)

l−1

∑
j=0

Ψ2
j

RCA(1)-GARCH(0, 1)x(1, 0)s Var[e
(Y)
n (l)] =

(K(ǫ) − 1)µ2(1 − Φ2)

1 + θ2

l−1

∑
j=0

Ψ2
j

RCA(1)-GARCH(1, 0)x(1, 0)s Var[e
(Y)
n (l)] =

(K(ǫ) − 1)µ2(1 − φ2)

1 + 2φsΦ + Φ2

l−1

∑
j=0

Ψ2
j

which are similar to the expressions given in Doshi et al. (2011). Here, K(ǫ) is given in Theorem

4.2. and expressions for K(y) for a conditionally normally distributed ǫt are given in Examples
4.1, 4.2, and 4.3.
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5. RCA models with seasonal SV errors

We start with Taylor’s (2005) stochastic volatility (SV) model and propose its seasonal form,

yt = (β + bt)yt−1 + ǫt (24)

ǫt = Zte
1
2 ht Zt ∼ N(0, 1) (25)

φ(B)Φ(L)ht = ω + vt vt ∼ N(0, σ2
v ) (26)

where ǫt and ht are innovations of the observed time series yt and the unobserved stochastic

volatility, respectively. Also, φ(B) = 1 −
q

∑
i=1

φiB
i, Φ(L) = 1 −

Q

∑
i=1

ΦiL
i, and L = Bs, where s

is the seasonal period. We assume that all the zeros of the polynomial φ(B)Φ(L) lie outside
the unit circle; thus, ht as given in (26) is stationary. The moving average representation is
ht = ω + ∑

∞
j=0 Ψjvt−j where {Ψj} is a sequence of constants and ∑

∞
j=0 Ψ2

j < ∞. The Ψj’s are

obtained from φ(B)Φ(L)Ψ(B) = 1 where Ψ(B) = 1 + ∑
∞
j=1 ΨjB

j.

RCA models with SV innovations have been studied in Paseka et al. (2010). Here we consider
the seasonal version of the SV process and we study the moment properties of RCA models
with seasonal SV innovations.
Theorem 5.1. Suppose yt is an RCA model with seasonal SV innovations as in (24)– (26).
Then, we have the following relationship:

(i) E(y2
t ) =

E(ǫ2
t )

1 − (β2 + σ2
b )

,

(ii) E(y4
t ) =

6(σ2
b + β2)[E(ǫ2

t )]
2 + [1 − (β2 + σ2

b )]E(ǫ
4
t )

1 − (3σ4
b + β4 + 6β2σ2

b )[1 − (β2 + σ2
b )]

,

(iii) K(y) =
6(σ2

b + β2)[1 − (β2 + σ2
b )]

1 − (3σ4
b + β4 + 6β2σ2

b )
+

[1 − (β2 + σ2
b )]

2

1 − (3σ4
b + β4 + 6β2σ2

b )
K(ǫ),

(iv) K(ǫ) = 3e
σ2

v ∑
∞
j=0 Ψ2

j

where E(ǫ2
t ) = exp

{

µht
+ 1

2 σ2
ht

}

, E(ǫ4
t ) = 3 exp

{

2µht
+ 2σ2

ht

}

, the mean of the ht process is

µht
=

ω

(1 − ∑
q
i=1 φi)(1 − ∑

Q
i=1 Φi)

and the variance of ht is σ2
ht
= σ2

v ∑
∞
j=0 Ψ2

j .

Proof. Parts (i) to (iii) are similar to Paseka et al. (2010) for an RCA-non seasonal SV process.
Part (iv) follows from the above expressions for E(ǫ2

t ) and E(ǫ4
t ) as follows:

K(ǫ) =
E(ǫ4

t )

[E(ǫ2
t )]

2
=

3e
2µht

+2σ2
ht

(e
µht

+1/2σ2
ht )2

= 3e
σ2

ht = 3eσ2
v ∑

∞
j=0 Ψ2

j .

Next, we illustrate applications of Theorem 5.1 with three examples.
Example 5.1. RCA with autoregressive [AR(1)] SV process

yt = (β + bt)yt−1 + ǫt

ǫt = Zte
1
2 ht

(1 − φB)ht = ω + vt
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The Ψ-weights are Ψj = φj, j ≥ 1. Therefore, ∑
∞
j=0 Ψ2

j = 1+ φ2 + φ4 + . . . =
1

1 − φ2
. Then, the

kurtosis of yt is:

K(y) =
6(σ2

b + β2)[1 − (β2 + σ2
b )]

1 − (3σ4
b + β4 + 6β2σ2

b )
+ 3

[1 − (β2 + σ2
b )]

2

1 − (3σ4
b + β4 + 6β2σ2

b )
exp

{

σ2
v

1 − φ2

}

.

Example 5.2. RCA with pure seasonal autoregressive [AR(1)s] SV process

yt = (β + bt)yt−1 + ǫt

ǫt = Zte
1
2 ht

(1 − ΦBs)ht = ω + vt

The Ψ-weights are Ψj = Φj, j ≥ 1. Therefore, ∑
∞
j=0 Ψ2

j = 1 + Φ2 + Φ4 + . . . =
1

1 − Φ2
. Then,

the kurtosis of yt is:

K(y) =
6(σ2

b + β2)[1 − (β2 + σ2
b )]

1 − (3σ4
b + β4 + 6β2σ2

b )
+ 3

[1 − (β2 + σ2
b )]

2

1 − (3σ4
b + β4 + 6β2σ2

b )
exp

{

σ2
v

1 − Φ2

}

.

Example 5.3. RCA with multiplicative seasonal autoregressive [AR(1)x(1)s] SV process

yt = (β + bt)yt−1 + ǫt

ǫt = Zte
1
2 ht

(1 − φB)(1 − ΦBs)ht = ω + vt

The Ψ-weights are Ψ1 = φ + Φ, and Ψj = (φ + Φ)Ψj−1 + φΦΨj−2, j ≥ 2. Then, the kurtosis
of yt is:

K(y) =
6(σ2

b + β2)[1 − (β2 + σ2
b )]

1 − (3σ4
b + β4 + 6β2σ2

b )
+ 3

[1 − (β2 + σ2
b )]

2

1 − (3σ4
b + β4 + 6β2σ2

b )
e

σ2
ht

where σ2
ht
=

(1 + φs)σ2
v

(1 − φ2)(1 − Φ2)(1 − Φφs)
.

Recently, Gong & Thavaneswaran (2009) discussed the filtering of SV models. The prediction
of discrete SV models can be obtained by using the recursive method proposed in
Gong & Thavaneswaran (2009).

6. Option pricing with seasonal volatility

Option pricing based on the Black-Scholes model is widely used in the financial community.
The Black-Scholes formula is used for the pricing of European-style options. The model
has traditionally assumed that the volatility of returns is constant. However, several
studies have shown that asset returns exhibit variances that change over time. Duan (1995)
proposes an option pricing model for an asset with returns following a GARCH process.
Badescu & Kulpeger (2008); Elliot et al. (2006); Heston & Nandi (2000) and others derived
closed form option pricing formulas for different models which are assumed to follow a
GARCH volatility process. Most recently, Gong et al. (2010) derive an expression for the call
price as an expectation with respect to random GARCH volatility. The model is then evaluated
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in terms of the moments of the volatility process. Their results indicate that the suggested
model outperforms the classic Black-Scholes formula. Here we extend Gong et al. (2010) and
propose an option pricing model with seasonal GARCH volatility as follows:

dSt = rStdt + σtStdWt (27)

yt = log

(

St

St−1

)

− E

[

log

(

St

St−1

)]

= σtZt (28)

θ(B)Θ(L)σ2
t = ω + α(B)y2

t (29)

where St is the price of the stock, r is the risk-free interest rate, {Wt} is a standard Brownian
motion, σt is the time-varying seasonal volatility process, {Zt} is a sequence of i.i.d. random
variables with zero mean and unit variance and α(B), θ(B) and Θ(L) have been defined in
(4).
The price of a call option can be calculated using the option pricing formula given in
Gong et al. (2010). The call price is derived as a first conditional moment of a truncated
lognormal distribution under the martingale measure, and it is based on estimates of the
moments of the GARCH process. The call price based on the Black-Scholes model with
seasonal GARCH volatility is given by:

C(S, T) = S

(

f [E(σ2
t )] +

1

2
f ′′[E(σ2

t )]

(

1

3
κ(y) − 1

)

E2(σ2
t )

)

− Ke−rT

(

g[E(σ2
t )] +

1

2
g′′[E(σ2

t )]

(

1

3
κ(y) − 1

)

E2(σ2
t )

)

, (30)

where f and g are twice differentiable functions, S is the initial value of St, K is the strike price,

T is the expiry date, σt is a stationary process with finite fourth moment, and κ(y) =
E(y4

t )
[E(y2

t )]
2 .

Also, f [E(σ2
t )], g[E(σ2

t )], f ′′[E(σ2
t )], and g′′[E(σ2

t )] are given by:

f [E(σ2
t )] = N(d) = N

⎛

⎝

log(S/K) + rT + 1
2 E(σ2

t )
√

E(σ2
t )

⎞

⎠ ,

g[E(σ2
t )] = N

(

d −
√

E(σ2
t )

)

= N

⎛

⎝

log(S/K) + rT − 1
2 E(σ2

t )
√

E(σ2
t )

⎞

⎠ ,

f ′′[E(σ2
t )] =

1√
2π

[

−

⎛

⎝

E(σ2
t )− 2(log(S/K) + rT)

4E(σ2
t )
√

E(σ2
t )

⎞

⎠

(

[E(σ2
t )]

2 − 4(log(S/K) + rT)2

8[E(σ2
t )]

2

)

+

⎛

⎝

6(log(S/K) + rT)− E(σ2
t )

8[E(σ2
t )]

2
√

E(σ2
t )

⎞

⎠

]

× exp

{

− (2(log(S/K) + rT) + E(σ2
t ))

2

8E(σ2
t )

}

,
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g′′[E(σ2
t )] =

1√
2π

[

⎛

⎝

E(σ2
t ) + 2(log(S/K) + rT)

4E(σ2
t )
√

E(σ2
t )

⎞

⎠

(

[E(σ2
t )]

2 − 4(log(S/K) + rT)2

[E(σ2
t )]

2

)

+

⎛

⎝

6(log(S/K) + rT) + E(σ2
t )

8[E(σ2
t )]

2
√

E(σ2
t )

⎞

⎠

]

exp

{

− (2(log(S/K) + rT)− E(σ2
t ))

2

8E(σ2
t )

}

,

where N denotes the standard normal CDF, and under the option pricing model with seasonal
GARCH volatility,

E(σ2
t ) =

ω
(

1 −
p

∑
i=1

φi

)(

1 −
P

∑
i=1

Φi

) ,

κ(y) =
3

3 − 2
∞

∑
j=1

Ψ2
j

.

7. Concluding remarks

In this chapter we propose various classes of seasonal volatility models. We consider time
series processes such as AR and RCA with multiplicative seasonal GARCH errors and SV
errors. The multiplicative seasonal volatility models are suitable for time series where
autocorrelation exists at seasonal and at adjacent non-seasonal lags. The models introduced
here extend and complement the existing volatility models in the literature to seasonal
volatility models by introducing more general structures.
It is well-known that financial time series exhibit excess kurtosis. In this chapter we derive
the kurtosis for different seasonal volatility models in terms of model parameters. We also
derive the closed-from expression for the variance of the l-steps ahead forecast error of i)
yn+l in terms of ψ-weights and model parameters, and of ii) squared series Yn+l in terms
of Ψ-weights, model parameters and the kurtosis of ǫt. The results are a generalization of
existing results for non-seasonal volatility processes. We provide examples for all the different
classes of models considered and discussed them in some detail (i.e. AR(1)-GARCH(p, q)×
(P, Q)s, RCA(1)-GARCH(p, q)× (P, Q)s and RCA(1)-seasonal SV).
The results are primarily oriented to financial time series applications. Financial time series
often meet the large dataset demands of the volatility models studied here. Also, financial data
dynamics in higher order moments are of interest to many market participants. Specifically,
we consider the Black-Scholes model with seasonal GARCH volatility and show that the
moments of the seasonal volatility process can be used to evaluate the call price for European
options.
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