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1. Introduction

Non-Parametric (NP) estimation seeks the most general way to find a functional form that fits
observed data. Any parametric assumption places a somewhat unnatural apriori restriction
on the problem. For example linear estimation assumes from the outset that the functional
forms described by the data are linear. This is a strong assumption that is often incorrect and
prevents us from seeing the essential non-linear nature of economics. Indeed market clearing
conditions are typically non-linear and therefore market behavior is not properly described
by linear equations. Parametric estimation is therefore a "straight-jacket" that limits or distorts
our perception of the world.

But how general is the NP philosophy? How far does it go? Are there limits to NP econometric
estimation, can we assume nothing at all about the parameters of the problem and still obtain
successful statistical tests that disclose the funcional forms behind the observed data? This
chapter explores the limits to our ability to extend NP estimation. Considering the success
of NP estimation in bounded or compact domains, the chapter seeks ways to identify the
limits of extending it from bounded intervals to the entire real line R™, so as to avoid artificial
constraints that contradict the intention of NP estimation. The bounded sample approach
is not new. In 1985 Rex Bergstrom (1985) constructed a non - parametric (NP) estimator for
non-linear models with bounded sample spaces, using techniques of Hilbert spaces® a type
of space I introduced in Economics (Chichilnisky, 1977). His article is simple, elegant and
general, but requires an a priori bound on observed data that conflicts with the spirit of NP
estimation. This chapter extends these original results to unbounded sample spaces such as
the positive real line RT2 using earlier work (Chichilnisky 1976, 1977, 1996, 2000, 2006, 2009,
2010a, 2010b and 2011). We find a sharp dividing line, a condition that is both necessary and
sufficient for extending NP estimation from bounded intervals to the entire real line. The clue
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to this condition appeared in the literature as a classic statistical assumption that restricts the
asymptotic behavior of the unknown function, and derives from a classical assumption on
relative likelihoods. In De Groot (2004) the condition is denoted SPy, and it compares the
likelihood of bounded and unbounded sets. A simple interpretation for this condition is that,
no matter how small is a set B > @, it is impossible for every infinite interval (n,co) to be as
least as likely as B.3 In practical terms the condition requires that in an increasing sequence
of unboudned sets, the sets become eventually less likely than any bounded set. To check the
condition in practice, one examines the relative likelihood of any bounded set B and compares
it with infinite sets of the form (1, 00). Eventually for large enough 7, the set B must be more
likely than (n,c0). As a practical example, any continuous integrable density function on the
line f : R™ — R defines a relative likelihood that satisfies this condition. And as shown below
this condition eliminates fat tails.

In order to generalize the NP estimation problem as much as possible, we extend Assumption
SP, which was originally defined only for density functions, to any continuous unknown function
f : R™ — R. We show that when SP; is satisfied, the unknown function can be represented
by a function in a Hilbert space and the NP estimator can be extended appropriately to R™.
But when assumption SP; fails, the situation is quite different. The estimator does not have
appropriate asymptotic behavior at infinity. It appears that a classic statistical assumption
holds the cards for extending NP estimation to unbounded sample spaces.

Exploring other areas of the literature, we find other assumptions that we proved to be
equivalent to SPy and in that sense determinant for extending NP estimation to R™. In decision
theory one such assumption is the Monotone Continuity Axiom of Arrow (1970) and another is
the Insensitivity to Rare Events see Chichilnisky (2000, 2006). In optimal growth models it is
Dictatorship of the Present as defined in Chichilnisky (1996) and the classic work of Koopmans
on “impatience”. When the key assumptions fail the estimator does not converge. In all cases,
the failure leads to purely finitely additive measures on R, and to distributions with heavy
tails. Econometric results involving purely additive measures are still an open issue, which
suggests the current limits of econometrics. We show here that they are directly connected
with Kurt Godel’s work on the Limits of Mathematics - which established in the 1940’s that
any logical system that is sufficiently complex - such as Mathematics - is either ambiguous or
leads to contradictions. We are therefore encountering a general phenomenon on the limits of
Mathematics.

Results extending semi NP estimation and NP estimation to infinite cases, dealing with
separate but related issues, can be found e.g. in Blundell et al (2006), Stinchcombe (2002),
and Chen (2005) among others. Other articles in the NP literature include Andrews (1991)
and Newey (1997), both of which again assume a compact support for the regressor.

2. Hilbert spaces

The methodology we use here is weighted Hilbert spaces as defined in Chichilnisky (1976,
1977), two publications that introduced Hilbert Spaces in Economics.

These earlier results suggested the advantages of using Hilbert Spaces in econometrics, in
particular for NP estimation.* The rationale is simple: NP estimation is by nature infinite
dimensional, because when the forms of the functions in the true model are unknown, the
most efficient use of the data is to allow the estimated functions (or the number of estimated
parameters) to depend on the size of the sample, tending to infinity with the sample size.
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The Limits of Mathematics and NP Estimation in Hilbert Spaces 5

This provides a natural infinite dimensional context for NP estimation. In this context, Hilbert
spaces are a natural choice, because they are the closest analog to Euclidean space in infinite
dimensions.

Bergstrom (1985) pointed out that there is a natural limitation for the use of Hilbert space
on the real line R. Standard Hilbert spaces such as Ly(R) require that the unknown function
approaches zero at infinity, a somewhat unreasonable limitation to impose on the economic
model as they exclude widely used functions such as constant, increasing and cyclical
functions on the line. To overcome his objection I suggested using weighted Hilbert spaces
since these impose weaker limiting requirement at infinity as shown below. Bergstrom’s
article (1985) acknowledged my contribution to NP estimation in Hilbert spaces, but it is
restricted to bounded sample spaces: his results apply to L, spaces of functions defined on
a bounded segment of the line, [a,b] C R.

Below we extend the original methodology in Bergstrom (1985) to unbounded sample spaces
by using weighted Hilbert spaces as I originally proposed. In exploring the viability of the
proofs, we run into an interesting dilemma. When the sample space is the entire positive real
line, Hilbert space techniques still require additional conditions on the asymptotic behavior
of the unknown function at infinity. In bounded sample spaces such as [a,b] this problem
did not arise, because the unknown are continuous, and therefore bounded and belong to the
Hilbert space Ly[a, b]. But this is not the case when the sample space is the positive line R™.
A continuous real valued function on RT may not be bounded, and may not be in the space
L,(RT)®. Therefore the Fourier series expansions that are used for defining the estimator may
not converge. With unbounded sample spaces, additional statistical assumptions are needed
for NP estimation.

Consider the problem of estimating an unknown function f on R, for example a capital
accumulation path through time or a density function, which are standard non - linear NP
estimation problems. The unknown density function may be continuous, but not a square
integrable function on R* namely an element of L,(R™). Since the NP estimator is defined
by approximating values of the Fourier coefficients of the unknown function (Berhstrom
1985), when the Fourier coefficients of the estimator do not converge, the estimator itself
fails to converge. A similar situation arises in general NP estimation problems where the
unknown function may not have the asymptotic behavior needed to ensure the appropriate
convergence. This illustrates the difficulties involved in extending NP estimation in Hilbert
spaces from bounded to unbounded sample spaces.

The rest of this chapter focuses on statistical necessary and sufficient conditions needed for
extending the results from bounded intervals to the positive line R.

3. Statistical assumptions and NP estimation

A brief summary of earlier work is as follows. Bergstrom'’s statistical assumptions (Bergstrom,
1985) require that the unknown function f be continuous and bounded a.e. on the sample
space [a,b] € R.° His sample design assumes separate observations at equidistant points. The
number of parameters increases with the size of the sample space, and disturbances are not
necessarily normal.

Bergstrom uses an orthogonal series in Hilbert space to derive NP properties and prove
convergence theorems. The series is orthonormal in the Hilbert space rather than in the sample
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6 Advances in Econometrics - Theory and Applications

space, so the elements remain unchanged as the sample size increases. This series includes
polynomials or any dense family of orthonormal functions in the Hilbert space.

An estimator ]/> is defined in a simple and natural manner (Bergstrom 1985): the first M
Fourier coefficients of the unknown function f are estimated relative to the orthonormal
set. Estimates of the coefficients are obtained from the sample by ordinary least squares
regression, setting the rest of the Fourier coefficients to zero. Bergstrom (1985) shows that

A
E|f ab {famn(x) = f(x)}dx | can be made arbitrarily small by a suitable choice of M and of N.

He also defines an estimator f3;(x) that is optimal for the sample size N, and shows that this
converges in a given metric to f(x) as N — co. A third theorem shows how an optimal value of
M* is related to the Fourier coefficients and the mean square errors of their estimates obtained
from regressions with various values of M, and provides the basis for an estimation procedure.
A "stopping rule" is also provided for estimating the optimum value of the parameter which,
for a given sample, provides the exact number of Fourier coefficients to be estimated. The
definition of the estimator and the proofs of these results require that f be an element of a
Hilbert space.

Unbounded sample spaces give rise to a different type of problem. To explain the problem
and motivate the results we first explain why earlier work was restricted to bounded sample
spaces.

4. Why bounded sample spaces?

When working in Hilbert spaces, there are good technical reasons for requiring that the
sample space be bounded. For example, consider the typical Hilbert space of functions L,
the space of square integrable measurable real valued functions. Bergstrom (Bergstrom, 1985)
considered the space L[4, b] of functions defined on the bounded segment [4,b] C R, where
[a,b] represents the sample space. As he points out, there is no need to assume anything
further than continuity for the unknown function.” Every continuous unknown function on
the segment [4, b] is bounded and belongs to the Hilbert space L;|a, b].

However when the sample space is unbounded, such as R, the square integrability condition
of being in Lp(R") function imposes significantly more restrictions. For example, for
continuous functions of bounded variation, it requires that the functions to be estimated have
a well defined limit at infinity, such as lim; . f(#) = 0. This is not a reasonable restriction to
impose on the unknown function, for example, if the function represents capital accumulation,
which typically increases over time. The restriction on lim_, f () eliminates also other
standard cases, such as constant, increasing or cyclical functions.

In mathematical terms, an appropriate transformation of the line can alleviate the problem.
This was the methodology introduced in Chichilnisky (1976 and 1977), the first publications
to use Hilbert spaces in economics. I defined then a Hilbert space L,(R") with a ‘weight
function” 7(t) that defines a finite density measure for R*.8 In this case, square integrability
requires far less, only that the product of the function times the weight function, f(#)7y(t),
converges to zero at infinity, rather then the function f(t) itself. This is a more reasonable
assumption, which is asymptotically satisfied by the solutions in most optimal growth models,
where there is well defined a ‘discount” factor v > 1. The solution I considered was the
(weighted) Hilbert space Ly (R™, y) of all measurable functions f for which the absolute value
of the ‘discounted’ product f(t)e~ 7 is square integrable, (Chichilnisky, 1976 and 1977). As
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The Limits of Mathematics and NP Estimation in Hilbert Spaces 7

already stated this does not require lim; o f(t) = 0, and it includes bounded, increasing
and cyclical real valued functions on R*.% Tt is of course possible to include other weight
functions as part of the methodology introduced in (Chichilnisky 1976, 1977), provided the
weight functions are monotonically decreasing and therefore invertible, but the ones specified
in Chichilnisky (1976 and 1977) are naturally associated with the models at hand. This solution
is an improvement, but the condition that the unknown function belongs to a Hilbert space
still poses asymptotic restrictions at infinity, which are considered below.

In the case of optimal growth models Chichilnisky (1977), the methodology of weighted
Hilbert spaces is based on a transformation map induced by the model itself, its own “discount
factor’ 7% : RT™ — [0,1), 7(t) = e~ 7. Under this transformation, the unbounded sample
space R is mapped into the bounded sample space [0, 1) where the original assumptions and
results for bounded sample spaces can be re-interpreted appropriately in a bounded sample
space. This is the route followed in this paper.

Before doing so, however, it seems worth discussing briefly a different methodology that has
been suggested for NP estimation with unbounded sample spaces,'” explaining why it may
be less suitable.

5. Compactifying the sample space

A natural approach to extend NP estimation to unbounded sample spaces would be to
compactify the sample space, and apply the existing results to the compactified space. For
example, the compactification of the positive real line R™ yields a space that is equivalent to a
bounded interval [a, b]. To proceed with NP estimation, one needs to reinterpret every function
f: Rt = R as a function defined on the compactified space, f : R — R. As we see below,
this requires from the onset that the function f on R has a well-defined limiting behavior
at infinity, namely lim;_, f(t) < oo. Otherwise, f cannot be extended to a function on the
compactified space. To lift this constraint, Peter Phillips suggested that one could estimate
(rather than assume) the behavior of the unknown function at infinity.!! But in all cases, some
limit must be assumed for the unknown function, which can be considered an unrealistic
requirement. The following example shows why.

Consider the Alexandroff one point compactification of the real line R, which consists of ‘adding’
to the real numbers a point of infinity {co}, and defining the corresponding neighborhoods
of infinity. This is a frequently used technique of compactification. A function f on the line
R can be extended to a function on the compactified line but only if f has a well - defined
limiting behavior at infinity, namely if there exists a well defined lim;_,« f(t). This is not
always possible nor a reasonable restriction to impose, for example, this requirement excludes
all cyclical functions, for which lim;_,« f(t) does not exist.

One can explore more general forms of compactification, such as the Stone - Cech
compactification of the line R, the most general possible compactification of the real line.!? Ris
a well behaved Hausdorff space, and is a universal compactifier of R, which means that every
other compactification of R is a subset of it. Any function f : R — R can be extended to a
function on the compactified space, ]? : R = R. However it is difficult to interpret Hilbert
Spaces of functions defined on R, since these would be square integrable functions defined on
ultrafilters rather than on real numbers. Such spaces do not have a natural interpretation.

To overcome these difficulties, in the following we use weighted Hilbert Spaces for NP
estimation on unbounded samples spaces.
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6. NP estimation on Weighted Hilbert spaces

Following Chichilnisky (1976), (1977) consider the sample space R = [0, c0) with a standard
o field and a finite density or ‘weight function’ 7 : RT — [1,0), ¥(t) = ¢, o > 1,
[z+ e "dt < oco. Define the weighted Hilbert space H,, also denoted H, consisting of all
measurable and square integrable functions g(.) : R™ — R with the weighted L, norm || . ||

I8 ll2= ([, (e "an)!”?

Observe that the space H contains the space of bounded measurable functions Ls(R™), and
includes all periodic and constant functions, as well as many increasing functions.

The weight function 7 induces a homeomorphism, namely a bi-continuous one to one
and onto transformation, between the positive real line and the interval [1,0), 7% : RT —
[0,1),7(t) = e . In the following we use a modified homeomorphism § : R* — [0,1)
defined as 6(t) = 1 — 7(t) € [0,1] to maintain the standard order of the line. The
transformation ¢ allows us to translate Bergstrom’s 1985 methodology, assumptions and
notation, which are valid for [0, 1], to the positive real line R*. The following section interprets
the statistical assumptions in Bergstrom (1985) for NP estimation in this new context, and
introduces new statistical assumptions.

7. Statistical assumptions and results on R™

We have a sample of N paired observations (t1,y1)...,(tN,yn) in which tq,...t5 are non
random positive real numbers whose values are fixed by the statistician and yy,...yN are
random variables whose joint distribution depends on t,...t5y . we may In particular it is
assumed that E(y;) = f(6(t;)) = f(x;), (i = 1,..,N) where f is an unknown function,
5: RT — [0,1) is the one to one transformation defined above, and x; = 6(t;).

We are concerned with estimating an unknown function g : Rt — R over the sample space
RT or, equivalently, estimating the function f over the bounded interval [0,1) defined by
f(.)=1(gos 1(.)=2g(61()):[0,1) = R. The model is precisely described by Assumptions
1 to 4 below, which are a transformed version of the Assumptions in Bergstrom (1985), section
2, p.- 11. We also require a new statistical assumption, Assumption 3 below, which is needed
due to the unbounded nature of our sample space'®.

Observe that, given the properties of the transformation map J, it is statistically equivalent
to work with the non random variables t;, ...t 5 or, instead, with the transformed non random
variables x; = x1(f)..xy = xn(tn). To simplify the comparison with Bergstrom’s (1985)
results, it seems best to use the latter variables when describing the statistical model:
Assumption 1: (Sampling assumption) The observable random variables y1, ...y are assumed to
be generated by the equations

yi = f(x;) +u; = f(6(t;)) +u;

where
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The Limits of Mathematics and NP Estimation in Hilbert Spaces 9

a,b are constants (1 > b > a > 0) and u1...uy are unobservable random variables'# satisfying
the conditions:
E(u;)

E(u?)

i
E(ui,u]-) =0 i 75 ],Z = 1,...,N.

Assumption 2: The unknown function ¢ : RT — R is continuous or, equivalently, the
‘transformed’ function f : [0,1) — R defined by f(.) = god~1(.) : [0,1) — R, is continuous.
When the domain of a function f - namely the sample space - is the closed bounded interval
[0, 1] then, being continuous, f is bounded and f € L,[0, 1] as pointed out in Bergstrom (1985),
p- 11. One may therefore apply Hilbert Spaces techniques for NP estimation.

In our case, the (transformed) function f is defined over the (half open) interval [0,1). Under
appropriate boundary conditions f can be extended to the closed interval [0, 1]. Continuity
over the closed bounded interval implies boundedness, and furthermore it ensures that
f € Ly[0,1]. But this is no longer true when the sample space is the positive real line R,
or, equivalently, the transformed sample space is (RT) = [0,1). A continuous function
defined on R may not be bounded, and may not belong to L,(R").!> For the unbounded
sample space R, we require the following additional statistical assumption on the unknown
function:

Assumption 3: The unknown function g : R — R is in the Hilbert Space H or, equivalently, the
transformed function f : [0,1) — R can be extended to a continuous function f : [0,1] — R.
Assumption 4: The countable set of continuous functions ¢, (x(t)),...,¢5(x(t)) is a complete
orthonormal set in the space Ly(R™") of square integrable functions on R™ with ordinary
Lebesgue measure y.

This requires that the functions qu be continuous, linearly independent, dense in Lr(R™) and
satisfy the conditions

0
o2

1
/0 P(x)dx =1, (j=1,2,..)
and .
L 9,0 9x0dx =0, G # i =1,2..),

Observe that one can consider different orthonormal sets, for example, (Bergstrom, 1985)
considers an orthonormal set consisting of polynomials on increasing order.

On the basis of these Assumptions (1, 2, 3 and 4) the following results, which are reproduced
from Bergstrom, 1985, obtain directly from those of Bergstrom, 1985. These results are
expressed in the transformed unknown function f : [0,1] — R to facilitate comparison with
Bergstrom (1985) but can be equivalently expressed on the unknown function ¢ : Rt — R :

A
Theorem 1. (Bergstrom, 1985) Let f,\(x) be defined by

Fain () = (M, Ny (x) + o+ Eat (M, N) iy (x) &

where N N
c1 (M, N)pq(x), ..., c (M, N)¢p 1 (x)

are the values of
Cl/ CZ/ eeoy CM
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that minimize N
Y v — 1y (x) — . — e (x) }
i=1

i.e. there are sample regression coefficients. Then for an arbitrarily small real number e > 0, there are
M and Ng(M) such that

b A
EL[ Fun(x) = f(0)dx] < &
if M > Mg and N > N¢(M).
Theorem 2. (Bergstrom, 1985) Let M* be the smallest integer such that

E [/Ol{fM*N(X) —f(x)}z} <E [/Ol{fMN(x) —f(x)¥?| M =1,..,N)
where fan (x) is defined by (1) and let fr(x) be defined by

f(x) = fren ().

Then under Assumptions 1-4,

im | [[ 1) — )] =o.

N—o0

Definition 3. Let cq,...,Cy, ... be the Fourier coefficients of f(x) relative to the orthonormal set
$1, s P, in the transformed set [0, 1], namely

1
c,-:/o f@);(x)dx, (j=1,2,..).

Observe that under the conditions the set ¢, ..., ¢, is orthonormal and therefore complete in
L,[0,1] so that

tm [ (f(x c,¢]< 0P =0,

M—o0

and Parseval’s inequality is satisfied (Kolmogorov, 1961, p. 98)

/01 2 (x)dx = i 0]2
j=1

Theorem 4. (Bergstrom 1985) Under Assumptions 1-4,

M* M*
Dy c}sz(Ej(M*, ZE (M,N)—¢;)> (M=1,.,M —1)
j=M+1
M ) M ) M* )
| Y, ¢ < 2 E(¢;(M,N) —cj)” — 2 E((M*,N) —¢))* (M=M"+1,..,N)
j=M+1 j=1 =1
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The Limits of Mathematics and NP Estimation in Hilbert Spaces 11

From the definition of the transformation é and Assumptions 1 to 4, the proofs for the
theorems above follow directly from Theorems 1, 2 and 3 in Bergstrom 1985..

Theorems 1, 2 and 4 are quite general, but the underlying assumptions (1 to 4) still require
interpretation for the case of unbounded sample spaces. The following section tackles this
issue.

8. Statistical assumptions on R

Assumptions 1, 2 and 4 have a ready interpretation in the transformed sample space.
Assumption 3 is however of a different nature. It requires that the unknown function
¢ : RT™ — R be an element of a (weighted) Hilbert space or, equivalently, that the transformed
unknown function f : [0,1) — R can be extended to a continuous function in the Hilbert space
L,[0,1]. This condition is critical: when Assumption 3 is satisfied Theorems 1, 2 and 4 extend
NP estimation to R™, but otherwise these theorems, which depend on the properties of L,
functions and the convergence of their Fourier coefficients, no longer work. What conditions
are needed to ensure that Assumption 3 holds?'® The following provides classical statistical
conditions involving relative likelihoods (cf. De Groot, 2004, Chapter 6).

Theorem 5. If a relative likelihood = satisfies assumptions SPy to SPs of De Groot (2004) Chapter 6,
then there exists a probability function f : R™ — R representing the relative likelihood < where f is
an element of the Hilbert space Ly(R™) and Assumption 3 above is satisfied.

Proof: Consider the five assumptions SPy,...,SP5 provided in Degroot (2004) Chapter 6.
Together they imply the existence of a countably additive probability measure on R™ that
agrees with the relative likelihood order 2 (cf. Degroot, 2004), Section 6.4, p. 76-77). Given
any countably additive measure # on R one can always find a functional representation
as a measurable function, f : RT — R, that is integrable, f € Li(R™") and satisfying
u(A) = [, f(x)dx (Yosida 1952). In other words, the five assumptions SPj, ..., SP5 guarantee
the existence of an absolutely continuous distribution representing the ‘relative likelihood of
events’ (Degroot, 2004).

Since the space of integrable functions on the (positive) real line is contained in the space
of square integrable functions on the (positive) real line, L1 (R™) C Ly(R™) (Yosida, 1952)
it follows, under the assumptions, that f € Lr(R™) as we wished to prove. Thus the five
statistical assumptions of Degroot (2004) suffice to guarantee our Assumption 3, and hence
the results of Theorems 1, 2 and 4.1

Among the five fundamental statistical assumptions of Degroot (2004) there is one, SP4, which
plays a key role: it is necessary and sufficient to extend the NP estimation results to unknown
density functions on R™.The next step is to define assumption SP; and explain its role. The
notation A = B indicates that the likelihood of the set or event A is higher than the likelihood
of B, see Degroot (2004).

Definition 6. Assumption SPy (De Groot 2004): Let A1 D A, D ...be a decreasing sequence of
events, and B some fixed event such that A; 77 B fori = 1,2...., Then ﬂzl A; 2 B;.

To clarify the role of SP4, suppose that each infinite interval of the form (n,00) C R, n = 1,2, ...
is regarded as more likely (by the relative likelihood) than some fixed small subset B of R.
Since the intersection of all these intervals is empty, B must be equivalent to the empty set ¢.
In other words, if B is more likely than the empty set, B > ¢, then regardless of how small is
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12 Advances in Econometrics - Theory and Applications

B is, it is impossible for every infinite interval (1, 00) to be as likely as B. One way to interpret
the role of Assumption SP; is in averting ‘heavy tails”:

Definition 7. We say that a relative likelihood - has "heavy tails’ when for any given set B, there exist
an N > 0 such that n > N and C O (n, ), C 27 B namely C is as likely as B C R*.17

Intuitively, this definition states that there exist infinite intervals or ‘tail sets’ of the form (1, c0)
with arbitrarily large measure, which may be interpreted as ‘heavy tails’.

Theorem 8. When assumption SP, fails, relative likelihoods have “heavy tails’.

Proof: The logical negation of SP; implies that there exists a large enough n such that (1, c0) is
as likely than B, for any bounded B. This implies that the probability measure of the event
(n,00) does not go to zero when n goes to infinity. Therefore, one obtains ‘heavy tails” as
defined above.l

It is possible to interpret SP; to apply to any unknown function f : R — R within the
statistical model defined above. For this one must reinterpret the relationship < that appears
in the definition of SP, as follows:

Definition 9. Let f : R — R be a continuous positive valued function. Then the expression
A < B means f A fdx < f B fdx, where integration is with respect to the standard measure on

R+1

When working in Hilbert spaces, we use a similar definition of the expression < to obtain
necessary and sufficient conditions below:

Definition 10. Let f : RT — R be a continuous function. Then the expression A < B means
[4 f2dx < [ f2dx, where integration is with respect to the standard measure on R*+.18

The following extends SPy to any continuous function f: R™ — R:

Definition 11. Assumption SP, in Hilbert spaces. Let A D Aj D ...be a decreasing sequence
of sets in R™, and B some fixed set such that A; 77 B, namely [, f2(x)dx > [5 f2(x)dx for

i =1,2...then (|, A; 2 B:.

In other words, if B is any set such that [, f2(x)dx > 0, then regardless of how small is B, it
is impossible for every infinite interval (1, o) to satisfy |, (1,00) f2(x)dx > [5 f2(x)dx. Thisis a
reasonable extension of SP; provided above.

9. SP4 is necessary and sufficient for extending NP estimation to R

To obtain specific necessary and sufficient conditions for NP estimation, consider now the
statistical model defined above, and assume that all the statistical assumptions of Bergstrom
(1985) are satisfied, namely Assumptions 1, 2 and 4. We study the estimation of an unknown
function ¢ : Rt — R. When the model is restricted to the bounded sample space [0,1],
namely ¢ : [0,1] — R, Theorems 1, 2 and 4 of Bergstrom (1985) ensure the existence of an NP
estimator in Hilbert spaces with the appropriate asymptotic behavior. The following provides
a necessary and sufficient condition for extending the NP estimation results from the sample
space [0, 1] to the unbounded sample space R :

! Observe that this interpretation of the relationship < is identical the definition of relative likelihood
when f is a density function. Therefore it agrees with the definition provided in the previous section.
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The Limits of Mathematics and NP Estimation in Hilbert Spaces 13

Theorem 12. Assumption SPy of De Groot (2004), as extended above, is necessary and sufficient for
extending NP estimation in Hilbert Spaces from the sample space [0,1] to the unbounded sample space
RT.

Proof: This follows directly from Theorems 1, 2, 4, 5 and 8 above. B

Observe that when SPy fails, the distribution induced by the density f is not countably
additive and cannot be represented by a function in H, and the estimator, which is constructed
from Fourier coefficients, fails to converge.

10. Connection with decision theory

The general applicability of NP estimation, and the central role played by assumption SPy,
make it desirable to situate the results in the context of the larger literature. A natural
connection that comes to mind is decision theory. There is an logical parallel between the
classic assumptions on relative likelihood (De Groot, 2004) and the classic axioms of decision
making under uncertainty (Arrow, 1970). From assumptions on relative likelihood one obtains
probability measures that represent the likelihood of events. From the axioms of decision
making under uncertainty, one derives subjective probability measures that define expected
utility. One would expect to find an axiom in the foundations of choice under uncertainty
that corresponds to assumption SP; on relative utility. Such an axiom exists: it is called
Monotone Continuity in Arrow (1970) and as shown below, it is equivalent to SP;. We use
standard definitions for actions and lotteries used in the theory of choice under uncertainty, see
e.g. Arrow (1970) and Chichilnisky (2000).

Definition 13. A vanishing sequence of sets in the real line R is a family of of sets { A;};—1,. C R™
satisfying A1 D Ap D ... D A,...,.and m;il A = ¢.

Definition 14. The expression A = B is used to indicate that action A C R is ‘preferred’ to action
B CR.

Definition 15. Monotone Continuity Axiom (MCA, Arrow (1970)) Given two actions A and B where
A = Band a vanishing sequence { E;}, suppose that { A;} and {B;} yield the same consequences as A
and B on Ef and any arbitrary consequence c on E;. Then for all i sufficiently large, A; = B,.

The following results use the identification see Yosida (1952, 1974), , Chichilnisky (2000) of a
distribution on the line R with a continuous linear real valued function defined on the space
of bounded functions on the line, Lo (R)."

Theorem 16. Assumption SPy of De Groot (2004) is equivalent to the Monotone Continuity Axiom
(1970).

Proof: The strategy is to show that SP; and the Monotone Continuity Axiom (MCA) are each
necessary and sufficient for the existence of a ranking of events < in R™ (by relative likelihood,
or by choice, respectively) that is representable by an integrable function on R*.20 Consider
first the Monotone Continuity Axiom (MCA). Chichilnisky (2006) showed it is necessary
and sufficient for the existence of a choice function that is a continuous linear function on
R, an element of the dual space L}, (R), represented by a countably additive measure on R
and thus admitting a representation by an integrable function in L;(R). The argument is as
follows: the dual space L% (R) is (by definition) the space of all continuous linear real valued
functions on LOO(R+). It has been shown that this space consists (Yosida, 1952, 1974) of both
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countably additive and purely finitely additive measures on R. Chichilnisky (2006) showed
Monotone Continuity Axiom rules out purely finitely additive linear measures and ensures
that the choice criterion is represented by a countably additive measure on R, Theorem 2
of Chichilnisky (2006). Since a countably additive measure on R can always be represented
by an integrable function in Li(R™) (Yosida, 1952, 1974), this completes the first part of the
proof. Consider now SPy. De Groot De Groot (2004) showed that Assumption SP; eliminates
distributions that are purely finitely additive, as shown in para. 3, page 73 Section 6.2 of De
Groot (2004), ensuring that the distribution is represented by a countably additive measure,
which completes the proof.l

11. Rare events and sustainability

When estimating an unknown path f over time, SP4 can be interpreted as a condition on the
behavior of the unknown function on finite and infinite time intervals. A related necessary
and sufficient condition has been used in the literature on Sustainable Development: it is
called Dictatorship of the Present, Chichilnisky (1996). For any order < of continuous bounded
paths f : RT — R:

Definition 17. We say that < is a Dictatorship of the Present when for any two f and g there exists
an N = N(f,g) such that f < ¢ < f' < ¢, forany f" and g that are identical to f and g on the
interval [0, N).

The condition of dictatorship of the present Chichilnisky (1996) is equivalent to the
representation of a welfare criterion by countably additive measures, and by an attendant
integrable function on the line. The condition is also logically identical to Insensitivity to
Rare Events Chichilnisky (2000, 2006), when the numbers in the real line R™ represents events
rather than time periods:

Definition 18. (Chichilnisky (2000, 2006)) A ranking of lotteries W : L — R is called Insensitive
to Rare Events when for any two lotteries, f and g, thereisan ¢ > 0,e = &(f, g) such that W(f) >
W(g) < W(f") > W(g') for every f" and g’ that differ from f and g solely on sets of measure smaller
than e.

Definition 19. (Chichilnisky 2000, 2006) A ranking of lotteries W : L — R is Sensitive to Rare
Events when it is not Insensitive to Rare Events.

Theorem 20. Assumption SPy is equivalent to Monotone Continuity and to Insensitivity for Rare
Events, and the latter is logically identical to Dictatorship of the Present. In their appropriate contexts,
each of the four conditions (SP4, Monotone Continuity, Insensitivity for Rare Events, and Dictatorship
of the Present) is necessary and sufficient for extending NP estimation results to R.

Proof: Chichilnisky (2006) established that Insensitivity to Rare Events is equivalent to the
Monotone Continuity Axiom (MCA) in Arrow (1970), cf. Theorem 2 in Chichilnisky (2006).
Chichilnisky (1996, 2000) showed that Insensitivity to Rare Events is logically identical to
Dictatorship of the Present. Theorems 12 and 16 complete the proof of the theorem.l

12. K. Godel and the limits of mathematics

The critical condition that allows extending econometric estimation from bounded domains
to the entire line is the logical negation of purely finitely additive measures, as was shown
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in the previous Section. The constructibility of purely finite measures has been shown in
turn to be equivalent to the existence of "ultrafilters", to Hahn Banach’s theorem and the
Axiom of Choice in Mathematics, Chichilnisky (2009, 2010a, 2010b). Furthermore, the Axiom
of Choice was established by K. Godel early on to be independent from the other axioms
of Mathematics (Godel (1943)), so there is a formulation of Mathematics with the Axiom of
Choice and another without it, both are equally valid. This Axiom of Choice itself is therefore
an unprovable proposition from the other axioms of Mathematics - thus providing a link with
the ambiguity feature of large logical systems that was first identified by K. Godel last century
(1943). Equally the two separate and distinct mathematical systems - one with and the other
without the Axiom of Choice — are equally valid and they are contradictory with each other.
Therefore there exist mathematically and logically correct statements that are contradictory
within the classic body of Mathematics. These statements confirm K. Godel’s incompleteness
theorem for Mathematics.

More precisely, the formal equivalence we are seeking between the results of this chapter
and the Limits of Mathematics, has been established in the previous Section of this chapter,
where a link was established to Chichilnisky’s axiom of "Sensitivity to Rare Events" - which,
in Chichilnisky (2009, 2010a, 2010b, 2011), was proven to be identical with the negation of the
Axiom of Choice.

The literature on the Limits of Mathematics that was initiated by Godel, is deeply connected
therefore with the results on the Limits of Econometrics presented in this chapter.

13. Conclusions

We extended Bergstrom’s 1985 results on NP estimation in Hilbert spaces to unbounded
sample sets, using previous results in Chichilnisky (1976 and 1977). The focus was on the
statistical assumptions needed for the extension. When estimating an unknown function on
the positive line R*, we obtained a necessary and sufficient condition that derives from a
classic assumption on relative likelihoods, SP; in De Groot (2004).We extended assumption
SP; , and therefore the results, to any unknown continuous function f : Rt — R. We
also showed that the SP; assumption is equivalent to well known axioms for choice under
uncertainty, such as the Monotone Continuity Axiom in Arrow (1970), Insensitivity to Rare Events
in Chichilnisky (2000, 2006), and to criteria used for sustainable choice over time, such as
Dictatorship of the Present (1996).

When the key assumptions fail, the estimators on bounded sample spaces that are based on
Fourier coefficients, do not converge. We showed that this involves ‘heavy tails” and purely
finitely additive measures, thus suggesting a limit to NP econometrics.

14. Footnotes

1. In 1980 Rex Bergstrom and I discussed Hilbert spaces at a Colchester pub at a time he offered
me the Keynes Chair of Economics at the University of Essex, which I accepted. Bergstrom
was interested in my recent work introducing Hilbert and Sobolev Spaces in Economics
(Chichilnisky, 1976, 1977) and I suggested that Hilbert Spaces were a natural space to use
in NP Econometrics, which apparently inspired his 1985 chapter. Bergstrom passed away in
2006, and his former student Peter Phillips organized this conference in his honor. This paper
is in honor of a great man, and attempts to complete a conversation between us that was left
pending for 27 years.
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2. In a weighted Hilbert space the real line R is endowed with a finite density function, such as
et rather than the standard uniform measure on R.

3. See p. 73, Section 6.2 of De Groot (2004), para. 4 following Assumption SP;.

4. NP estimation in Hilbert Spaces was very interesting to me at the time, as I had introduced
Hilbert spaces in economic models in a PhD dissertation with Gerard Debreu at UC Berkeley
(Chichilnisky 1976) and in a neoclassical optimal growth model (Chichilnisky 1977), including
L, weighted L, and Sobolev spaces. A few years later, in 1981, Gallant (1981) used again
Sobolev norms for non - parametric estimation.

5. The same problem arises when the sample space is bounded but not closed, such as [a, ).
6. This implies that the estimator f is in the Hilbert Space L, of square integrable functions

denoted Lj[a, b], which is the space of measurable functions f : [a,b] — R satisfying [ ab !
f(x) % dx < oo.

7. Bergstrom (1985) required the function to be continuous a.e. on [a,b] which is essentially
the same in our case.

8. The weighted Hilbert space H is defined as the space of all square integrable functions on
the positive line using the (finite) density function 6 * : a function f € H when the ‘'weighted’
integral [, | f(x)0 " |? dx < co.

9. This weaker assumption always works, but has no natural interpretation when the model
lacks a “discount factor’.

10. Private communication with Peter Phillips.

11. Private communication.

12. This can be described as the space of all ultrafilters of the real line R.

13. And the fact that [0,1) is not compact.

14. To simplify notation we may assume in the following without loss of generality a = 0,
b=1

15. Appropriate boundary conditions are needed for this to be the case, for example, in the
case of continuous functions of bounded variation,

limy 00 f(x) = 0.

16. Since we consider weight functions 7 one could interpret the requirement simply as
the fact that ¢ does not go to infinity "too fast'. But what does "too fast' mean in a non
parametric context? Compared to what? Imposing a limiting condition at infinity or at a
boundary (x — 1) becomes a parametric requirement that conflicts with the intention of
non-parametric estimation.Alternatively one could choose another "weighting" function 7
on the definition of H, for which ¢ € H,, but this becomes an arbitrary parameter and
defeats the "non parametric" nature of the problem. When estimating a density function
f over R one may answer the question by reference to the properties of the associated
relative likelihood function (? ), or, when estimating an investment path over time, one may
consider the behavior of the associated capital accumulation path. A referee pointed out that
an alternative choice of weighting function is the density of the regressor (assuming it has
one). In practice this is not known but could be estimated. If one uses the empirical cdf,
Ii(t) = Zi I{t; < t}/N, then x; = [T"1(t;) = (i — 1)/N. I1 is not invertible in a strict sense,
but this can be handled using a kernel-smoothed version of it. Using the density 7t(t) = IT'(t),
the central condition becomes / . ¢ (x)m(t)dt = E{g*(t)} < oo and highlights that the

+
condition concerns both the regression function and the distribution / transformation of the

random valiable ¢.
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17. Other definitions of the phenomenon known as ‘heavy tails” exist, and are not discussed
here. Our interpretation is presented as one possible definition of heavy tails that is justified
by the fact that it is based only on the ‘primitives’ of the statistical theory namely, on ‘relative
likelihoods’.

18. Observe that the interpretation of the relationship < is identical to the definition of relative
likelihood when f is a density function. Therefore it agrees with the definition provided in
the previous section.

19. Namely an element of the dual space of Lo (R), denoted L% (R).

20. Namely a function in L1 (R™)
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