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1. Introduction

The main control objectives of active vehicle suspension systems are to improve the ride

comfort and handling performance of the vehicle by adding degrees of freedom to the

passive system and/or controlling actuator forces depending on feedback and feedforward

information of the system obtained from sensors.

Passenger comfort is provided by isolating the passengers from the undesirable vibrations

induced by irregular road disturbances and its performance is evaluated by the level of

acceleration by which vehicle passengers are exposed. Handling performance is achieved

by maintaining a good contact between the tire and the road to provide guidance along the

track.

The topic of active vehicle suspension control system, for linear and nonlinear models, in

general, has been quite challenging over the years and we refer the reader to some of the

fundamental works in the vibration control area (Ahmadian, 2001). Some active control

schemes are based on neural networks, genetic algorithms, fuzzy logic, sliding modes,

H-infinity, adaptive control, disturbance observers, LQR, backstepping control techniques,

etc. See, e.g., (Cao et al., 2008); (Isermann & Munchhof, 2011); (Martins et al., 2006); (Tahboub,

2005); (Chen & Huang, 2005) and references therein. In addition, some interesting semiactive

vibration control schemes, based on Electro-Rheological (ER) and Magneto-Rheological (MR)

dampers, have been proposed and implemented on commercial vehicles. See, e.g., (Choi et al.,

2003); (Yao et al., 2002).

In this chapter is proposed a robust control scheme, based on the real-time estimation of

perturbation signals, for active nonlinear or linear vehicle suspension systems subject to

unknown exogenous disturbances due to irregular road surfaces. Our approach differs
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2 Vibration Control

from others in that, the control design problem is formulated as a bounded disturbance

signal processing problem, which is quite interesting because one can take advantage of the

industrial embedded system technologies to implement the resulting active vibration control

strategies. In fact, there exist successful implementations of automotive active control systems

based on embedded systems, and this novel tendency is growing very fast in the automotive

industry. See, e.g., (Shoukry et al., 2010); (Basterretxea et al., 2010); (Ventura et al., 2008);

(Gysen et al., 2008) and references therein.

In our control design approach is assumed that the nonlinear effects, parameter variations,

exogenous disturbances and possibly input unmodeled dynamics are lumped into an

unknown bounded time-varying disturbance input signal affecting a so-called differentially

flat linear simplified dynamic mathematical model of the suspension system. The lumped

disturbance signal and some time derivatives of the flat output are estimated by using a

flat output-based linear high-gain dynamic observer. The proposed observer-control design

methodology considers that, the perturbation signal can be locally approximated by a family

of Taylor polynomials. Two active vibration controllers are proposed for hydraulic or

electromagnetic suspension systems, which only require position measurements.

Some numerical simulation results are provided to show the efficiency, effectiveness and

robust performance of the feedforward and feedback linearization control scheme proposed

for a nonlinear quarter-vehicle active suspension system.

This chapter is organized as follows: Section 2 presents the nonlinear mathematical model

of an active nonlinear quarter-vehicle suspension system. Section 3 presents the proposed

vehicle suspension control scheme based on differential flatness. Section 4 presents the

main results of this chapter as an alternative solution to the vibration attenuation problem

in nonlinear and linear active vehicle suspension systems actuated electromagnetically or

hydraulically. Computer simulation results of the proposed design methodology are included

in Section 5. Finally, Section 6 contains the conclusions and suggestions for further research.

2. A quarter-vehicle active suspension system model

Consider the well-known nonlinear quarter-vehicle suspension system shown in Fig. 1. In

this model, the sprung mass ms denotes the time-varying mass of the vehicle-body and the

unsprung mass mu represents the assembly of the axle and wheel. The tire is modeled as a

linear spring with equivalent stiffness coefficient kt linked to the road and negligible damping

coefficient. The vehicle suspension, located between ms and mu, is modeled by a damper and

spring, whose nonlinear damping and stiffness force functions are given by

Fk (z) = kz + knz3

Fc (ż) = cż + cn ż2sgn(ż)

The generalized coordinates are the displacements of both masses, zs and zu, respectively. In

addition, u = FA denotes the (force) control input, which is applied between the two masses

by means of an actuator, and zr (t) represents a bounded exogenous perturbation signal due
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Control of Nonlinear Active Vehicle Suspension Systems Using Disturbance Observers 3

Fig. 1. Schematic diagram of a quarter-vehicle suspension system: (a) passive suspension
system, (b) electromagnetic active suspension system and (c) hydraulic active suspension
system.

to irregular road surfaces satisfying:

‖zr (t)‖∞ = γ1

‖żr (t)‖∞ = γ2

‖z̈r (t)‖∞ = γ3

where

γ1 = sup
t∈[0,∞)

|zr (t)|

γ2 = sup
t∈[0,∞)

|żr (t)|

γ3 = sup
t∈[0,∞)

|z̈r (t)|

For an electromagnetic active suspension system, the damper is replaced by an

electromagnetic actuator (Martins et al., 2006). In this configuration, it is assumed that

Fc (ż) ≈ 0.

The mathematical model of the two degree-of-freedom suspension system is then described

by the following two coupled nonlinear differential equations:

ms z̈s +Fsc +Fsk = u

mu z̈u + kt(zu − zr)−Fsc −Fsk = −u
(1)
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4 Vibration Control

with
Fsk (zs, zu) = ks(zs − zu) + kns (zs − zu)

3

Fsc (żs, żu) = cs(żs − żu) + cns(żs − żu)2sgn(żs − żu)

where sgn(·) denotes the standard signum function.

Defining the state variables as x1 = zs, x2 = żs, x3 = zu and x4 = żu, one obtains the following

state-space description:

ẋ1 = x2

ẋ2 = − 1
ms

(Fsc +Fsk) +
1

ms
u

ẋ3 = x4

ẋ4 = − kt
mu

x3 +
1

mu
(Fsc +Fsk)−

1
mu

u + kt
mu

zr

(2)

with
Fsk (x1, x3) = ks(x1 − x3) + kns (x1 − x3)

3

Fsc (x2, x4) = cs(x2 − x4) + cns(x2 − x4)
2sgn(x2 − x4)

It is easy to verify that the nonlinear vehicle suspension system (2) is completely controllable

and observable and, therefore, is differentially flat and constructible. For more details

on this topics we refer to (Fliess et al., 1993) and the book by (Sira-Ramirez & Agrawal,

2004). Both properties can be used extensively during the synthesis of different controllers

based on differential flatness, trajectory planning, disturbance and state reconstruction,

parameter identification, Generalized PI (GPI) and sliding mode control, etc. See, e.g.,

(Beltran-Carbajal et al., 2010a); (Beltran-Carbajal et al., 2010b); (Chavez-Conde et al., 2009a);

(Chavez-Conde et al., 2009b).

In what follows, a feedforward and feedback linearization active vibration controller, as

well as a disturbance observer, will be designed taking advantage of the differential flatness

property exhibited by the vehicle suspension system.

3. Differential flatness-based control

The system (2) is differentially flat, with a flat output given by

L = msx1 + mux3

which is constructed as a linear combination of the displacements of the sprung mass x1 and

the unsprung mass x3.

Then, all the state variables and the control input can be parameterized in terms of the flat

output L and a finite number of its time derivatives (Sira-Ramirez & Agrawal, 2004). As a

matter of fact, from L and its time derivatives up to fourth order one can obtain:

L = msx1 + mux3

L̇ = msx2 + mux4

L̈ = kt (zr − x3)

L(3) = kt (żr − x4)

L(4) = 1
mu

u + kt
mu

x3 −
1

mu
(Fsc +Fsk)−

kt
mu

zr + kt z̈r

(3)
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Therefore, the differential parameterization of the state variables and the control input in the

vehicle dynamics (2) results as follows

x1 = mu
ktms

L̈ + 1
ms

L − mu
ms

zr

x2 = mu
ktms

L(3) + 1
ms

L̇ − mu
ms

żr

x3 = − 1
kt

L̈ + zr

x4 = − 1
kt

L(3) + żr

u = 1
b

(
L(4) + a3L(3) + a2 L̈ + a1 L̇ + a0L − ξ (t)

)
(4)

with
a0 = kskt

msmu

a1 = cskt
msmu

a2 = ks
ms

+ ks+kt
mu

a3 = cs
ms

+ cs
mu

b = kt
mu

and
ξ (t) = − knskt

mu
(x1 − x3)

3 − cnskt
mu

(x2 − x4)
2sgn(x2 − x4)

+ kt z̈r +
(

kt
ms

+ kt
mu

)
cs żr +

(
kt
ms

+ kt
mu

)
kszr

Now, note that from the last equation in the differential parameterization (4), one can see that

the flat output satisfies the following perturbed input-output differential equation:

L(4) + a3L(3) + a2 L̈ + a1 L̇ + a0L = bu + ξ (t) (5)

Then, the flat output dynamics can be described by the following 4th order perturbed linear

system:

η̇1 = η2

η̇2 = η3

η̇3 = η4

η̇4 = −a0η1 − a1η2 − a2η3 − a3η4 + bu + ξ (t)
y = η1 = L

(6)

To formulate the vibration control problem, let us assume, by the moment, a perfect

knowledge of the perturbation term ξ, as well as the time derivatives of the flat output up

to third order. Then, from (6) one obtains the following differential flatness-based controller:

u =
1

b
υ +

1

b
(a3η4 + a2η3 + a1η2 + a0η1 − ξ (t)) (7)

with

υ = −α3η4 − α2η3 − α1η2 − α0η1

The use of this controller yields the following closed-loop dynamics:

L(4) + α3L(3) + α2 L̈ + α1 L̇ + α0L = 0 (8)
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6 Vibration Control

The closed-loop characteristic polynomial is then given by

p (s) = s4 + α3s3 + α2s2 + α1s + α0 (9)

Therefore, by selecting the design parameters αi, i = 0, · · · , 3, such that the associated

characteristic polynomial for (8) be Hurwitz, one can guarantee that the flat output dynamics

be globally asymptotically stable, i.e.,

lim
t→∞

L (t) = 0

Now, the following Hurwitz polynomial is proposed to get the corresponding controller gains:

pc (s) =
(

s2 + 2ζcωcs + ω2
c

)2
(10)

where ωc > 0 and ζc > 0 are the natural frequency and damping ratio of the desired

closed-loop dynamics, respectively.

Equating term by term the coefficients of both polynomials (9) and (10 ), one obtains that

α0 = ω4
c

α1 = 4ω3
c ζc

α2 = 4ω2
c ζ2

c + 2ω2
c

α3 = 4ωcζc

On the other hand, it is easy to show that the closed-loop system (2)-(7) is L∞-stable or

bounded-input-bounded-state, that is,

‖x1‖∞ =
mu

ms
γ1

‖x2‖∞ =
mu

ms
γ2

‖x3‖∞ = γ1

‖x4‖∞ = γ2

‖u‖∞ =
(

knsγ3
1ρ2 + cnsργ2

2 + csγ2 + ksγ1

)
ρ + muγ3

where ρ = mu
ms

+ 1.

It is evident, however, that the controller (8) requires the perfect knowledge of the exogenous

perturbation signal zr and its time derivatives up to second order, revealing several

disadvantages with respect to other control schemes. Nevertheless, one can take advantage of

the design methodology of robust observers with respect to unmodeled perturbation inputs,

of the polynomial type affecting the observed plant, proposed by (Sira-Ramirez et al., 2008b).

The proposed disturbance observer is called Generalized Proportional Integral (GPI) observer,

because its design approach is the dual counterpart of the so-called GPI controllers

(Fliess et al., 2002) and whose robust performance, with respect to unknown perturbation

inputs, nonlinear and linear unmodeled dynamics and parametric uncertainties, have been

evaluated extensively through experiments for trajectory tracking tasks on a vibrating

mechanical system by (Sira-Ramirez et al., 2008a) and on a dc motor by (Sira-Ramirez et al.,

2009).
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4. Disturbance observer design

In the observer design process it is assumed that the perturbation input signal ξ (t) can be

locally approximated by a family of Taylor polynomials of (r − 1)th degree:

ξ(t) =
r−1

∑
i=0

pit
i (11)

where all the coefficients pi are completely unknown.

The perturbation signal could then be locally described by the following state-space based

linear mathematical model:
ξ̇1 = ξ2

ξ̇2 = ξ3

...

ξ̇r−1 = ξr

ξ̇r = 0

(12)

where ξ1 = ξ, ξ2 = ξ̇, ξ3 = ξ̈, · · · , ξr = ξ(r−1).

An extended approximate state model for the perturbed flat output dynamics is then given by

η̇1 = η2

η̇2 = η3

η̇3 = η4

η̇4 = −a0η1 − a1η2 − a2η3 − a3η4 + ξ1 + bu

ξ̇1 = ξ2

ξ̇2 = ξ3
...

ξ̇r−1 = ξr

ξ̇r = 0

y = η1 = L

(13)

A Luenberger observer for the system (13) is given by

̂̇η1 = η̂2 + βr+3 (y − ŷ)
̂̇η2 = η̂3 + βr+2 (y − ŷ)
̂̇η3 = η̂4 + βr+1 (y − ŷ)
̂̇η4 = −a0η̂1 − a1η̂2 − a2η̂3 − a3 η̂4 + ξ̂1 + bu + βr (y − ŷ)
̂̇ξ1 = ξ̂2 + βr−1 (y − ŷ)
̂̇ξ2 = ξ̂3 + βr−2 (y − ŷ)
...
̂̇ξr−1 = ξ̂r + β1 (y − ŷ)
̂̇ξr = β0 (y − ŷ)
ŷ = η̂1

(14)
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8 Vibration Control

The dynamical system describing the state estimation error is readily obtained by subtracting

the observer dynamics (14) from the extended linear system dynamics (6). One then obtains,

with e1 = y − ŷ and ezi = ξi − ξ̂i , i = 1, 2, · · · , r, that

ė1 = −βr+3e1 + e2

ė2 = −βr+2e1 + e3

ė3 = −βr+1e1 + e4

ė4 = − (βr + a0) e1 − a1e2 − a2e3 − a3e4 + ez1

ėz1 = −βr−1e1 + ez2

ėz2 = −βr−2e1 + ez3

...

ėzr−1 = −β1e1 + ezr

ėzr = −β0e1

(15)

From this expression, it is not difficult to see that the dynamics of output observation error

e1 = y − ŷ satisfies the following differential equation:

e
(r+4)
1 + (βr+3 + a3) e

(r+3)
1 + (βr+2 + a2 + βr+3a3) e

(r+2)
1

+ (βr+1 + a1 + βr+2a3 + βr+3a2) e
(r+1)
1

+ (βr + a0 + βr+1a3 + βr+2a2 + βr+3a1) e
(r)
1

+βr−1e
(r−1)
1 + · · ·+ β2 ë1 + β1 ė1 + β0e1 = 0

(16)

which is completely independent of any coefficients pi, i = 0, · · · , r − 1, of the Taylor

polynomial expansion of ξ(t). This means that, the high-gain observer continuously

self-updates. Therefore, as time goes on, the bounded perturbation input signal ξ(t) is

approximated in the form of a (r − 1)th degree time polynomial.

Clearly, the coefficients of the associated characteristic polynomial for (16) can be adjusted, by

means of a suitable specification of the design gains {βr+3, . . . , β1, β0}, sufficiently far from

the imaginary axis in the left half of the complex plane, so that the output estimation error e1

exponentially asymptotically converges to zero.

A fifth-order local mathematical model for the real-time estimation of the perturbation input

signal is proposed in this chapter. Then, the characteristic polynomial for the dynamics of

output observation error is simply given by

po1 (s) = s9 + (β8 + a3) s8 + (β7 + a2 + β8a3) s7 + (β6 + a1 + β7a3 + β8a2) s6

+ (β5 + a0 + β6a3 + β7a2 + β8a1) s5 + β4s4 + β3s3 + β2s2 + β1s + β0 (17)

Equating the coefficients of the characteristic polynomial (17) with the corresponding ones of

the following ninth-order Hurwitz polynomial:

pdo1 (s) = (s + p1)
(

s2 + 2ζ1ω1s + ω2
1

)4
(18)
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one gets the observer gains as follows

β0 = p1ω8
1

β1 = ω8
1 + 8p1ζ1ω7

1

β2 = 8ω7
1ζ1 + 24p1ω6

1ζ2
1 + 4p1ω6

1

β3 = 24ω6
1ζ2

1 + 4ω6
1 + 32p1ω5

1ζ3
1 + 24p1ω5

1ζ1

β4 = 32ω5
1ζ3

1 + 24ω5
1ζ1 + 16p1ω4

1ζ4
1 + 48p1ω4

1ζ2
1 + 6p1ω4

1

β5 = 16ω4
1ζ4

1 + 48ω4
1ζ2

1 + 6ω4
1 + 32p1ω3

1ζ3
1 + 24p1ω3

1ζ1 − a0 − β6a3 − β7a2 − β8a1

β6 = 32ω3
1ζ3

1 + 24ω3
1ζ1 + 24p1ω2

1ζ2
1 + 4p1ω2

1 − a1 − β7a3 − β8a2

β7 = 24ω2
1ζ2

1 + 4ω2
1 + 8p1ω1ζ1 − a2 − β8a3

β8 = p1 + 8ω1ζ1 − a3

with p1, ω1, ζ1 > 0.

Now, consider that the system (6) is being perturbed by the unknown input signal ̟ (t) as

follows
η̇1 = η2

η̇2 = η3

η̇3 = η4

η̇4 = bu + ̟ (t)

y = η1 = L

(19)

with

̟ (t) = −a0η1 − a1η2 − a2η3 − a3η4 + ξ (t)

Then, by the perfect knowledge of ̟ (t), one gets the following differential flatness-based

controller with feedforward of the perturbation signal ̟ (t):

u =
1

b
(υ − ̟ (t)) (20)

with

υ = −α3η4 − α2η3 − α1η2 − α0η1

Similarly as before, the perturbation input signal ̟ could be locally reconstructed by the

following family of Taylor polynomial of (r − 1)th degree:

̟(t) =
r−1

∑
i=0

γit
i (21)

where all the coefficients γi are completely unknown.

Then, one can use the following extended mathematical model described in state-space

form to design a robust observer for real-time estimation of the disturbance ̟(t) and time
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10 Vibration Control

derivatives of the flat output required for implementation of the controller (20):

η̇1 = η2

η̇2 = η3

η̇3 = η4

η̇4 = ̟1 + bu
˙̟ 1 = ̟2

˙̟ 2 = ̟3
...

˙̟ r−1 = ̟r

˙̟ r = 0

y = η1 = L

(22)

where ̟1 = ̟, ̟2 = ˙̟ , ̟3 = ¨̟ , · · · , ̟r = ̟(r−1).

A Luenberger observer for the system (22) is then given by

̂̇η1 = η̂2 + λr+3 (y − ŷ)
̂̇η2 = η̂3 + λr+2 (y − ŷ)
̂̇η3 = η̂4 + λr+1 (y − ŷ)
̂̇η4 = ̟̂1 + bu + λr (y − ŷ)
̟̂̇

1 = ̟̂2 + λr−1 (y − ŷ)
̟̂̇

2 = ̟̂3 + λr−2 (y − ŷ)
...
̟̂̇

r−1 = ̟̂r + λ1 (y − ŷ)
̟̂̇ r = λ0 (y − ŷ)
ŷ = η̂1

(23)

The estimation error dynamics e1 = y − ŷ satisfies the following dynamics:

e
(r+4)
1 + λr+3e

(r+3)
1 + λr+2e

(r+2)
1 + λr+1e

(r+1)
1 + λre

(r)
1

+λr−1e
(r−1)
1 + · · ·+ λ2 ë + λ1 ė1 + λ0e1 = 0

(24)

Therefore, the design parameters λi, i = 0, · · · , r + 3, can be chosen so that the output

estimation error e1 exponentially asymptotically converges to zero.

On the other hand, it is assumed that the perturbation input signal ̟(t) can be locally

approximated by a family of Taylor polynomials of fourth degree. Therefore, the characteristic

polynomial for the dynamics of output observation error (24) is given by

po2 = s9 + λ8s8 + λ7s7 + λ6s6 + λ5s5 + λ4s4 + λ3s3 + λ2s2 + λ1s + λ0 (25)

It is then proposed the following Hurwitz polynomial to compute the proper gains for the

observer:

po2 (s) = (s + p2)
(

s2 + 2ζ2ω2s + ω2
2

)4
(26)
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One then obtains that

λ0 = p2ω8
2

λ1 = ω8
2 + 8p2ζ2ω7

2

λ2 = 8ω7
2ζ2 + 24p2ω6

2ζ2
2 + 4p2ω6

2

λ3 = 24ω6
2ζ2

2 + 4ω6
2 + 32p2ω5

2ζ3
2 + 24p2ω5

2ζ2

λ4 = 32ω5
2ζ3

2 + 24ω5
2ζ2 + 16p2ω4

2ζ4
2 + 48p2ω4

2ζ2
2 + 6p2ω4

2

λ5 = 16ω4
2ζ4

2 + 48ω4
2ζ2

2 + 6ω4
2 + 32p2ω3

2ζ3
2 + 24p2ω3

2ζ2

λ6 = 32ω3
2ζ3

2 + 24ω3
2ζ2 + 24p2ω2

2ζ2
2 + 4p2ω2

2

λ7 = 24ω2
2ζ2

2 + 4ω2
2 + 8p2ω2ζ2

λ8 = p2 + 8ω2ζ2

with p2, ω2, ζ2 > 0.

From the practical viewpoint, main advantage of this high-gain observer is that it could be

employed for hydraulic or electromagnetic active vehicle suspension systems, requiring only

information of the stiffness constant of tire kt and the unsprung mass mu. In addition, it

can be shown that the proposed observer design methodology is quite robust with respect to

parameter uncertainty and unmodeled dynamics, by considering the parameter variations

into the perturbation input signal ̟ (t). In fact, in (Sira-Ramirez et al., 2008a) has been

presented through some experimental results that the polynomial disturbance signal-based

GPI control scheme, implemented as a classical compensation network, is robust enough with

respect to parameter uncertainty and unmodeled dynamics in the context of an off-line and

pre-specified reference trajectory tracking tasks.

It is important to emphasize that, the proposed results are now possible thanks to the existence

of commercial embedded system for automatic control tasks based on high speed FPGA/DSP

boards with high computational performance operating at high sampling rates. The proposed

observer could be implemented via embedded software applications without many problems.

5. Simulation results

Some numerical simulations were performed on a nonlinear quarter-vehicle suspension

system characterized by the following set of realistic parameters (Tahboub, 2005) to verify

the effectiveness of the proposed disturbance observer-control design methodology (see Table

1):

Parameters Values

Sprung mass (ms) 216.75 [kg]
Unsprung mass (mu) 28.85 [kg]

Spring stifness (ks) 21700 [ N
m ]

Damping constant (cs) 1200 [ N·s
m ]

Tire stifness (kt) 184000 [ N
m ]

nonlinear spring stiffness (kns) 2170 [ N
m ]

nonlinear damping constant (cns) 120 [ N·s
m ]

Table 1. Parameters of the vehicle suspension system.
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12 Vibration Control

Fig. 2 shows some schematic diagram for the implementation of the proposed active vibration

controllers based on on-line disturbance estimation using a flatness-based controller and GPI

observers.

Fig. 2. Schematic diagram of the instrumentation for active vehicle suspension control
implementation.

The following trajectory was utilized to simulate the unknown exogenous disturbance

excitations due to irregular road surfaces (Chen & Huang, 2005):

zr (t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1 (t) + f (t) for t ∈ [3.5, 5)
f2 (t) + f (t) for t ∈ [5, 6.5)
f3 (t) + f (t) for t ∈ [8.5, 10)
f3 (t) + f (t) for t ∈ [10, 11.5

f (t) else

with

f1 (t) = −0.0592 (t − 3.5)3 + 0.1332 (t − 3.5)2

f2 (t) = 0.0592 (t − 6.5)3 + 0.1332 (t − 6.5)2

f3 (t) = 0.0592 (t − 8.5)3 − 0.1332 (t − 8.5)2

f3 (t) = −0.0592 (t − 11.5)3 − 0.1332 (t − 11.5)2

f (t) = 0.002 sin (2πt) + 0.002 sin (7.5πt)

Figs. 3-9 describe the robust performance of the controller (7) using the observer (14). It can

be seen the high vibration attenuation level of the active vehicle suspension system compared

with the passive counterpart.

142 Vibration Analysis and Control – New Trends and Development

www.intechopen.com



Control of Nonlinear Active Vehicle Suspension Systems Using Disturbance Observers 13

Moreover, one can observe a robust and fast on-line estimation of the disturbance ξ(t) as well

as the corresponding time derivatives of the flat output up to third order. Similar results on

the implementation of the controller (20) with disturbance observer (23) for estimation of the

perturbation ̟ (t) and time derivatives of the flat output are shown in Figs. 10-23.

In the computer simulations it is assumed that the perturbation input signals ξ(t) and ̟ (t)
can be locally approximated by a family of Taylor polynomials of fourth degree.

The characteristic polynomials for the ninth order observation error dynamics were all set to

be of the following form:

po (s) = (s + po)
(

s2 + 2ζoωos + ω2
o

)4

with po = ωo = 300rad/s and ζo = 20.

The characteristic polynomials associated with the closed-loop dynamics were all set to be of

the form: pc (s) =
(
s2 + 2ζcωcs + ω2

c

)2
, with ωc = 10rad/s and ζc = 0.7071.
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Fig. 3. Sprung mass displacement response using controller (7) and observer (14).
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Fig. 4. Sprung mass acceleration response using controller (7) and observer (14).

In general, the proposed active vehicle suspension using a flatness-based controller and GPI

observers for the estimation of unknown perturbations yields good attenuation properties and

an overall robust performance.
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Fig. 5. Suspension deflection response (x1 − x3) using controller (7) and observer (14).
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Fig. 6. Tire deflection response (x3 − zr) using controller (7) and observer (14).
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Fig. 7. Perturbation estimation ξ(t) using observer (14).
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Fig. 8. Estimation of time derivatives of the flat output using the observer (14).
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Fig. 9. Control force using the observer (14).
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Fig. 10. Sprung mass displacement response using controller (20) and observer (23).).
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Fig. 11. Sprung mass acceleration response using controller (20) and observer (23).
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Fig. 12. Suspension deflection response (x1 − x3) using controller (20) and observer (23).
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Fig. 13. Tire deflection response (x3 − zr) using controller (20) and observer (23).
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Fig. 14. Perturbation estimation ̟ (t) using observer (23).
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Fig. 15. Estimation of time derivatives of the flat output using the observer (23).
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Fig. 16. Control force using the observer (23).
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6. Conclusions

In this chapter a robust active vibration control scheme, based on real-time estimation

and rejection of perturbation signals, of nonlinear vehicle suspension systems is described.

The proposed approach exploits the structural property of differential flatness exhibited

by the suspension system fot the synthesis of a flatness based controller and a robust

observer. Therefore, a perturbed input-output differential equation describing the dynamics

of the flat output is obtained for design purposes of the control scheme. The exogenous

disturbances due to irregular road surfaces, nonlinear effects, parameter variations and

unmodeled dynamics are lumped into an unknown bounded time-varying perturbation

input signal affecting the differentially flat linear simplified dynamic mathematical model

of the suspension system. A family of Taylor polynomials of (r-1)th degree is used to

locally approximate this perturbation signal. Hence the perturbation signal is described by

a rth-order mathematical model. Then, the perturbed suspension system model is expressed

as a (r+4)th-order extended mathematical model.

The design of high-gain Luenberger observers, based on this kind of extended models, is

proposed to estimate the perturbation signal and some time derivatives of the flat output

required for implementation of differential flatness-based disturbance feedforward and

feedback controllers for attenuation of vibrations in electromagnetic and hydraulic active

vehicle suspension systems.

Two high-gain disturbance observer-based controllers have been proposed to attenuate the

vibrations induced by unknown exogenous disturbance excitations due to irregular road

surfaces, which could be employed for nonlinear quarter-vehicle active suspension models by

using hydraulic or electromagnetic actuators. Computer simulations were included to show

the effectiveness of the proposed controllers, as well as of the disturbance observers based on

Taylor polynomials of fourth degree.

The results show a high vibration attenuation level of the active vehicle suspension system

compared with the passive counterpart and, in addition, a robust and fast real-time estimation

of the disturbance and time derivatives of the flat output.
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