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1. Introduction  

Over 40% of the disabling medical conditions of persons aged 18 years and over are 
musculoskeletal related. This number is even higher within the older population (Weinstein, 
2000). Surgical treatment for age-, trauma- or cancer-induced critical-size bone loss is 
particularly challenging. Current grafting material options for scaffold-assisted surgical repair 
of critical-size bone loss include autogenic bone grafts (autografts), allogenic bone grafts 
(allografts), and synthetic bone substitutes. Still considered as a golden standard, autografts, 
retrieved from patients’ own skeleton, are used in approximately 50% of all orthopedic bone 
grafting procedures. Complications arising from possible donor-site morbidity and insufficient 
grafting materials are major drawbacks of autografting procedures (Bostrom & Seigerman, 
2005). In addition, this option is highly limited within the aging population as the elderly are 
less likely to be qualified for such a procedure due to higher incidences of osteoporosis and 
metabolic diseases. Allografts, obtained from another human donor or animal cadaver, 
represent a useful alternate to autografts, and are used in approximately 40% of bone grafting 
surgeries. However, allografting procedures suffer from risks for rejection and disease 
transmission, and a significant structural failure rate due to poor tissue integration, both 
structurally and biochemically (Blokhuis & Lindner, 2008; Bostrom & Seigerman, 2005; Eagan 
& McAllister, 2009; Goldberg & Stevenson, 1994). These limitations, along with the growing 
aging population, has led to an increasing need for viable synthetic bone substitute 
alternatives (Salgado et al., 2004). Current clinically used synthetic bone grafts such as brittle 
ceramics and weak gel foams are used in only ~10% of all bone grafting procedures (Bostrom 
& Seigerman, 2005), primarily due to their unstable graft fixation and insufficient tissue-graft 
interactions (Carson & Bostrom, 2007; Goldberg & Stevenson, 1994; Place et al., 2009; Stevens, 
2008). In the past two decades, many new synthetic bone grafts designed to mimic key 
structural and biochemical properties of bone to enhance osteointegration and graft healing 
have emerged in literature. This rapidly evolving field has been extensively reviewed by 
others, including broad overviews of current requirements and techniques for preparing 
synthetic bone grafts (Burg et al., 2000; Salgado et al., 2004), calcium phosphate–based bone 
substitutes (De Long et al., 2007), polymeric bone substitutes (Seal et al., 2001), and biomimetic 
nanocomposite orthopedic biomaterials (Chan et al., 2006; Murugan & Ramakrishna, 2005). 
This chapter highlights the evolvement of non-metallic orthopedic biomaterials from bioinert, 
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biodegradable/bioresorbable, bioactive to tissue-responsive, and emphasizes the strategic 
integration of key structural elements of bone in the design of organic-inorganic composite 
bone substitutes. Using FlexBone, an easy-to-fabricate elastomeric 3-dimensional hydrogel-
nanocrystalline hydroxyapatite (nHA) composite exhibiting excellent structural integration, as 
an example, we illustrate the feasibility of accomplishing multifaceted functional requirements 
of a viable synthetic bone substitute by integrating the major bone mineral component with a 
hydrophilic 3-dimensional hydrogel matrix. 

2. Brief overview of the evolvement of synthetic orthopedic biomaterials 

Most synthetic polymers traditionally used in orthopedic care, including poly(ethylene 
terephthalate) (PET) as implant coating, polyetheretherketone (PEEK) as spacers for cervical 
fusion, maxillofacial defect repair, and hip prostheses (Eschbach, 2000; M. M. Kim, Boahene, 
& Byrne, 2009; Kulkarni, Hee, & Wong, 2007), poly(methyl methacrylate) (PMMA) as bone 
cements, ultra high molecular weight polyethylene (UHMWPE) as total joint replacement 
components, and polysulfone (PSU) as internal fracture fixators (De Long et al., 2007; 
Eschbach, 2000; Mano et al., 2004; M. Wang, 2003) are considered as bioinert. They are 
primarily used to provide structural or mechanical support without eliciting significant 
immune responses. The primary drawback of bioinert implant materials is that they lack the 
intrinsic ability to promote osteogenesis, thus are unable to structurally or biologically 
integrate with the host tissue. To overcome such limitations, physical modification (e.g. 
increasing porosity) or blending bioinert materials with bioceramics or biodegradable 
polymeric components have been attempted (Aparecida et al., 2008; Fini et al., 2002; Mano et 
al., 2004; Tan et al., 2003; Tanner 2010; K. Zhang et al., 2002). 
Calcium phosphate–based bioceramics have long been used clinically as bioactive bone 
fillers (De Long et al., 2007; Nandi et al., 2010). They are known for good biocompatibility, 
osteoconductivity and easy surgical handling. However, these bone substitutes suffer from 
poor mechanical properties such as high brittleness and are often unsuitable for weight-
bearing applications (De Long et al., 2007; Tanner, 2010). Their integration with the more 
compliant polymeric matrices, therefore, has been of intense investigations (Kim et al., 2006; 
Miranda et al., 2010; Rezwan et al., 2006; M. Wang & Bonfield, 2001). 
Biodegradable synthetic polymers have great potential as resorbable orthopedic implants 
and tissue scaffolds. The in situ generated porosity of degradable polymers as a result of 
hydrolytic degradation is thought to be beneficial to tissue penetration / osteointegration. In 
addition, the gradual resorption of biodegradable polymer-based orthopedic fixation 
devices, if timed to match with the tissue integration rate, could ensure adequate mechanical 
integrity at the site of implantation while potentially eliminating the need for a second 
surgery for implant retrieval. Among all degradable synthetic polymers, poly(lactic acid) 
(PLA) (R. Y. Zhang & Ma, 1999), poly(glycolic acid) (PGA), poly(lactic-co-plycolic acid) 
(PLGA) (Ishaug et al., 1997; Lu et al., 2000; Ma & Choi, 2001; Mooney et al., 1996), 
polyhydroxybutyrate (PHB) (Y. W. Wang et al., 2004), polycaprolactone (PCL) (Yoshimoto 
et al., 2003), and their co-polymer blends (Tanner, 2010) have been the most investigated.  
Blending biodegradable polyesters with weakly basic osteoconductive minerals such as tri-
calcium phosphate (TCP) or hydroxyapatite (HA) have been widely pursued as a strategy 
for further enhancing scaffold osteoconductivity, drug retention capacity, and for 
neutralizing acidic degradation products and mitigating inflammatory tissue responses 
(Liao et al., 2007; Peter et al., 1999; Tanner, 2010; M. Wang, 2003). Achieving adequate 
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structural integration between the organic matrix and the inorganic minerals, however, 
remains one of most significant challenges for the clinical translation of these polymer-
mineral nanocomposites for orthopedic care as loosely integrated ceramic particles could 
not only lead to inferior mechanical properties of the composite, but also cause ectopic bone 
formation in nearby soft tissues. This is because most polyesters are hydrophobic in nature 
and exhibit an intrinsically low affinity to bioceramics. Recent development of high-affinity 
HA-surface mineralization strategies applicable to hydrophilic hydrogels such as poly(2-
hydroxyethyl methacrylate) (pHEMA) and pHEMA-based copolymers (Song et al., 2005; 
Song et al., 2003a, 2003b),  and identification of novel HA-binding/nucleating ligands, either 
small molecule-based (Licata, 2005; Yoshinari et al., 2001) or peptide-based (Bertozzi et al., 
2006; Chung et al., 2011), could help address this challenge.  
The past decade has witnessed an increasingly elaborated trend in the design of bioactive 
synthetic biomaterials (Bonzani et al., 2006). For bone tissue engineering applications, 
integrin-binding peptide sequences for promoting cellular adhesion, phosphorylated 
ligands for promoting HA-mineralization, heparin-mimicking motifs for drug retentions, 
and degradative enzyme substrate sequences have all been incorporated into multi-
modality synthetic scaffold designs (Hartgerink et al., 2001; Jeon et al., 2007; M. P. Lutolf et 
al., 2003; M. R. Lutolf et al., 2003; Patterson & Hubbell, 2010). Of particular novelty is the 
design of self-assembling peptide-amphiphile (PA) gels by Stupp and coworkers for 
simultaneous presentation of cell adhesion peptide sequences, HA-mineral-nucleating sites, 
reversible crosslinking sites, and other therapeutic agents all within a single PA molecule 
(Cui et al., 2010; Hartgerink et al., 2001; Palmer et al., 2008; Palmer & Stupp, 2008) that self-
assembles and dissembles in response to environmental perturbations. Likely limitations of 
these unique PA gels are their relatively high manufacturing cost and low mechanical 
modulus which could limit their use to treating smaller non-weight bearing skeletal lesions. 
Another innovative concept introduced by Hubbell and coworkers was to induce scaffold 
degradation by using peptide substrates of the degradative enzymes matrix 
metalloproteinases (MMPs) as the chemical crosslinker of a non-fouling crosslinked 
hydrogel system (M. P. Lutolf et al., 2003; M. R. Lutolf et al., 2003). Given the elevated 
expression of some MMPs within both degenerative bony defects and arthritic knee joints, 
such a hydrogel system could be useful for bone and cartilage repair as the in situ increase of 
scaffold porosity in response to tissue microenvironment-specific enzymatic degradation 
could promote cellular infiltration and matrix deposition. The selection of MMP substrates 
with proper degradation kinetics matching with those of the matrix deposition rate, 
however, is not a trivial task (Bahney et al., 2011).   
Despite the many exciting orthopedic biomaterials emerging in the literature, successful 
clinical translations are rare. The challenge lies in the difficulty in accomplishing the 
functional sophistication of viable synthetic bone substitutes (e.g. physical properties 
enabling easy surgical handling and stable graft fixation, structural and biomechanical 
properties facilitating its osteointegration, biocompatibility ensuring long-term safety) 
within an easy-to-fabricate biomaterial that can be reproducibly manufactured at low cost. 
We, as well as some in the orthopedic biomaterials research community, believe that 
functional sophistication are not synonymous with complicated materials designs (Bonzani 
et al., 2006; Stevens, 2008). Instead, we believe that the key to meeting this challenge lies in 
the strategic integration of key structural elements of bone, which play multifaceted roles in 
defining the unique properties of the native tissue, in a low-cost biocompatible synthetic 
biomaterial. 
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3. Key structural elements of bone and their multifaceted functions   

From a material’s perspective, bone is an organic-inorganic composite comprising two major 
structural components that are hierarchically organized across various length scales: the 
calcium apatite crystals (primarily as substituted nanocrystalline hydroxyapatite nHA, but 
also as crystalline precursors) and the type I collagen matrix (Weiner et al., 1999). The 
quantity and quality of the hard calcium apatite crystals (crystal size, maturity and 
structural integration with the collagen matrices) influences the mechanical properties of 
bone (Tong et al., 2003). For instance, the bending and compression strength of bone is 
known to positively correlate to bone mineral content (Follet et al., 2004). In addition, bone 
minerals also support bone cell attachment, and serve as an important reservoir of calcium 
and phosphate ions, and help retain the secreted factors that are indispensable in defining 
the biochemical environment of the bony tissue. Thus, HA has long been recognized as an 
important design element for tissue-engineered bone substitutes (El-Ghannam, 2005). The 
intrinsic affinity of the dynamic apatite crystal surfaces for many acidic non-collagenous 
proteins widely found in calcified tissues (George et al., 1996; Gilbert et al., 2000; Stubbs et 
al., 1997) have also inspired the use of bioceramic scaffolds (Le Nihouannen et al., 2008) or 
polymer-bioceramics composite scaffolds (Abarrategi et al., 2008; Filion et al., 2011; Xu et al., 
2009) to retain and deliver recombinant proteins for therapeutic uses. Overall, HA has been 
explored for bone tissue engineering applications more as a way to enhance the mechanical 
strength than as a tool to mediate the biochemical properties of the scaffold (Stevens, 2008; 
Tanner, 2010). In general, the potential of the large surface areas provided by nHA as 
opposed to micrometer-sized mineral particles for more efficient therapeutics delivery (e.g. 
higher retention capacity, more sustained release) has not been exploited to the fullest extent 
in the design of synthetic bone substitutes. 
Type I collagen matrix of bone serves as a compliant template for the structural integration 
of the calcium apatite crystals, and, along with the mineral component, is responsible for 
defining the 3-demensional structure as well as the strong, tough, yet relatively compliant 
mechanical properties of bone (Scharnweber et al., 2004; Weiner et al., 1999). In addition, it 
also interacts with many non-collagenous proteins and mediates cellular adhesion and 
functions (Heino, 2000). The Gly-Pro-Hyp (Hyp: hydroxyproline) triplet repeats of type I 
collagen may also play an important role in template-driven biomineralization. Recent 
discovery of novel HA-binding oligopeptides using the combinatorial phage display 
technique reveals a [Pro-(OH)-X] tripeptide pattern (OH: hydroxylated amino acid residues 
(Ser, Thr, Tyr); X: any amino acid) among the dominant HA-binding motifs (Bertozzi et al., 
2006; Chung et al., 2011). Such a hydroxylated tripeptide pattern resembles that of the type I 
collagen, underscoring the importance of hydroxylated residues in directing ligand-mineral 
interactions on a molecular level. These oligopeptides were shown to template the 
nucleation and growth of HA in vitro (Bertozzi et al., 2006; Chung et al., 2011), and may be 
useful in the design of synthetic polymer scaffolds enabling template-driven mineralization 
of HA or the preparation of bulk organic-inorganic bone-like composites with improved 
interfacial binding affinity. We also showed earlier that polymeric hydrogels displaying 
hydroxylated (e.g. pHEMA) and acidic residues could be used to template the surface 
mineralization of HA with excellent interfacial adhesion strength (Song et al., 2005; Song et 
al., 2003a, 2003b), further supporting the favorable interaction between the hydroxyls and 
the calcium ions. The strategy of modifying the surface of polymers or metallic substrates 
with hydroxylated or anionic coatings has also been pursued to facilitate the nucleation and 
growth of calcium apatite (Murphy & Mooney, 2002; H. L. Zhang et al., 2006). 
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4. FlexBone: A scalable functional bone substitute integrating key structural 
elements of bone  

Inspired by the multifaceted roles of type I collagen matrix and nanocrystalline HA (nHA) 
in defining the unique structural, mechanical and biochemical properties of bone,  we have 
developed a 3-dimensional synthetic bone substitute named FlexBone that integrates 
hydroxylated biocompatible pHEMA hydrogel with 50 wt% of nHA. This elastomeric 
structural composite exemplifies how multiple functional requirements for a viable bone 
substitute could be met with a scalable biomaterial that could be readily prepared at low 
cost. Here we focus our discussion on how the nHA component and its structural 
integration with the pHEMA matrix defines FlexBone’s physical properties that enables its 
easy surgical insertion and stable fixation at the site of defect, its ability to retain and release 
protein therapeutics in a localized and sustained manner, its ability to enrich endogenous 
protein signals within the microenvironment of the tissue defect, and its ability to enable 
functional repair of critical long bone defect without exerting negative systemic side effects. 

4.1 Preparation, microstructures and compressive behavior of FlexBone 

FlexBone was prepared by crosslinking 2-hydroxyethyl methacrylate (HEMA) in the 
presence of up to 50 wt% nHA (Figs. 1A & B) in molds of any size and shape as previously 
described (Song et al., 2009). The choice of crosslinked pHEMA as the organic scaffold of 
FlexBone was inspired by its biocompatibility (Kost, 1987; Montheard et al., 1992), elasticity 
(enabling convenient surgical handling), potential high-affinity integration with the HA 
(providing long-term structural stability), and low manufacturing cost, all of which are 
critical considerations for bench-to-bedside translations. The choice of 50 wt% nHA as the 
inorganic component of FlexBone was inspired by the osteoconductive mineral content 
approximating that of human bone (An, 2000; Phelps et al., 2000) and the large surface areas 
of the nanocrystals enabling better integration with the hydroxylated hydrogel matrix and 
better retention of both endogenous protein signals and exogenous protein therapeutics.  
The as-prepared FlexBone can be cut into any desired configuration matching with that of a 
potential defect, drilled with channels, and equilibrated with water to thoroughly remove 
radical initiators (Filion et al., 2011; Song et al., 2009). Upon freeze-drying, FlexBone can be 
stored long-term at room temperature, making it ideally suited as an “off-the-shelf“ 
synthetic bone substitute for clinical applications.  
Scanning electron microscopy (SEM) analysis revealed an even distribution of loose 
aggregates of nHA within the 3-dimensional pHEMA hydrogel matrix (Figs. 1A & B). As 
expected, the incorporation of 50 wt% of nHA in pHEMA resulted in an increase of the 
stiffness of the bulk material (Fig. 1C). Despite its high nHA content, however, FlexBone 
exhibited elastomeric properties in both as-prepared and fully hydrated states, showing 
excellent shape recovery after being subjected to repetitive moderate (MPa) compressive 
loadings under physiological conditions (in water, at body temperature). The excellent 
structural integration of nHA with the hydroxylated pHEMA matrix was reflected by the 
ability of freeze-dried FlexBone to withstand hundreds-of-megapascals compressive 
loadings and >80% compressive strains without exhibiting brittle fractures (Song et al., 
2009). SEM examination of the cross-section of a freeze-dried FlexBone after it was being 
compressed to >80% did not reveal any microfractures (Fig. 1D). Instead, the spherical 
aggregates of nHA were compressed into plywood-like structures, suggesting that the 
rearrangement of nHA under the compressive loading provided an effective mechanism for 
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energy dissipation, thereby contributing to the toughness of FlexBone. Such a fracture-
resistant property could not be obtained with composites containing the same weight 
percentage of micrometer-sized HA particles, where crack propagations within the 
composite under the same compressive loading was observed (Song et al., 2009). These 
findings underscore the critical role that nHA plays in defining the microstructural and 
mechanical properties of FlexBone. The elastomeric and fracture-resistant properties of 
FlexBone will enable its surgical insertion into an area of defect by convenient press-fitting. 
 

 

Fig. 1. Structural and mechanical properties of FlexBone. Cross-linking HEMA in the 
presence of 50 wt% nHA (A) generated FlexBone, where the spherical loose aggregates of 
nHA were well-distributed throughout the 3-dimensional pHEMA matrix (B) as revealed by 
SEM micrographs. (C) FlexBone, stiffer than pHEMA, withstood repetitive low-MPa 
compressive loadings with excellent shape recovery. The stress-strain curves were recorded 
on a dynamic mechanical analyzer equipped with a submersion compression fixture. Ten 
consecutive load-controlled loading-unloading cycles (3.0 N/min, 0.01 N to 10.0 N to 0.01 
N) were applied to each specimen in water at body temperature. (D) SEM micrograph of the 
cross-section of a freeze-dried FlexBone after being compressed to >80% compressive strain 
revealed the rearrangement of nHA into plywood like structures upon compression. Arrow 
indicates the orientation of the applied compressive loading. 

4.2 Retention and localized / sustained release of therapeutics from FlexBone 
The large surface area of the nHA component of FlexBone, coupled with its good structural 
integration with the pHEMA hydrogel matrix, has enabled FlexBone to retain protein 
therapeutics and small molecule antibiotics and release them in a localized and sustained 
manner (Xu et al., 2009). Such a feature is attractive for clinical applications where a 
patient’s tissue repair capacity is compromised by either age or metabolic conditions, or 
where the defect site is prone to infections (Hetrick & Schoenfisch, 2006).    
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Using a bone morphogenetic protein (BMP)-induced osteogenic trans-differentiation of 
myoblast C2C12 cell culture model (Katagiri et al., 1994), the ability of FlexBone to retain 
and release recombinant human bone morphogenetic protein-2/7 heterodimer (rhBMP-2/7) 
in vitro was evaluated. The pHEMA matrix enabled FlexBone to readily absorb an aqueous 
solution of rhBMP-2/7 and stably sequester these proteins, presumably on the surfaces of 
the nHA component. As shown in Figure 2, when a FlexBone carrier pre-absorbed with a 
single low dose of 40 ng of rhBMP-2/7 was placed in the culture of C2C12 cells, trans-
differentiation of the myoblasts to alkaline phosphatase (ALP)-expressing (stained in red) 
osteoblastic cells was observed by 2-4 days. The highly localized ALP staining suggested 
that the rhBMP-2/7 was released from the FlexBone carrier in a highly localized manner. 
Further, when the FlexBone carrier retrieved from the 4-day culture was placed in a fresh 
culture of C2C12 cells, the continually released rhBMP-2 was able to  induce osteogenic 
differentiation in 3.5 days, suggesting that the release was sustained over a period of >7 
days. It is worth noting that the 40-ng/graft loading dose of rhBMP-2/7 on FlexBone for 
inducing trans-differentiation of C2C12 cells was 3 orders of magnitude lower than required 
for BMP-2 using a TCP-chitosan carrier (Abarrategi et al., 2008). This is likely a result of both 
the increased rhBMP-2/7 retention on the nHA surfaces and the relatively higher osteogenic 
potency (~10 fold) of rhBMP-2/7  as compared to rhBMP-2 (Israel et al., 1996; Zheng et al., 
2010). 
 

 

Fig. 2. FlexBone released pre-absorbed recombinant human bone morphogenetic proteins 
and induced osteogenic trans-differentiation of myoblast C2C12 cells in a localized and 
sustained manner. (A) Direct supplement of rhBMP-2/7 (40 ng/mL) or rhBMP-2 (300 
ng/mL) in C2C12 culture media resulted in osteogenic trans-differentiation of C2C12 cells 
by 2-4 days as indicated by positive (red) ALP stains. (B) ALP stains were detected in C2C12 
cultures in areas immediately adjacent to where the FlexBone carrier pre-absorbed with 
rhBMP-2/7 (40 ng/carrier) (Xu et al., 2009) or rhBMP-2 (300 ng/carrier) (Li et al., 2011) was 
placed. Continued detection of ALP stains induced by the BMPs released from FlexBone 
over 7 days suggests that the release was accomplished in a sustained manner. C2C12 
seeding density: 10,000 cells/cm2. 
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Similarly, FlexBone was also able to release pre-absorbed receptor activator of nuclear factor 
kappa-B ligand (RANKL, 10-ng/carrier) in a sustained manner over 7 days and induce the 
osteoclastogenesis of murine macrophage RAW264.7 cells in culture (Xu et al., 2009). By 
contrast, the un-mineralized pHEMA control carrier pre-loaded with 10-ng RANKL 
exhibited a burst-release of RANKL within the first 2 days of culture, and was not able to 
successfully induce the osteoclastogenesis of RAW264.7 cells over the course of 1 week 
under identical culture conditions. This observation underscores the critical role of nHA in 
achieving effective retention and sustained release of the recombinant protein. The low 
effective loading dose of 10-ng RANKL per carrier for inducing osteoclastogenesis of 
RAW264.7 accomplished with FlexBone was also significantly lower than that required 
using literature brushite cement carrier (600–800 ng RANKL per carrier required) using an 
identical cell culture model (Le Nihouannen et al., 2008). Overall, these findings suggest that 
FlexBone may be used to deliver protein therapeutics with significantly reduced loading 
doses that could lead to enhanced safety and reduced cost of growth factor-mediated 
clinical treatment of skeletal lesions. 
Finally, 5 wt% of antibiotic tetracycline could be encapsulated in FlexBone without 
compromising the structural and compressive properties of FlexBone (Xu et al., 2009). The 
pre-encapsulated tetracycline was slowly released from FlexBone, with >80% of the 
tetracycline still retained on FlexBone after 1 week. By contrast, the un-mineralized pHEMA 
control released pre-encapsulated tetracycline much more rapidly, with only ~40% of 
tetracycline retained on the hydrogel scaffold after 7 days. We have also recently shown that 
the encapsulation and sustained release of vancomycin could also be accomplished using 
FlexBone as a carrier (Li et al., 2011). 

4.3 FlexBone-mediated functional repair of rat critical-size femoral defects  

Inspired by the elastomeric and fracture-resistant properties of FlexBone as well as its ability 
to deliver therapeutic agents in a localized and sustained manner, we recently evaluated the 
efficacy of FlexBone as a synthetic bone graft in mediating the repair of 5-mm critical-size 
femoral defects in rats with or without a single dose of 400-ng rhBMP-2/7 (Filion et al., 
2011). The 5-mm femoral defects were stably press-fit with the elastomeric FlexBone with or 
without the absorption of 400-ng rhBMP-2/7 (Fig. 3). The grafts were predrilled with 
intersecting orthogonal drill holes to permit bone marrow access to expedite callus 
formations both within and surrounding the graft.  
 

 

Fig. 3. FlexBone pre-drilled with intersecting channels can be pre-absorbed with osteogenic 
growth factors and stably press-fit into 5-mm femoral segmental defects in rats. 
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Histology, polarized light microscopy and microcomputed tomography (microCT) analyses 
showed that FlexBone enabled partial healing of the defect by 12 weeks in the absence of any 
exogenous growth factors (Filion et al., 2011). By 4 days post-operation, an internal callus 
emerged within the drill holes of FlexBone, which continued to mature and was recanalized by 
6 weeks. The external callus bridging over the defect started to be mineralized at 2 weeks via 
the endochondral ossification mechanism. The partially mineralized external callus was 
matured and recanalized by 12 weeks, although it did not completely bridge over the entire 
defect. In a subset of experiments, we demonstrated by immunohistochemical staining that the 
partial healing enabled by FlexBone in the absence of any exogenous factors could be 
attributed to the ability of the nHA component to retain/sequester the endogenous protein 
signals present in the defect microenvironment. Specifically, FlexBone grafts retrieved from the 
surgical implantation site at different time points over the course of the first week of 

implantation revealed retained endogenously secreted transforming growth factor β 

(TGFβ), interleukin-1β (IL-1β), tumor necrosis factor α (TNFα), vascular endothelial growth  
 

 

Fig. 4. FlexBone pre-absorbed with 400-ng rhBMP-2/7 led to functional repair of 5-mm 
segmental defects in rats as supported by the microCT analyses (A) and torsion tests (B) of 

12-week explants. Effective voxel size of 18×18×18 µm3 was applied to the reconstructed 3-D 
isosurface image and the 2-D color map of the center slice of the explant (red representing a 
higher degree of mineralization). No statistically significant difference was observed 
between the 12-week explant and the age-matched un-operated control femur. 
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factor (VEGF), RANKL, BMP-2, BMP-7 and stromal cell-derived factor-1 (SDF-1) in a 
temporally defined manner. These factors are known to play critical roles in initiating the 
inflammation / graft healing cascade and the recruitment of stem cells (Einhorn, 1998; Ito et 
al., 2005; Kitaori et al., 2009; Lieberman et al., 1999; Schindeler et al., 2008). The effective 
sequestering of these signals within FlexBone, but not the un-mineralized pHEMA control 
graft, supported the critical role of nHA in enabling the consequent partial repair of the 
defect.  
With the absorption of a single dose of 400-ng rhBMP-2/7, FlexBone was able to enable the 
functional repair of the defect in 8-12 weeks (Filion et al., 2011). By 8 weeks, mature and 
recanalized external bony callus completely bridged over the defect as indicated by both 
histology and microCT analyses (Fig. 4A). More importantly, biomechanical testing revealed 
that the torsional strength of the repaired defects was restored to the level of age-matched 
un-operated femur controls (Fig. 4B). It is worth noting that such a functional repair of the 
defect was accomplished by FlexBone with a single low dose of rhBMP-2/7 that was 1-2 
orders of magnitude lower than what has been required for treating similar defects using 
other scaffolds in combination with rhBMP-2 (Abarrategi et al., 2008; Kirker-Head et al., 
2007). Such a feature of FlexBone could both reduce the cost and minimize negative systemic 
side-effects of scaffold-assisted BMP therapies. Indeed, the vital organs collected from the 
rats 12 weeks after receiving FlexBone-rhBMP-2/7 implants were pathologically 
indistinguishable from the age-matched un-operated controls. 
In summary, FlexBone combines some of the best features of structural allografts 
(osteoconductivity and dimensional stability), desirable surgical compressibility, and the 
scalability of an easy-to-prepare synthetic biomaterial. The ability of FlexBone to locally 
deliver biological therapeutics in a significantly reduced effective dose to enable expedited 
functional repair of the critical defect opens the door to engineer the biochemical properties 
of the synthetic bone substitute based on individual patients’ needs.  

5. Conclusions  

Many exciting orthopedic biomaterials have emerged in literature in the past 20 years, 
illustrating the shift of the focus in materials design from bioinert, 
biodegradable/bioresorbable, to bioactive and tissue-responsive. By recapitulating the 
multifaceted roles that key extracellular matrix components of bone play in defining bone-
specific structural and biochemical properties, we show that easy-to-prepare biomaterials 
can be designed to facilitate the functional repair of critical-size bony defects. Our work 
supports the notion that functional sophistication of synthetic tissue grafts is not 
synonymous with complicated chemical/engineering designs.  
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