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1. Introduction 

Since the mid-twentieth century scientists have been aware that aquatic bacteria are more 
abundant as biofilms on solid surfaces than as suspended free cells (ZoBell, 1943). The last 
few decades have seen significant advancement in our understanding of the development of 
biofilms and the processes occurring within these colonies of adhered microorganisms 
(Coenye & Nelis, 2010; Hall-Stoodley et al., 2004). Two features in particular distinguish 
microorganisms in biofilms from their free-living counterparts. The first is their ability to 
produce a coherent extracellular polymeric matrix (containing polysaccharides, proteins and 
DNA) which results in firmer attachment to the surface (Costerton et al., 1987; Donlan & 
Costerton, 2002). The other is the coordinated behaviour of the cells embedded in this matrix 
due to communication by a process known as quorum sensing. Quorum sensing is the 
secretion and detection of inducer molecules that accumulate as a function of cell density. At 
a threshold population density the accumulated autoinducers bind to cellular receptors 
activating transcription of certain genes (Costerton & Lapin-Scott, 1995; Hall-Stoodley et al., 
2004; Nadell et al., 2008; Sauer, 2003).  
While the existence of a biofilm is beneficial in many settings, for example in waste water 
treatment plants where they play an essential role in flocculation and nutrient removal 
(Nicolella et al., 2000; Wagner & Loy, 2002), their presence can also be extremely harmful or 
costly. Biofilms are implicated in numerous diseases, including cystic fibrosis and 
tuberculosis (Lam et al., 1980; Singh et al., 2000); they also contaminate food, its packaging 
and the water distribution network thereby posing a serious threat to human health 
(Flemming, 2002; Kumar & Anand, 1998; LeChavalier et al., 1987). Microorganism 
colonization and extracellular polymeric substance (EPS) secretion on man-made structures 
such as heat exchangers and the hulls of ships can result in decreased performance and 
increased operating costs (Meesters et al., 2003; Schultz et al., 2011). As such, biofilms have 
become a priority subject in many research areas in recent years. Publications in the fields of 
biomedicine (Guo et al., 2008; Morton et al., 1998), waste water treatment (Liu & Fang, 2003; 
Pollard, 2010), ecology (Lubarsky et al., 2010; Yallop et al., 2000), food science (Carpentier & 
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Cerf, 1993) and biotechnology (Flemming & Wingender, 2001; Houghton & Quarmby, 1999) 
serve to highlight the wide ranging importance of biofilms and their secretions of EPS.  
Technological developments originating in different fields will have translational value. We 
report here on the MagPI (Magnetic Particle Induction) System, one such development in 
the field of environmental science. The MagPI System uses magnetic induction of ferrous 
particles to quantify the adhesive capacity of a test surface. As the “stickiness” of surfaces 
can often be attributed to the presence of a biofilm the MagPI System can be used to 
evaluate biofilm formation and state of development. Previously, measurements of this 
process have been conducted using large laboratory scale systems that can be both 
expensive and labour intensive. A variety of relevant procedures and devices are presented 
(Table 1). 
In this paper we will review the key phases in the development of the MagPI System, 
outline the procedures for use, review its current applications and highlight uses for this 
device that will be of relevance to biomedical sciences.  

2. Technical aspects and development of the MagPI System 

The MagPI System has been developed by a multidisciplinary team led by the University of 
St Andrews. Initially the goal of development was to produce a device that could sensitively 
measure the adhesive capacity of sediment surfaces.  The adhesive capacity or retentive 
ability of the sediment surface is a proxy for bed stability. Several devices based on different 
approaches already exist to measure sediment stability, e.g. water flow [Sedflume (McNeil 
et al., 1996); SETEG (Haag et al., 2001)], water jets [CSM (Paterson, 1989)] and propellers 
[EROMES (Schuenemann & Kuehl, 1991)]. To measure sediment stability these devices 
require that bed failure occurs. The MagPI System is capable of repeatedly measuring 
changes in surface properties below the point of bed failure (incipient erosion) that are 
undetectable by these other devices. For example, changes in adhesion during early stages 
of biofilm formation. As such, its use will fill a gap in our knowledge of properties and 
behaviour of surfaces and sediments (Larson et al., 2009).  

2.1 The electromagnet 
In the early stages of construction commercially available magnets were tested for their 
suitability. However, common problems included too large a surface area to be useful in 
observing particle reaction to the increasing magnetic force or inadequate strength to uplift 
the test particles. As a result, electromagnets were specially constructed by coiling insulated 
copper wire around a ferrous alloy core (Figure 1). The wire gauge, core dimensions and the 
number of turns in the coil can be varied between models to create electromagnets with 
different ranges. 

2.2 Ferrous test particles 
The test particles (Figure 1) are composed of a mixture of ferrous materials mixed with 
fluorescent pigment to increase their visibility (Partrac Ltd., Glasgow, UK). After their 
production a spectrum of particle sizes exist (80-400 µm). Particles are homogenized by 
sieving them into different size classes. The targets for MagPI need not be confined to 
particles. Almost any target design can be envisaged as long as the target is attracted by a 
magnetic field. So far small metal discs (<1cm diameter) and larger metal spheres  
(c.f 1-3mm) have also been tested. The choice of target depends on the purpose of the study.   
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Fig. 1. Schematic diagram of the MagPI system. A) Voltage and current variable power 
supply. B) Aluminium rod. Acts as a heat sink and can be attached to a micromanipulator or 
clamp when MagPI system is in use to hold it at a set height above test surface. C) Ferrous 
alloy core around which copper wire is coiled. The core is waterproofed by coating it in a 
plastic film. D) Fluorescent ferrous test particles. 

3. Standard operating procedure 

The laboratory-based MagPI System consists of a variable electromagnet controlled by a 
power supply capable of producing fine scale increments of current and voltage and the 
specially designed magnetic particles (Figure 1). To ensure repeatable measurements are 
taken, magnetic particles of a known size and density must be consistently applied to the 
test surface in a relatively even single layer.  The procedure followed when using the MagPI 
system in the laboratory is detailed below: 
1. Magnetic particles of a known size and density are suspended in water. 
2. The particle-water mixture is then drawn into a pipette or syringe. The suspended 

particles are allowed to settle to the tip of the pipette or syringe. 
3. A couple of drops of the mixture are sufficient to distribute a single layer of particles to 

an area of c. 1 cm2. This is ejected about 1 cm above the test surface into the overlying 
medium. 

4. The time interval between particle application and retraction depends on the objective 
of the investigation. If the adhesive capacity of the test surface is in question then the 
measurement of magnetic force required to uplift the particles from the test surface 
should be taken immediately. This is the most reliable way to ensure repeatable 
measurements. Particles left on the surface a period of time before the uplift process 
begins will become incorporated into the biofilm to some extent. Thus, the strength 
required to retract the particles is also influenced by the ability of the developing 
biofilm to entrap particles. The MagPI probe (electromagnet) is lowered into position 
above the particles (Generally 5 – 10mm from the surface) using a micromanipulator. 
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Method Basic procedure Advantages Limitations References 

Microscopy  

(e.g. epifluorescence, 
laser-scanning 
confocal, transmission 
electron, scanning 
electron) 

Varies between different 
microscopic techniques. 
For some microscopic 
methods biofilms are 
treated with a fixing agent 
(e.g. formaldehyde, 
glutaraldehyde) and 
stained (e.g. with acridine 
orange, ruthenium red, 
safranin) prior to imaging. 

Non-destructive 

High resolution images 
provide information of 
biofilm morphology, 
phylogeny and matrix 
structure and 
architecture   

Labour intensive 

Require specialist training 

Costly 

Pre-treatment can alter 
specimen morphology 

Potential for underestimation 
of biofilm levels if thickness 
not measured 

Not quantitative 

Lawrence et 
al., 2003; 
Morató et al., 
2004; Perkins 
et al., 2006; 
Priester et al., 
2007 

Crystal Violet 
Method 

Biofilm cells stained with 
crystal violet. The dye 
incorporated into sessile 
microorganisms is then 
solubilised and the 
absorbance of the solution 
measured. 

Affordable 

Doesn’t require 
specialist training 

Time consuming 

High variations for a same 
result 

Efficiency of biofilm removal 
from surface unknown 

Musk et al., 
2005; 
Vesterlund et 
al., 2005 

Flow Cytometry 

Adhered microorganisms 
are removed from their 
surface (e.g. by sonication). 
Cells are suspended in a 
rapidly flowing stream of 
water that passes by an 
electronic detection 
apparatus.  

Rapidly obtains and 
processes data 

Reveals heterogeneity 
of cells: numbers, size 
distribution, 
physiological and 
biochemical 
characteristics  

Expensive 

Requires specialist training 

Efficiency of biofilm removal 
from surface unknown 

Vives-Rego et 
al., 2000; 
Williams et 
al., 1999 

BioFilm Ring Test®   

A magnetic bead solution 
is added to bacterial 
cultures on a microtitre 
plate. After a period of 
incubation a magnet is 
used to assemble the non-
immobilized beads to the 
bottom of the well. The 
resulting spot is quantified 
through specialized image 
algorithms.  

Easy to operate 

Automated 

Sensitive to early stages 
of biofilm formation 

Results obtained 
quickly 

Repeatable 

Cannot be used to quantify 
biofilm formation in nature 

No information on 
phylogeny or morphology 
obtained as with microscopy 

Chavant et 
al., 2007 

MagPI System 

Magnetic beads are 
applied to the biofilm and 
exposed to an 
incrementally increasing 
magnetic force. The force 
at which the beads are 
recaptured from the 
surface can be taken as an 
indication of the extent of 
biofilm formation.   

Easy to operate 

Inexpensive 

Can be used to measure 
biofilm formation on 
any surface 

Sensitive to early stages 
of biofilm formation 

Non-destructive 

Results obtained 
rapidly 

Repeatable 

Not automated 

No information on 
phylogeny or morphology 
obtained as with microscopy  

Larson et al., 
2009 

Table 1. Methods and procedures used for studying biofilms 

5. The current to the probe is gradually increased (~ 0.2A increments). As the current 
increases so too does the magnetic force acting on the particles.  
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6. Four levels of particle response to the increasing magnetic field have been identified. 
The fourth level is the least subjective and should therefore be taken as the end point of 
the experiment (Figure 2).   

7. Prior to repeat measurements being taken on the same test surface it is made certain 
that no particles from a previous measurement remain in the area to be tested. 

8. It is advisable to calibrate at the start, during and at end of an experiment to account for 
changes in the coil resistance that would result in a loss of magnetic field strength.  

 
 
 

 

Fig. 2. i) Stage 4 of particle response to a magnetic field- complete removal of particles from 
the test surface below the electromagnet tip, particles can be seen adhering to the 
electromagnet. (Scale-bar: 1cm) ii) MagPI System set-up 

4. Calibrations and magnetic force equation 

Calibrations enable comparison of results obtained using different MagPI probes or in 
different laboratories or experiments. To calibrate the device the probe is placed at a set 
distance above a sensor connected to a Gauss meter. The voltage and current are increased 
incrementally (0.2V/ ~0.1A per increment) while all other factors remain constant. The 
magnetic flux density (MFD) for each voltage increase is measured by the Gauss meter in 
mTesla and recorded. Calibrations have been carried out with the probe submerged in both 
distilled water and seawater at distances of 5, 7 and 10mm between the probe and the Gauss 
meter sensor. Each calibration was carried out in triplicate.   
No significant difference was found between the freshwater and distilled water calibrations 
(α=0.05). There was a strong linear relationship between voltage and MFD at all distances 
(r2: 5mm = 0.99; 7mm = 0.99; 10mm = 0.99). When measuring the adhesive capacity of a test 
surface the voltage at which particles are uplifted from the surface (stage 4) is recorded and 
the MFD can later be calculated from the straight line equation obtained in calibrations 
(Figure 3). 
The attractive magnet force acting on the particles at the point of uplift can be calculated 
according to the following equation: 

Equation 1.   F= B2A/ 2µ0 

Where B is the MFD, A is the area of the magnetic pole facing the test surface and µ0 is the 
permeability of free space (constant during measurements in the same medium).  

ii) i) 
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Fig. 3. Seawater calibration curve (n = 3, +/- standard error). Distances reported are MagPI 
probe from a sensor connected to a Gauss meter. 

5. Biofilms in aquatic systems 

Biofilms are ubiquitous in benthic aquatic environments (Battin et al., 2003; Larson et al., 
2009; Lubarsky et al., 2010) where they regulate a number of important ecosystem services 
such as nutrient cycling (Battin et al., 2003; Cyr & Morton, 2006), pollutant accumulation 
(Schlekat et al., 1998; Wolfaardt et al., 1998) and biodegradation (Battin et al., 2003). More 
recently the influence of benthic microbial assemblages on sediment stability has been 
proven (Decho, 2000; Gerbersdorf et al., 2008; Spears et al., 2007). Traditionally physico-
chemical and biochemical processes were considered to be the most important drivers of 
sediment stability (Calles, 1983; McNeil & Lick, 2004). Microbial assemblages can enhance 
the stability of sediment in two ways, either directly, via the presence of physical mats 
(Dodds, 2003) or indirectly. Benthic microbes indirectly increase stability by secreting EPS 
which enhances adhesion and cohesion between the EPS molecules and sediment particles 
(Decho, 1994). Annular flume experiments have shown that the presence of a biofilm at the 
sediment surface significantly increases the energy required to erode the sediment 
compared to those sediments without biostabilisation (Droppo et al., 2001). These findings 
are transferable to the natural environment. Strong correlations between sediment stability, 
benthic algal biomass and EPS concentration have been observed in marine systems 
(Sutherland et al., 1998; Yallop et al., 2000). Although biostabilisation has also been observed 
in freshwater systems (Droppo et al., 2007; Gerbersdorf et al., 2007 & Spears et al, 2007) 
correlations between the aforementioned parameters are weaker. It is evident that under 
high electrolyte concentrations the effect of EPS on sediment stability is enhanced (Spears et 
al., 2008). This emphasizes the need for a device, such as the MagPI System, that is sensitive 
enough to discern subtle changes in sediment stability across freshwater environments 
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where low ionic concentrations generally place sediment stability below the range 
measurable by other devices (See section 2). Understanding the processes that control the 
erodibility and transport of sediments and their associated pollutants is vital for 
safeguarding the economic and ecological health of aquatic systems (Förstner at al., 2004; 
Westrich & Förstner, 2005; Wood & Armitage, 1999). 

5.1 First applications of the MagPI System 
The MagPI System was first introduced by Larson et al. (2009). Calibration data for an 
earlier prototype was presented and the ability of the MagPI System to precisely detect 
small differences in adhesion was demonstrated by measurements taken on a variety of 
abiotic and biotic test surfaces. Since then the MagPI System has contributed significantly to 
advancement in our understanding of biostabilisation. Until recently research into the 
biostabilisation of sediments focussed largely on the stabilising effect of benthic microalgae 
and their carbohydrate-rich EPS (Underwood & Paterson, 2003; Spears et al., 2008; Stal, 
2003). The contribution of benthic bacteria was for the most part overlooked despite their 
omnipresence at sediment surfaces and their ability to produce copious amounts of EPS as 
recognized from medical (Costerton et al., 1999), biotechnology (Wang et al., 2006) and 
industrial investigations (Kumar & Anand, 1998). Studies in which the MagPI System has 
been used to measure sediment stability appear to show that the role of heterotrophic 
bacteria in biostabilisation far exceeds what was previously thought and may even surpass 
that of microalgae. 
Gerbersdorf et al. (2009) investigated the biostabilisation potential of natural microbial 

assemblages on a non-cohesive substratum under conditions of nutrient limitation and 

repletion. Measurements of adhesion / stability obtained by the MagPI System and the 

Cohesive Strength Meter (CSM) were related to EPS (protein and carbohydrate), bacterial 

cell numbers, bacterial community composition, diatom biomass and diatom assemblage 

composition. The sensitivity of the MagPI System was highlighted by the inability of the 

CSM to determine differences in substratum stability between the control (no 

microorganisms and no nutrient addition) and early stages of the experimental treatments 

while the MagPI System indicated a significant increase in adhesive capacity as compared to 

the control even at this early stage in biofilm development. Nutrient addition appeared to 

profit the microalgae whereas bacteria dominated in nutrient-deplete cultures. The 

taxonomic shift between treatments resulted in differences in EPS composition which in 

turn moderated the biostabilisation capacity: microalgal dominated cultures were found to 

be less stable than those cultures where bacteria were prolific. Lubarsky et al. (2010) utilised 

the MagPI System in a comparison of pure bacterial cultures, axenic microalgal cultures and 

mixed assemblages grown on a non-cohesive substratum in an attempt to elucidate the 

individual stabilising capacity of the main biofilm components. Pure bacterial cultures had a 

significantly higher stabilisation potential compared to the microalgae. These results back-

up the assertions of Gerbersdorf et al. (2008) that bacteria do play an important role in 

biostabilisation and can be regarded as “ecosystem engineers”. Mixed assemblages were 

more stable than either pure bacterial cultures or microalgae. However, the hypothesis of a 

synergistic relationship between the microalgae and bacteria in terms of stability was 

discounted and it was deemed more likely that in mixed microbial culture the combination 

of EPS components with different mechanical properties and characteristics accounted for 

the increase in stability.    
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6. Biofilms in medicine 

In recent years there has been an alarming rise in the occurrence of multi-drug resistant 

microorganism infections (Fridkin & Gaynes, 1999; Gaynes & Edwards, 2005; Lessa et al., 

2009; Livermore, 2000). Two bacterial strains are of particular concern: meticillin-resistant 

Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Smith & Hunter, 2008). The 

persistence of these infectious microorganisms, despite measures to control them, is 

attributed to their existence as biofilms rather than as free-floating cells (Donlan & 

Costerton, 2002). Microorganisms incorporated into a biofilm have 10 to 1000 times more 

resistance to antimicrobial agents than planktonic microorganisms (Mah & O’Toole, 2001). 

An estimated 65 – 80% of infections in the developed world are biofilm related (Coenye & 

Nelis, 2010). It has been speculated that the emergence of biofilm diseases results from the 

success of vaccines and antibiotics against diseases originating from planktonic bacteria 

(Costerton, 2001). 

Several mechanisms are considered to be responsible for sessile microorganisms’ resistance 

to antibiotics. They include: i) the delayed or incomplete penetration of antimicrobial agents 

through the extracellular polymeric matrix in which cells are enclosed (Stewart, 1997; Suci et 

al., 1994), ii) slower growth rates and metabolism of sessile microorganisms compared to 

planktonic ones and hence slower uptake of antibiotics (Anwar et al., 1992; Evans et al., 

1990) and iii) quorum sensing induction of a biofilm specific phenotype (Mah & O’Toole, 

2001; Dagostino et al., 1991; Whiteley et al., 2000). For example, it has been suggested that in 

Escherichia coli biofilms the induction of the rpoS gene instigates a physiological response 

which in turn leads to antibiotic resistance (Adams & McLean, 1999). The disruption of 

quorum sensing systems is being investigated as a novel means of preventing or limiting 

biofilm pathogens (Dong & Zhang, 2005; Stickler et al., 1998). Of the numerous products 

seen to inhibit quorum sensing in in vitro systems a few (halogenated furanones, fungal 

compounds and garlic extract) have been tested with great success in animal models 

(Hentzer et al., 2003; Manefield et al., 2002; Rasmussen et al., 2005; Wu et al., 2000, 2004). 

However, the potential toxicity of furanones and patulins prevents their clinical use and 

garlic extract would have to be administered to humans in huge quantities to be comparable 

to the dosage used in mouse experiments (Rasmussen & Givskov, 2006). 

6.1 Biofilms and infectious diseases 
The chronic pneumonia that affects Cystic Fibrosis (CF) sufferers is one infection for which 

there is definitive proof of P.aeruginosa biofilm involvement. The well established 

morphological evidence is supplied by the recovery of cells from the airways of CF patients 

which are embedded in a thick matrix of extracellular material (Costerton et al., 1983; Lam et 

al., 1980). The hypothesis that the pathogen grows as a biofilm has more recently been 

reinforced by chemical data. Singh et al. (2000) present in vitro data showing that biofilm 

populations of P.aeruginosa produce more butyryl (C4) acyl homoseine lactone (AHL) than 

the oxyodecanoyl (C12) quorum signal whereas planktonic cells favour production of the 

C12 signal. Sputum examined directly from CF patients revealed that the ratio of the C4 to 

C12 signal was comparable to that found in the in vitro grown biofilms. Prior to these 

findings, infections could be classed as biofilm-related based solely on morphological 

evidence. The addition of this chemical data has established CF pneumonia as the definitive 

biofilm infection (Costerton, 2001).         
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CF itself is an autosomal recessive hereditary disease in which a net deficiency of water 
renders the respiratory mucous more viscous and as a result impairs the mucociliary 
clearance of inhaled particles from the airways leaving the patient vulnerable to bacterial 
infection (Donlan & Costerton, 2002). S.aureus and Haemophilus influenzae infections usually 
predispose airway colonisation by P.aeruginosa (Koch & Hoiby, 1993). Infections due to these 
strains can generally be controlled by antimicrobial agents. However, antipseudomonal 
therapy is less effective. By adolescence most Cystic Fibrosis patients will have become 
chronically infected with P.aeruginosa which can be severely debilitating and often fatal 
(Koch & Hoiby, 1993; Lykzak et al., 2002). The exact mechanisms by which the CF lung 
becomes colonised with P.aeruginosa biofilms are unknown. One hypothesis is that the thick 
respiratory mucus provides a matrix scaffold and creates a hypoxic environment in which 
P.aeruginosa are believed to thrive (Worlitzsch et al., 2002; Yoon et al., 2002). The second 
hypothesis is that airway inflammation enhances pseudomonal receptors on the respiratory 
epithelia to which P.aeruginosa can attach (Hall-Stoodley et al., 2004).      
CF is just one example of a biofilm related infection. Other diseases in which infectious 
biofilms are implicated include native valve endocarditis where bacteria or fungi in the 
blood stream adhere to vascular endothelium and potentially lead to structural damage of 
the valve tissues (Donlan & Costerton, 2002); Otitis media, a common childhood ear 
infection (Hall-Stoodley et al., 2006) and Peritontitis, a disease affecting the supporting 
tissue of teeth (Schaudinn et al., 2009).  

6.2 Biofilms on indwelling medical devices  
Infectious biofilm formation in the human body is not restricted to biotic surfaces. 

Indwelling medical devices (e.g. prosthetic heart valves, contact lenses, intrauterine devices 

and urethral catheters) are susceptible to bacterial adhesion and the subsequent formation of 

a biofilm. Bacteria may originate from the skin of the patient, health care workers, tap water 

or other fluid to which the device is exposed (Donlan, 2001). The adhesion of 

microorganisms to urinary catheters is particularly problematic. Catheter associated urinary 

tract infections (CAUTI) are the most common hospital acquired infection (Desai et al., 

2010). Urinary catheters are tubular, latex or silicon devices inserted into the bladder via the 

urethra for a variety of purposes including collection of urine during surgery, measuring 

urine output, prevention of urine retention and control of urinary incontinence (Schumm & 

Lam, 2008). Urinary catheters are used in enormous numbers in modern medicine. An 

investigation carried out across eight European countries showed that 11% of hospitalised 

patients were undergoing catheterisation (Jepsen et al., 1987).  

The occurrence of urinary tract infection is related to the length of time a patient is subject to 

catheterisation. Of those patients undergoing short term catheterisation (up to 7 days) 10 to 

50% acquire an infection (Haley et al. 1981; Mulhall et al. 1988) and virtually all patients 

undergoing long-term catheterisation (longer than 28 days) develop infections (Warren, 

1991). While the acquired infections are generally asymptomatic, patients are at risk from a 

variety of complications that render them more vulnerable than non-catheterized patients. 

Platt et al. (1982) revealed in a study of hospitalised patients that the development of a 

urinary tract infection during catheterisation was associated with an almost threefold 

increase in mortality. Kidney and bladder stones, bladder cancer, bacteraemia and 

pyelonephritis are among the complications that can potentially afflict catheterised patients 

(Stickler & Zimakoff, 1994).     
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The scale of this problem puts the development of catheter surfaces that prevent biofilm 
formation at the forefront of medical research. The most common antimicrobial compounds 
in urinary catheters are silver and nitrofurazone. However, their effectiveness is variable 
between different studies. One review (Schumm & Lam, 2008) concluded that silver alloy 
catheters did decrease the occurrence of asymptomatic bacteriuria in patients undergoing 
both short term and long term catheterisation, although this decrease was less pronounced 
in those patients catheterised for over a week. Desai et al. (2010) found that nitrofurazone-
impregnated catheters had only a minimal preventative effect in the earlier stages of E.coli 
and E.faecalis biofilm development (< 5 days) and that silver impregnation had a negligible 
effect. The incorporation of a silver releasing device between the drainage tube and catheter 
was found to provide an antibacterial barrier that could protect against bacterial 
colonisation for periods of at least 10 days in the bag and 8 days for the tubes and catheters 
(Stickler et al., 1994). The principle of this device is that as urine flows through it bactericidal 
silver ions will be released by dissolution. 

6.3 The MagPI System in medical research 
It is clear that health care providers and medical microbiologists still have some way to go in 
identifying strategies that will prevent biofilm related infections. The MagPI System could 
prove to be a very useful tool in these investigations due to its ability to detect early stage 
biofilm formation. It could, for example, be utilized in the laboratory based development of 
anti-biofilm coatings and materials for indwelling medical devices or to assess the 
effectiveness of quorum sensing disruptors and antibiotics on biofilm formation. It could 
also be used in more frontline actions against biofilm infection such as in hospital 
disinfection to identify bacterial colonization on equipment. In the case study below (Section 
7.0) we have used the MagPI System to investigate the effect of antibiotics on biofilm 
development in aquatic systems. Although this study was not carried out on bacterial 
biofilms in a setting relevant to medical science it does demonstrate the straight forward 
approach of the MagPI system to measuring early-stage biofilm formation and highlights its 
transitional value between different scientific disciplines. Besides the uses for the MagPI 
System in sediment ecology research and medical and pharmaceutical research, we have 
identified numerous fields in which the MagPI System could be utilised (Table 2).  
 
Biofilm 
Occurrence 

Problem/ Effect Mitigation Efforts MagPI Potential Use References 

Teeth 
Plaque formation and dental 
caries 

Incorporation of antimicrobial 
agents (e.g. bisbiguandines, 
metal ions, phenols, quaternary 
ammonium compounds) into 
toothpaste and mouth rinses.  

Development of anti-
plaque products and 
research into the 
bacteriology of plaque 
biofilms. 

Marsh, 2011; 
Rosan & 
Lamont, 2000 

Water 
distribution 
network 

Clogging of pipes, decrease in 
water velocity and carrying 
capacity, Increased corrosion 
and energy utilisation. Potential 
contamination by pathogens. 

Chemical water treatment e.g. 
chlorination.   

Monitoring biofilm 
formation. Developing 
new technologies and 
treatments.  

LeChevalier et 
al.,1987; Lund 
& Ormerod, 
1995; Momba 
et al. 2000  

Ships’ Hulls 

Increased surface roughness 
increases frictional resistance 
and thus fuel consumption. 
Decreased top speed and range. 

Anti-biofouling coatings which 
incorporate biocides e.g.  
Tributyl tin (use is regulated 
due to their toxicity to non-
target marine species) or 
copper.    

Development of non-
toxic anti-fouling 
coatings. 

Champ, 2003; 
Schultz et al., 
2010 
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Biofilm 
Occurrence 

Problem/ Effect Mitigation Efforts MagPI Potential Use References 

Food stuff and 

food 

packaging 

Economic loss due to food 

spoilage. Serious hygiene 

problem- adherence of 

pathogenic microorganism 

poses threat to human health. 

Coatings and paints with 

antimicrobial agents for factory 

floors, walls etc. Removal of 

surface roughness of 

machinery. Disinfection of 

factories.  Inhibition of biofilm 

development on food contact 

surfaces by bioactive 

compounds (e.g. Nisin). 

Monitoring biofilm 

development in 

industrial plants. 

Development of 

antimicrobial agents 

for food packaging.  

Kumar & 

Anand, 1998 

Fluid flow 

systems 

(Industrial 

system cooling 

processes) 

Decreased efficiency of heat 

exchangers, corrosion and 

health risk to workers if there’s 

pathogen contamination.  

Chemical water treatment with 

biocides e.g. hypochlorite, 

chlorine dioxide, bromine, 

ozone. Biofiltration. 

Development of non-

toxic chemical 

treatments and new 

technologies. 

Monitoring biofilm 

development.  

Flemming, 

2002; Meester 

et al., 2003  

Table 2. Examples of biofilm occurrence, their effect and ways in which the MagPI could be 
used to help overcome these problems 

7. Case study: The effect of antibiotics on bacterial biostabilisation potential 

7.1 Introduction 
In recent years awareness of antibiotics as common contaminants of aquatic systems has 
increased significantly (Kümmerer, 2001, 2009; Santos et al., 2010; Segura et al., 2009). 
Antibiotics reportedly occur in wastewater treatment plant (WWTP) effluent and surface 
waters at concentrations ranging from ng l-1 to several µg l-1 (Costanzo et al., 2005; Hirsch et 
al., 1999). There are a number of routes via which antibiotics can reach aquatic systems 
(Figure 4). As an important group of pharmaceuticals antibiotics are used extensively to 
treat infectious diseases in humans. Following consumption antibiotics are subject to 
metabolic reactions, such as hydroxylation, cleavage or glucuronation. However, between 
30 and 90% of the administered dosage of antibiotics is excreted from the body still in a 
biologically active form (Jjemba, 2006; Rang et al., 1999). Some of these compounds will later 
be released into aquatic systems in effluent from WWTPs. Several investigations have 
shown that residual pharmaceuticals are incompletely removed by waste water treatment 
procedures (Heberer, 2002; Ternes, 2002; Xu et al., 2007). Antibiotics are also used in huge 
quantities in animal husbandry and increasingly in aquaculture to protect the health of 
animals, enhance growth and promote nutritional efficiency (Sarmah et al., 2006). As a result 
antibiotics also enter surface and ground water after leaching from animal feed and 
excrement (Christian et al., 2003). Another major contributor of antibiotics to aquatic 
systems is pharmaceutical manufacturers. Holm et al. (1995) found that groundwater down 
gradient from landfill used by a pharmaceutical company contained a large variety of 
sulphonamides at concentrations up to 5mg l-1. Another investigation revealed that 
antibiotics were occurring in the mg l-1 range in effluent from drug manufacturing in India 
(Larsson et al., 2007). 
Antibiotics released into aquatic environments are a concern for several reasons, including: 
i) contamination of water used for irrigation, drinking or recreation, ii) promotion of 
bacterial resistance to antibiotics (Kümmerer, 2009), iii) disruption of sewage treatment 
facilities in which microorganisms perform waste water treatment functions (Gomez et al., 
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1996; Campos et al., 2001)  and iv) their potential to  negatively impact important ecosystem 
services regulated by microorganisms e.g. denitrification, nitrogen-fixation and organic 
matter degradation  (Costanzo et al., 2005; Hirsch et al., 1999).  
 
 

 

Fig. 4. Schematic diagram showing possible pathways of antibiotics into aquatic systems. 

As previously discussed microbial consortia in aquatic systems drive a number of important 

processes in aquatic ecosystems (Section 5.0). One of these functions is biostabilisation 

whereby microorganisms living in biofilms at the sediment surface mediate the response of 

the sediment to erosive forces. Bacteria in biofilms are known to play an important role in 

sediment stabilisation (Gerbersdorf et al., 2009; Lubarsky et al., 2010). The objective of the 

present study was to investigate the biostabilisation potential of natural bacterial biofilms 

when exposed to environmentally relevant concentrations of antibiotics. Understanding the 

biostabilisation capacity of biofilms and its impairment by pollutants is important for 

successful sediment management in waterways and coastal zones.  

Chloramphenicol, a bacteriostatic antibiotic, was selected for use in this investigation. It 

inhibits the growth and reproduction of certain bacteria by preventing peptide bond 

formation and thus disrupts the growth of peptide chains (Brosche & Backhaus, 2010). The 

use of chloramphenicol in human medicine is restricted due to its toxic properties (Forth at 

al., 1992) and its use has been completely banned in veterinary medicine since 1995 (BGW, 

1996).  However, chloramphenicol is still used extensively in aquaculture (Fierro & Olivia, 

2009). Chloramphenicol occurs in surface water at relatively low concentrations compared 

to some other antibiotics, a maximum concentration of 0.06µg l-1 has been recorded (Hirsch 

et al., 1999). The concentrations used in this experiment (5, 10 and 50µg l-1) are not 

environmentally relevant concentrations of chloramphenicol itself. They were chosen to 

represent concentrations of total antibiotics in surface waters. Hirsch et al. (1999) found that 

the concentrations of certain antibiotics in surface waters reached 1.7µg l-1. The mean 
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concentration of antibiotics in WWTP effluent in the Thames catchment area has been 

estimated at 62µg l-1 . By convention the concentration of antibiotics in surface waters where 

no measurements exist is taken as 10% of the concentration in WWTP effluent (Hirsch et al., 

1999; Singer et al., 2011). Thus, it would not be unrealistic that background total antibiotic 

concentrations of 5µgl-1, as used in this investigation, exist in some waterways.  

Over the course of the experiment the MagPI System was used to measure the adhesive 

capacity of the substratum, a proxy for sediment stability. It was hypothesised that the 

MagPI System would detect a negative effect on substratum stability as a result of antibiotic 

exposure and that this effect would become increasingly pronounced as antibiotic 

concentration increased. 

7.2 Materials and methods 

7.2.1 Bacterial cultures 

Surface sediment (20mm depth) from the intertidal mud flats of the Eden Estuary 

(Scotland, 56°22’N, 2°51’W) was mixed with the same volume of 1 µm filtered seawater 

and sonicated (Ultrasonic bath XB2 50 – 60 Hz) for 10 min to enhance detachment of the 

bacteria from the sediment, followed by two 10 min periods of centrifugation at 1500 rpm 

(Mistral E, Sanyo rotor 43122-105). The pellet (sediment fraction) was separated from the 

supernatant (containing bacterial fraction). The supernatant was centrifuged again, this 

time at 17000 rpm (Sorval, RC5B/C) for 10 min to obtain a microbial pellet. The resultant 

supernatant was discarded and the pellet with its associated bacteria was resuspended 

and passed through a 1.6 µm filter. The filter size was chosen to exclude the smallest 

expected microalgae from the estuarine sediment. Autoclaved standard nutrient broth 

(Fluka, peptone 15g l-1, yeast extract 3g l-1, sodium chloride 6g l-1, D (+) glucose 1g l-1) was 

added to the filtered supernatant (5:1). The bacterial stock cultures were left to establish 

under constant aeration and temperature (15°C) in the dark for one week prior to the 

experiment beginning.   

7.2.2 Experimental set-up 

Glass incubation chambers (L: 105mm, W: 105mm, H: 55mm) were filled to c. 1cm depth 

with 270 µm glass beads to provide a substratum for biofilm formation. The chambers were 

filled with 300ml autoclaved seawater (control) that had been spiked with defined 

concentrations of the antibiotic chloramphenicol (treatments). For the treatments a stock 

solution of chloramphenicol was prepared followed by dilution with autoclaved seawater 

(35psu) to the desired concentrations of 5 (T1), 10 (T2) and 50 (T3) µg l-1. The glass chambers, 

including those for the control, were inoculated with 10ml of the bacterial stock solution to 

initiate biofilm growth. Four replicates were established for each of the treatments and the 

control. All incubation chambers were gently aerated and kept at a constant temperature 

(15°C) in a dark room over the experimental period of 6 days.  

7.2.3 Sampling strategy 

Sampling was carried out on days 0, 2, and 6. Samples for EPS protein analysis and low-

temperature scanning electron microscopy (LTSEM, Figure 7) were obtained using a mini 

corer (cut-off 2ml syringe) and frozen immediately in liquid nitrogen and stored at -80°C 

until required for analysis.  
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7.2.4 Substratum stability 
The adhesive capacity, a proxy for bed stability, of the biofilms growing on the glass beads 
was measured on sampling days by magnetic particle induction (MagPI System). 
Fluorescent particles of size range 150 - 250µm were applied to the test surface as outlined in 
Section 3. This particle size range was chosen to best represent the grain size of the 
substratum. The MagPI probe was set 7mm above the surface of the glass beads. The 
following equation was used to calculate the magnetic flux density (MFD) at total particle 
clearance. 

Equation 2.   y= 3.1903x + 0.8443 

Obtained from the 7mm seawater calibration (Figure 3), where y is the MFD and x is the 

voltage at particle uplift from the test surface.  

7.2.5 EPS extraction and colloidal protein analysis 

Cores were placed in safety-lock Eppendorf caps with 2ml of distilled water and rotated for 

1.5 hours by a horizontal mixer (Denley Spiramix 5) at room temperature. After 

centrifugation at 5000rpm (Mistral 3000E Sanyo, rotor 43122-105) for 15 minutes the 

supernatant was analysed for protein following the modified Lowry procedure (Raunkjaer 

et al., 1994). Protein concentration was measured by spectrophotometer at 750nm 

wavelength (BUCK Scientific, CECIL CE3021, UK) and protein concentrations were 

calculated according to BSA standard (Albumin from bovine serum: Sigma, cat no A 4503-

10g) with results reported in µg ml-1.   

7.2.6 Statistical analysis 

All statistical analysis was conducted using Minitab version 16 (Minitab, Coventry, UK). 

Substratum stability (mTesla) variation over time and between treatments was assessed 

using two-way analysis of variance (ANOVA: significance level P < 0.05). The unbalanced 

data set of colloidal protein concentration was tested for variation over time and between 

treatments by general linear modelling (significance level P < 0.05). One-way ANOVA 

(significance level P < 0.05) was applied followed by Tukey’s post hoc test to determine 

which treatments showed a significant difference in adhesive capacity and protein 

concentration and also to determine for which treatments there was a time effect on the 

adhesive capacity and protein concentration.  

7.3 Results 
7.3.1 Substratum stability 

A two-way ANOVA indicated significant variation in the response of sediment stability to 

both time (P< 0.001) and treatment (P< 0.001).  For measurements of adhesive capacity taken 

directly after experimental set-up (day 0), there was no significant difference (P= 0.484) 

between treatments. On experiment days 2 and 6 there was a strong treatment effect (day 2 

P< 0.001; day 6 P= 0.001). For both days, the mean adhesive capacity of the control was 

found to be significantly higher than any of the treatments. Statistical testing each day did 

not reveal a significant difference between the three treatments (Figure 5). One-way 

ANOVA determined a time effect only for the control (P= 0.001) and treatment 2 (P= 0.012). 

For the control measurements of adhesive capacity differed significantly between day 0 and 
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day 2 as well as day 0 and day 6 but no significant difference was found between days 2 and 

6. For treatment 2, the adhesive capacity measurements on day 6 differed significantly from 

day 2 and day 0 but days 0 and 2 of the experiment were not significantly different to each 

other. 
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Fig. 5. Mean response (n=4, +/- standard error) of substratum adhesive capacity (proxy for 
sediment stability) to antibiotic exposure over the experimental period. C= control, T1= low 
antibiotic concentration (5 µg l-1), T2= medium antibiotic concentration (10 µg l-1), T3= high 
antibiotic concentration (50 µg l-1). Where treatments do not share a letter denotes a 
significant difference on that day.  

7.3.2 Colloidal protein concentration 
There was a significant response to time (P< 0.001) but not treatment (P= 0.087) in colloidal 
protein concentration. On days 0 and 2 of the experiment no significant difference was 
found between treatments (Day 0 P= 0.319; Day 2 P= 0.401). One-way ANOVA of protein 
concentration on day 6 revealed a significant variation between treatments (P= 0.03).  T1 
(low antibiotic concentration) was significantly higher than the control (C). Neither T1 nor C 
was significantly different from T2 and T3 on day 6 of the experiment (Figure 6). Statistical 
testing revealed a time effect only for T1 (P= 0.001) and T2 (P= 0.012). For T1, the protein 
concentration differed significantly between day 0 and day 6 and no significant difference 
was found between days 2 and day 6 or day 2 and day 0. For treatment 2, the protein 
concentration on day 6 differed significantly from days 0 and 2 but protein concentration on 
days 0 and 2 were not significantly different.  
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Fig. 6. Mean response (n=4, +/- standard error) of colloidal protein concentration to 
antibiotic exposure over the experimental period. C= control, T1= low antibiotic 
concentration (5 µg l-1), T2= medium antibiotic concentration (10 µg l-1), T3= high antibiotic 
concentration (50 µg l-1). Where treatments do not share a letter denotes a significant 
difference on that day. 

7.4 Discussion 
If the results for the adhesive capacity measured by magnetic particle induction are taken 
as a proxy for biofilm formation then it would appear that biofilm development was 
significantly higher on the substratum surface of the control when compared to all 
treatments. No significant time effect on the adhesive capacity was found for treatments 1 
and 3. As the substratum was composed wholly of non-cohesive glass beads the binding 
force observed in the control and in treatment 2 (on day 6 only) must have been due to 
bacterial adhesion and EPS secretion. The control had a significantly higher adhesive 
capacity than each of the treatments on days 2 and 6 of the experiment. This suggests that 
the biostabilisation potential of bacteria is affected by antibiotics at concentrations likely 
to be found in natural surface waters. In the event of an influenza pandemic the amount 
of antibiotics reaching surface waters is predicted to increase. Singer et al. (2011) project a 
mean total antibiotic concentration of 15µg l-1 and a maximum concentration of 80µg l-1 in 
the Thames catchment area in the event of a severe pandemic. Our results for the adhesive 
capacity of treatment 3 (50 µg l-1) suggest that the biostabilisation potential of bacteria in 
aquatic systems would be significantly affected in the event of a severe influenza 
pandemic.   
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To-date the majority of studies addressing the effects of pharmaceuticals on aquatic 
microorganisms have been conducted using concentrations greater than those observed in 

the environment (Halling-Sorensen, 2001; Kümmerer et al., 2000; Pomati et al., 2004). Of the 
investigations conducted using environmentally relevant concentrations of antibiotics there 

has been a strong indication that antibiotics in aquatic ecosystems have the potential to 
influence biotic processes (Costanzo et al., 2005). Schreiber and Szewzyk (2008) conducted 

an experiment using environmentally relevant concentrations (0.5 – 50µg l-1) of antibiotics. 
They found that antibiotic exposure enhanced, inhibited or had no influence on the initial 

adhesion of bacteria to a surface.  The effect was dependent on the selected pharmaceutical, 
the bacterial strain and the adhesion surface as well as antibiotic concentration. In aquatic 

systems there are a myriad of antibiotics present all of which function differently. In 
addition biofilms are not composed solely of bacteria, other microorganisms, microalgae for 

example, may also be present in surface sediment biofilms. Our results highlight the need 
for investigations into the effect of pharmaceuticals at concentrations occurring in surface 

waters on biostabilisation as well as other important ecosystem services conducted by 
microorganisms in aquatic ecosystems. 

As previously discussed (Section 5.0) EPS production by microorganisms adhered to the 

sediment surface is thought to significantly increase its stability (Underwood & Paterson, 

2003). Traditionally, microalgae and their polysaccharide-rich EPS were considered to be the 

principal binding force (Underwood & Paterson, 2003). However, recent work suggests that 

biofilm bacteria and bacterial EPS which is estimated to contain up to 60% protein 

(Flemming & Wingender, 2001) are more important for biostabilisation than previously 

considered and that a synergistic effect between EPS protein and EPS carbohydrate might 

strengthen their binding forces (Gerbersdorf et al., 2008; Lubarsky et al., 2010). In spite of 

this, no correlation was found (α = 0.05) between substratum adhesiveness and colloidal 

protein. Adhesive capacity results imply that there is no biofilm formation for treatment 1 

and 3 but that biofilm formation was not inhibited in treatment 2 or in the control. However, 

if we take protein concentration rather than the MagPI System measurements as an 

indication of biofilm formation then it would appear that there was no biofilm formation in 

the control as there is no significant time effect on protein concentration. Both adhesive 

capacity results and protein concentration suggest the development of biofilms in treatment 

2. A time effect on the protein concentration of treatment 1 was also observed and the 

protein concentration was found to be significantly higher for treatment 1 than for the 

control on the final day of the experiment. The higher colloidal protein concentration 

observed in treatment 1 on the final day of the experiment may be the product of a stress 

response by the bacteria to antibiotic exposure. Studies have shown that at subinhibitory 

levels some antibiotics stimulate EPS production by certain bacteria (Rachid et al., 2000). The 

lack of correlation between protein concentration and adhesive capacity in this experiment 

may indicate that proteins do not actually play a very important role in biostabilisation in 

this experimental system. Alternatively, exposure of the bacterial cultures to 

chloramphenicol may not necessarily affect the quantity of the EPS as much as the quality. It 

is possible that the higher molecular weight fraction of EPS protein is responsible for the 

binding characteristics that have been observed in natural bacterial assemblages (Lubarsky 

et al., 2010). Inhibition of peptide bond formation by chloramphenicol may result in the 

excretion of only small molecular weight protein molecules which have no influence on 

sediment stability. 
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Fig. 7. Low- temperature scanning electronmicroscopy (LTSEM) images of biofilms on glass 
beads. A: Day 0, control. Low organic matter cover, honeycomb structure around bead is 
water; B: Day 6, T3; C: Day 6, T2; D: Close-up of biofilm on glass bead surface, Day 6, T1.   

7.5 Conclusion 
The adhesive capacity results for this experiment successfully demonstrate the ability of the 
MagPI System to determine subtle changes in surface adhesion as a result of biofilm 
formation. The stability of the non-cohesive glass bead substratum was significantly 
increased during the experimental period for the control. Although there was a detrimental 
effect on biostabilisation as a result of the bacteria being exposed to antibiotics in the 
treatments the effect was not as hypothesised; the adhesive capacity was not found to 
decrease with increasing chloramphenicol concentration. It must be considered that this 
experiment targeted only one group of biofilm microorganisms and used a single 
compound. As such these findings cannot be taken as conclusive proof that the levels of 
antibiotics found in our waterways are having a damaging effect on the sediment 
stabilisation potential of biofilms. They do however highlight the need for further 
investigations using a mixture of antibiotics at environmentally relevant concentrations and 
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varied microbial assemblages. Future work should also calibrate MagPI System 
measurements of adhesive capacity against biological variables other than EPS protein 
concentration, for example bacterial cell numbers or EPS carbohydrate concentration.  

8. Summary 

Biofilms have become an important research topic across numerous scientific disciplines in 
recent years. While their presence can be desirable or beneficial in some situations, it can be 
incredibly harmful or costly in others. Bacterial biofilms can be particularly harmful to 
human health and pose a serious challenge in modern medicine. The last decade has seen a 
significant increase in the occurrence of multi-drug resistant microorganism infections. The 
persistence of these infectious microorganisms is attributed to their existence as biofilms 
rather than as free-floating cells. It is thought that microorganisms in biofilms have 10 to 100 
times more resistance to antibiotics than their planktonic counterparts. Biofilm research in 
medical science, as well as in many other fields, has previously been conducted using time-
consuming procedures or large laboratory scale systems that can be both expensive and 
labour intensive. The MagPI System presented in this paper is an alternative method for 
biofilm detection. It uses magnetic induction of ferrous particles to quantify the adhesive 
capacity of a test surface. As the “stickiness” of surfaces can often be attributed to the 
presence and growth phase of a biofilm the MagPI System can be used to evaluate biofilm 
formation and state of development. This system has already been used with much success 
in the field of sediment ecology and we propose its use across a number of other fields 
where research questions require a measure of adhesion or extent of biofilm formation. The 
MagPI System may be especially useful in medical science. It could, for example, be used in 
the development of anti-microbial indwelling medical devices, to evaluate the effect of 
antibiotics on biofilm formation or in the disinfection of healthcare facilities. In summary, 
the MagPI System combines a highly variable system, of logistic ease and relatively low cost 
providing a means of repeatedly and non-destructively quantifying the adhesive capacity of 
a test surface as a result of biofilm formation.  

9. Acknowledgements 

We thank R. Aspden and R.W. Hussin for their laboratory assistance. This research was 
funded by the Natural Environment Research Council (UK) through an “Innovations A” 
grant. We also thank A. Singer for his helpful advice on antibiotics in aquatic ecosystems.   

10. References 

Anwar, H., J. L. Strap, K. Chen & J. W. Costerton. (1992). Dynamic interactions of biofilms of 

mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob. 

Agents Chemother. Vol.  36, pp. 1208–1214. 

Adams, J. L. & R. J. C., McLean. (1999). Impact of rpoS deletion on Escherichia coli biofilms. 

Appl. Environ. Microbiol. Vol. 65, pp. 4285–4287 

Battin, T.J., L.A., Kaplan, J.D., Newbold & C.M.E., Hansen. (2003). Contributions of 

microbial biofilms to ecosystem processes in stream mesocosms. Nature. Vol. 426, 

pp. 439-442 

www.intechopen.com



 
Biomedical Engineering – Frontiers and Challenges 208 

Brosche, S. & T., Backhaus. (2010). Toxicity of five protein synthesis inhibiting antibiotics 

and their mixture to limnic bacterial communities. Aquatic Toxicology. Vol. 99, pp. 

457–465 

Calles, B. (1983). Settling processes in a saline environment. Geografiska Annaler. SeriesA. 

Physical Geography. Vol.  65, pp. 159–166 

Campos, J.L., J.M., Garrido, R., Mendez & J.M., Lema. (2001). Effect of two broad-spectrum 

antibiotics on activity and stability of continuous nitrifying system. Applied 

Biochemistry and Biotechnology. Vol. 95, pp. 1–10 

Carpentier, B. & O., Cerf. (1993). Biofilms and their consequences, with particular reference 

to hygiene in the food industry. Journal of Applied Microbiology. Vol. 75, pp. 499-511  

Champ, M.A. (2003). Economic and environmental impacts on ports and harbors from the 

convention to ban harmful marine anti-fouling systems. Marine Pollution Bulletin. 

Vol. 46, pp. 935–940 

Chavant, P., B., Gaillard-Martinie, R., Talon, M., Hébraud & T., Bernardi. (2007). A new 

device for rapid evaluation of biofilms formation potential by bacteria. Journal of 

Microbial Methods. Vol. 68, pp. 605-612  

Christian, T., R.J., Schneider, H.A., Färber, D., Skutlarek, M.T., Meyer & H.E., Goldbach. 

(2003). Determination of Antibiotic Residues in Manure, Soil, and Surface Waters. 

Acta hydrochim. hydrobiol. Vol. 31, pp. 36–44 

Coenye, T. & H.J., Nelis. (2010). In vitro and in vivo model systems to study microbial 

biofilm formation. Journal of Microbiological Methods. Vol. 83, pp. 89-105 

Costanzo, S.D., J., Murby & J., Bates. (2005). Ecosystem response to antibiotics entering the 

aquatic environment. Marine Pollution Bulletin. Vol. 51, pp. 218–223 

Costerton, J. W., J., Lam, K., Lam & R., Chan. (1983). The role of the microcolony mode of 

growth in the pathogenesis of Pseudomonas aeruginosa infections. Rev. Infect. Dis. 

Vol. 5, pp. 867–873  

Costerton, J. W., K.-J., Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta, & T. J. 

Marrie. (1987). Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. Vol.  

41, pp. 435–464 

Costerton, J. W. & H. M., Lappin-Scott. (1995). Introduction to microbial biofilms. In: 

Microbial Biofilms.   H. M. Lappin-Scott & J. W. Costerton (ed.), pp. 1-11, Cambridge 

University Press, Cambridge, United Kingdom. 

Costerton, J. W., P. S., Stewart, & E. P., Greenberg. 1999. Bacterial biofilms: a common cause 

of persistent infections. Science. Vol. 284, pp. 1318–1322 

Costerton, J.W. (2001). Cystic fibrosis pathogenesis and the role of biofilms in persistent 

infection. Trends in Microbiology. Vol.9, pp. 50-52 

Cyr, H., & K.E., Morton. (2006). Distribution of biofilm exopolymeric substances in littoral 

sediments of Canadian Shield lakes: effects of light and substrate. Canadian Journal 

of Fisheries and Aquatic Sciences. Vol. 63, pp. 1763–1776 

Dagostino, L., A. E. Goodman & K. C. Marshall. ( 1991). Physiological responses induced in 

bacteria adhering to surfaces. Biofouling. Vol.  4, pp. 113–119 

Decho, A. W. (1994). Molecular scale events influencing the macroscale cohesiveness of 

exopolymers. In: Biostabilisation of Sediment, W. E. Krumbein, D. M. Paterson and L. 

J. Stal (eds.), pp. 135–148, BIS Verlag, Oldenburg 

www.intechopen.com



 
Magnetic Particle Induction and Its Importance in Biofilm Research 209 

Decho, A.W., (2000). Microbial biofilms in intertidal systems: an overview. Continental Shelf 

Research. Vol. 20, pp. 1257–1273 

Desai, D.G., K.S., Liao, M.E., Cevallos & B.W., Trautner. (2010). Silver of nitrofurazone 

impregnation of urinary catheters has a minimal effect on uropathogen adherence. 

The Journal of Urology. Vol. 184, pp. 2565-2571 

Dodds, W. K. (2003). The role of periphyton in phosphorus retention in shallow freshwater 

aquatic systems. Journal of Phycology. Vol. 39, pp. 840–849 

Dong, Y-H. & L-H., Zhang. (2005). Quorum sensing and quorum- quenching enzymes. The 

Journal of Microbiology. Vol. 43, pp. 101-109 

Donlan, R.M. (2001). Biofilms and device-associated infections. Emerging Infectious Diseases. 

Vol. 7, pp. 277-281 

Donlan, R.M. & J.W., Costerton. (2002). Biofilms: Survival mechanisms of clinically relevant 

microorganisms. Clin. Microbiol. Rev. Vol. 15, pp. 167-193  

Droppo, I.G., Y.L., Lau & C., Mitchell. (2001). The effect of depositional history on 

contaminated bed sediment stability. The Science of the Total Environment. Vol. 

266, pp. 7-13 

Evans, D. J., D. G. Allison, M. R. W. Brown & P. Gilbert. (1990). Effect of growth-rate on 

resistance of gram-negative biofilms to cetrimide. J. Antimicrob. Chemother. Vol. 26, 

pp. 473–478. 

Fierro, J. & D., Oliva. (2009). Effect of antibiotic treatment on the growth and survival of 

juvenile northern Chilean scallop, Argopecten purpuratus Lamarck (1819), and 

associated microflora in experimental cultures. Aquaculture Research. Vol. 40, pp. 

1358–1362 

Flemming, H.C., (2002). Biofouling in water systems – cases, causes and counter measures. 

Applied Microbiology and Biotechnology. Vol. 59, pp. 629-640  

Flemming, H.C. & J., Wingender. (2001). Relevance of microbial extracellular polymeric 

substances (EPSs)-Part I:Structural and ecological aspects. Water Science And 

Technology. Vol. 43, pp. 1-8 

Förstner, U., S., Heise, R., Schwartz, B., Westrich & W., Ahlf. (2004). Historical contaminated 

sediments and soils at river basin scale. J. Soils Sediments. Vol. 4, pp. 247-260 

Fridkin, S.K. & R.P., Gaynes (1999). Antimicrobial resistance in intensive care units. Clinics in 

Chest Medicine. Vol. 20, pp. 303-316 

Gabriel, M.M., M.S., Mayo, L.L., May et al. (1996). In vitro evaluation of the efficacy of a 

silver-coated catheter. Current Microbiology. Vol. 33 

Gaynes, R., J.R., Edwards & The National Nosocomial Infections Surveillance System. 

(2005). Overview of nosocomial infectionscaused by gram-negative bacilli. 

Healthcare Epidemiology. Vol. 41, pp. 848-854 

Gerbersdorf, S.U., W., Manz & D.M., Paterson. (2008). The engineering potential of natural 

benthic bacterial assemblages in terms of the erosion resistance of sediments. Fems 

Microbiology Ecology. Vol. 66, pp. 282-294 

Gerbersdorf, S.U., R., Bittner, H., Lubarsky, W., Manz & D.M., Paterson. (2009). Microbial 

assemblages as ecosystem engineers of sediment stability. Journal of Soils and 

Sediments. Vol. 9, pp. 640-652 

www.intechopen.com



 
Biomedical Engineering – Frontiers and Challenges 210 

Gomez, J., R., Mendez & J.M., Lema. (1996). The effect of antibiotics on nitrification 

processes—batch assays. Applied Biochemistry and Biotechnology. Vol. 57, pp. 869–876 

Guo, L.H., H.L., Wang, X.D., Liu & J., Duan. (2008). Identification of protein differences 

between two clinical isolates of Streptococcus mutans by proteomic analysis. Oral 

Microbiology Immunology. Vol. 23, pp. 105-111  

Haag, I., U., Kern & B., Westrich. (2001). Erosion investigation and sediment quality 

measurements for a comprehensive risk assessment of contaminated aquatic 

sediments. The Science of the Total Environment. Vol. 266, pp. 249-257 

Haley, R.W., D.H., Culver, J.W., White, W.M., Morgan & T.G., Emori. (1985). The national 

nosocomial infection rate. Am. J. Epidemiol. Vol. 121, pp. 159-167 

Halling-Sorensen, B. (2001). Inhibition of aerobic growth and nitrification of bacteria in 

sewage sludge by antibacterial agents. Arch. Environ. Contam. Toxicol. Vol. 40, pp. 

451–460 

Hall-Stoodley, L., J.W., Costerton & P., Stoodley. (2004). Bacterial biofilms: from the natural 

environment to infectious diseases. Nat Rev Microbiol. Vol. 2, pp. 95–108 

Hall-Stoodley, L., F.Z., Hu, A.,  Gieseke, L.,  Nistico, D.,  Nguyen, J.,  

Hayes,  et al. (2006) Direct detection of bacterial biofilms on the middle-ear mucosa 

of children with chronic otitis media. JAMA. Vol.  296, pp. 202–211 

Hentzer, M., H., Wu, J.B., Andersen, K., Riedel, T.B., Rasmussen, N.,  Bagge, N., Kumar, 

M.A., Schembri, Z., Song, P., Kristoffersen, M., Manefield, J.W., Costerton, S., 

Molin, L., Eberl, P., Steinberg, S., Kjelleberg, N., Hoiby & M.,  Givskov. (2003). 

Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. 

EMBO J. Vol. 22, pp. 3803–3815 

Herberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic 

environment: a review of recent research data. Toxicology Letters. Vol. 131, pp. 5–17  

Hirsch, R., T., Ternes, K., Haberer & K-L., Kratz. (1999). Occurrence of antibiotics in the 

aquatic environment. Science of the Total Environment. Vol. 225, pp. 109-118  

Holm JV, K., Ruegge, P.L., Bjerg & T.H., Christensen. (1999) Occurrence and distribution of 

pharmaceutical organic compounds in the groundwater down gradient of a landfill 

- Grindsted, Denmark. Environ Sci Technol. Vol. 5, pp.1415-1420 

Houghton, J.I. & J. Quarmby. (1999). Biopolymers in wastewater treatment. Current Opinion  

in Biotechnology. Vol.  10, pp. 259-262  

Jepsen, O.B., S.O., Larsen, J., Dankert et al. (1982). Urinary tract infection and bacteraemia in 

hospitalized patients- a European multiculture prevalence survey on nosocomial 

infection. Journal of Hospital Infection. Vol. 3, pp. 241-252  

Jjemba P.K. (2006). Excretion and ecotoxicity of pharmaceutical and personal care products 

in the environment. Ecotixicol. Environ. Saf. Vol. 63, pp. 113-130  

Johnson, J.R., P., Delavar & M., Azar (1999). Activities of a nitrofurazone- containing urinary 

catheter and a silver hydrogel catheter against multidrug- resistant bacteria 

characteristic of catheter- associated urinary tract infections. Antimicrob. Agents 

Chemother. Vol. 43  

Koch, C., & N., Hoiby. (1993). Pathogenesis of cystic fibrosis. Lancet. Vol. 341, pp. 1065–1069 

Kumar, C.G. & S.K., Anand. (1998). Significance of microbial biofilms in food industry: a 

review. International Journal of Food Microbiology. Vol. 42, pp. 9-27 

www.intechopen.com



 
Magnetic Particle Induction and Its Importance in Biofilm Research 211 

Kümmerer, K., A., Al-Ahmad & V., Mersch-Sundermann.(2000). Biodegradability of some 

antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a 

simple test. Chemosphere. Vol. 40, pp. 701–710 

Kümmerer, K. (2001).Drugs in the environment: emission of drugs, diagnostic aids and 

disinfectants into wastewater by hospitals in relation to other sources – a review. 

Chemosphere. Vol. 45, pp. 957-96   

Kümmerer, K. (2009). Antibiotics in the aquatic environment – A review – Part II. 

Chemosphere. Vol. 75, pp. 435–441 

Lam, J., R., Chan, K., Lam & J.W., Costerton. (1980). Production of mucoid microcolonies by 

Pseudomonas aeruginosa within infected lungs in Cystic Fibrosis. Infection and 

Immunity. Vol. 28, pp. 546-556 

Lawrence, J.R., G.D.W., Swerhone, G.G., Leppard, T., Araki, X., Zhang, M.M., West & A.P., 

Hitchcock. (2003). Scanning transmission X-ray, laser scanning, and transmission 

Electron microscopy mapping of the exopolymeric matrix of microbial biofilms. 

Applied and Environmental Microbiology. Vol. 69, pp. 5543-5554  

LeChevallier, M.W., T.M., Babcock & R.G., Lee. (1987). Examination and characterization of 

distribution system biofilms. Appl. Environ. Microbiol. Vol. 53, pp. 2714-2724 

Larson, F., H., Lubarsky, S.U., Gerbersdorf & D.M., Paterson. (2009). Surface 

adhesionmeasurements in aquatic biofilms using magnetic particle induction: 

MagPI. Limnology and Oceanography-Methods. Vol. 7, pp. 490-497 

Larsson, T.A., C., de Pedro & N., Paxeus. (2007). Effluent from drug manufacturers contains 

extremely high levels of pharmaceuticals. J. Hazard. Mater. Vol. 148, pp. 751-755 

LeChevalier, M.W., T.M., Bancock & R.G., Lee. (1987). Examination and Characterization of 

distribution system biofilms. Appl. Environ. Microbiol. Vol. 53, pp. 2714-2724 

Lessa, F., J.R., Edwards, S.K., Fridkin, F.C., Tenover, T.C., Horan & R.J., Gorwitz. (2009). 

Trends in Incidence of Late-Onset Methicillin-Resistant Staphylococcus aureus 

Infection in Neonatal Intensive Care Units: Data From the National Nosocomial 

Infections Surveillance System, 1995-2004. Pediatric Infectious Disease Journal. Vol. 

28, pp. 577-581 

Liu, H. & H.H.P., Fang. (2002). Hydrogen production from wastewater by acidogenic 

granular sludge. Water Science and Technology. Vol. 47, pp. 153–158  

Livermore, D.M. (2000). Antibiotic resistance in Staphylococci. Int. J. Antimicrob. Agents. Vol. 

16, pp. 3-10 

Lubarsky, H.V., C., Hubas, M., Chocholek, F., Larson, W., Manz, D.M., Paterson & S.U., 

Gerbersdorf. (2010). The stabilisation potential of individual and mixed 

assemblages of natural bacteria and microalgae. PLoS ONE 5(11): e13794. 

doi:10.1371/journal.pone.0013794 

Lund, V. & K., Ormerod. (1995). The influence of disinfection processes on biofilm formation 

in water distribution systems. Water research. Vol. 29, pp. 1013-1021 

Lyczak, J. B., C.L., Cannon & G..B., Pier. (2002). Lung infections associated with cystic 

fibrosis. Clin. Microbiol. Rev. Vol. 15, pp. 194–222. 

Mah, T. F. & G.A., O’Toole. (2001). Mechanisms of biofilm resistance to antimicrobial agents. 

Trends Microbiol. Vol. 9, pp. 34–39 

www.intechopen.com



 
Biomedical Engineering – Frontiers and Challenges 212 

Manefield, M., T.B., Rasmussen,  M., Henzter, J.B., Andersen, P., Steinberg, S., Kjelleberg & 

M., Givskov. (2002). Halogenated furanones inhibit quorum sensing through 

accelerated LuxR turnover. Microbiology. Vol. 148, pp. 1119–1127 

Marsh, P.D., A., Moter & D.A., Devine. (2011).Dental plaque biofilms: communities, conflict 

and control. Periodontology 2000. Vol. 55, pp. 16–35 

McNeil, J., C., Taylor & W., Lick. (1996). Measurements of erosion of undisturbed bottom 

sediments with depth. J.Hydraul. Engin. Vol. 122, pp. 316-324. 

McNeil, J. & W., Lick. (2004).  Erosion Rates and Bulk Properties of Sediments From the 

Kalamazoo River. Journal of Great Lakes research. Vol. 30, pp. 407-418 

Meesters, K.P.H., J.W., Van Groenestijn & J., Gerriste. (2003). Biofouling reduction in 

recirculating cooling systems through biofiltration of process water. Water Research. 

Vol.  37, pp. 525–532 

Momba, M.N.B., R., Kfir, S.N., Venter & T.E., Cloete. (2000). An overview of biofilms 

formation in water distribution systems and its impact on the deterioration of 

water quality. Water SA. Vol. 26, pp. 59-66 

Morató, J., F., Codony & J., Mas. (2004). Microscopy techniques applied for monitoring the 

development of aquatic biofilms. In: Current Issues on Multidisciplinary Microscopy 

Research and Education, pp. 93–10, FORMATEX 

Morton, L.H.G., D. L. A., Greenway, C. C., Gaylarde & S. B. Surman. (1998). Consideration 

of some implications of to biocides the resistance of biofilms. International 

Biodeterioration & Biodegradation. Vol. 41, pp. 247-259 

Mulhall, A.B., R.G., Chapman & R.A., Row. (1988). Bacteriuria during indwelling urethral 

catheterisation. Journal of Hospital Infections. Vol. 11, pp. 253-262 

Musk, D.J., D.A., Banko & P.J., Hergenrother. (2005). Iron salts perturb biofilms formation 

and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol. Vol.  12, pp. 

789–79 

Nadell, C.D., J.B., Xavier, S.A., Levin & K.R., Foster. (2008). The evolution of quorum sensing 

in bacterial. PLoS Biol. Vol. 6(1): e14. doi:10.1371/journal.pbio.0060014 

Nicolella, C., M.C.M., van Loosdrecht & J.J., Heijnen. (2000). Wastewater treatment with 

particulate biofilm reactors. J. Biotechnology. Vol. 80, pp. 1-33 

Paterson, D. M. (1989). Short-term changes in the erodibility of intertidal cohesive sediments 

related to the migratory behavior of epipelic diatoms. Limnol. Oceanogr. Vol. 34, pp. 

223-234. 

Perkins, R.G., I.R., Davidson, D.M., Paterson, H., Sun, J., Watson & M.A., Player. (2006). 

Low-temperature SEM imaging of polymer structure in engineered and natural 

sediments and the implications regarding stability. Geoderma. Vol. 134, pp. 48-55 

Platt, R., B.F., Polk, B., Murdock & B., Rosner. (1982). Mortality associated with nosocmial 

urinary-tract infection. N. Engl. J. Med. Vol. 307, pp. 637-642 

Pollard, P.C., (2010). Bacterial activity in plant (Schoenoplectus validus) biofilmsof 

constructed wetlands. Water Research. Vol. 44, pp. 5939-5948 

Pomati, F., A.G., Netting, D.C., Brett & A., Neilan. (2004). Effects of erythromycin, 

tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. 

Aquatic Toxicology. Vol. 67, pp. 387–396  

www.intechopen.com



 
Magnetic Particle Induction and Its Importance in Biofilm Research 213 

Priester, L.H., A.M., Horst, J.L., Saleta, L.A.K., Mertes, & P.A., Holden. (2007). Enhanced 

visualization of microbial biofilms by staining and environmental scanning 

electron microscopy. Journal of Microbiological Methods. Vol. 68, pp. 577 – 58 

Rachid, S., K., Ohlsen, W., Witte, J., Hacker, & W., Ziebuhr. (2000). Effect of subinhibitory 

antibiotic concentrations on polysaccharide intercellular adhesin expression in 

biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother. Vol. 44, pp. 

3357–3363 

Rang, H.P., M.M., Dale & J.M., Ritter. (1999). Pharmacology. Churchill Livingstone, 

Edinburgh. 

Rasmussen, T.B., M.E., Skindersoe, T., Bjarnsholt, R.K., Phipps, K.B., Christensen, P.O., 

Jensen, J.B., Andersen, B., Koch, T.O., Larsen, M., Hentzer, L., Eberl, N., Hoiby & 

M., Givskov. (2005). Identity and effects of quorum-sensing inhibitors produced by 

Penicillium species. Microbiology. Vol. 151, pp. 1325–1340 

Rasmussen, T.B, & M., Givskov. (2006). Quorum-sensing inhibitors as anti-pathogenic 

drugs. International Journal of Medical Microbiology. Vol. 296, pp. 149–161 

Raunkjaer K, T., Hvitvedjacobsen & P.H., Nielsen. (1994). Measurement of pools of protein, 

carbohydrate and lipid in domestic waste-water. Water Research. Vol. 28, pp. 251-

262 

Rosan, L. & R.J., Lamont. (2000). Dental plaque formation. Microbes and Infection. Vol. 2, pp. 

1599−1607 

Santos L. H.M.L.M., A.N., Araújo, A., Fachini, A., Pena, C., Delerue-Matos & M.C.B.S.M. 

Montenegro. (2010). Ecotoxicological aspects related to the presence of 

pharmaceuticals in the aquatic environment. Journal of Hazardous Materials. Vol. 

175, pp. 45-95 

Sarmah, A.K., M.T., Meyer & A.B.A. Boxall. (2006). A global perspective on the use, sales, 

exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in 

the environment. Chemosphere. Vol. 65, pp. 725-759  

Sauer, K., (2003). The genomics and proteomics of biofilm formation. Genome Biology. Vol. 4, 

Article 219  

Schaudinn, C., A., Gorur, D., Keller, P.P., Sedghizadeh & J.W., Costerton. (2009). 

Periodontitis: An archetypical biofilm disease. JADA. Vol. 140, pp. 978-986 

Schlekat, C.E., A.W., Decho & G.T., Chandler. (1998). Sorption of cadmium to bacterial 

extracellular polymeric sediement coatings under estuarine conditions. 

Environmental Toxicology and Chemistry. Vol. 17, pp. 1867–1874 

Schreiber, F. & U., Szewzyk. (2008). Environmentally relevant concentrations of 

pharmaceuticals influence the initial adhesion of bacteria. Aquatic Toxicology. Vol. 

87, pp. 227–233 

Schuenemann, M. & H., Kuehl. (1991). Experimental investigations of the erosional 

behaviour of naturally formed mud from the Elbe estuary and adjacent Wadden 

sea, Germany. In: Nearshore and Estuarine Cohesive Sediment, A. J. Mehta (ed.), pp. 

314-330, American Geophysical Union, Washington, USA 

Schultz, M. P., J.A., Bendick, E.R., Holm & W.M., Hertel. (2011). Economic impact of 

biofouling on a naval surface ship.  Biofouling. Vol. 27, pp. 87-98 

www.intechopen.com



 
Biomedical Engineering – Frontiers and Challenges 214 

Schumm, K. & T.B., Lam. (2008). Types of urethral catheters for management of short-term 

voiding problems in hospitalised adults (Review). The Cochrane Library. CD004013  

Segura, P.A., M., François, C., Gagnon & S., Sauve. (2010). Review of the occurrence of anti-

infectives in contaminated wastewaters and natural and drinking waters. 

Environmental Health Perspectives. Vol. 117, pp. 675-684  

Singer, A.C., V., Colizza, H., Schmitt, J., Andrews, D., Balcan, W.E., Huang, V.D.J. Keller, A., 

Vespignani & R.J., Williams. (2011). Assessing the Ecotoxicologic Hazards of a 

Pandemic Influenza Medical Response. Environmental Health 

Perspective. doi:10.1289/ehp.1002757 

Singh, P.K., A.L., Schaefer, M.R., Parsek, T.O., Moninger, M.J., Welsh & E.P., Greenberg. 

(2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with 

bacterial biofilms. Nature. Vol. 407, pp. 762-764 

Smith, K. & I.S., Hunter. (2008). Efficacy of common hospital biocides with biofilms of multi-

drug resistant clinical isolates. Journal of Medical Microbiology. Vol. 57, pp. 966-973  

Spears, B. M., J., Funnell, J., Saunders & D.M., Paterson. (2007). On the boundaries: sediment 

stability measurements across aquatic ecosystems. In: Sediment Dynamics and 

Pollutant Mobility in Rivers: An Interdisciplinary Approach, B. Westrich & U. Föstner 

(eds.), pp. 68–79, Springer: Berlin, Heidelberg 

Spears, B.M., J.E., Saunders, I., Davidson & D.M., Paterson. (2008). Microalgal sediment 

biostabilisation along a salinity gradient in the Eden Estuary, Scotland: unravelling 

a paradox. Marine and Freshwater Research. Vol. 59, pp. 313–321  

Stal, L.J., (2003). Microphytobenthos, their extracellular polymeric substances,and the 

morphogenesis of intertidal sediments. Geomicrobiology Journal. Vol. 20, pp. 463-478 

Stewart, P.S. & J.W., Costerton. (2001). Antibiotic resistance of bacteria in biofilms. The 

Lancet. Vol. 358, pp. 135-138 

Stickler, D.J. & J., Zimakoff. (1994). Complications of urinary tract infections associated with 

devices used for long-term bladder management. Journal of Hospital Infections. Vol. 

28, pp. 177-194. 

Stickler, D., N. Morris, M.-C. Moreno & N. Sabbuba. (1998). Studies on the formation of 

crystalline bacterial biofilms on urethral catheters. Eur.J. Clin. Microbiol. Infect. Dis. 

Vol. 17, pp. 649–652. 

Suci, P.A., M.W., Mittelman, F.P., Yu & G.G., Geesey. (1994). Investigation of ciprofloxacin 

penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents 

Chemother. Vol. 38, pp. 2125-2133. 

Sutherland, T. F., J., Grant & C.L., Amos. (1998).The effect of carbohydrate production by the 

diatom Nitzschia curvilineata on the erodibility of sediment. Limnology and 

Oceanography. Vol. 43, pp. 65–72 

Ternes, T.A., M., Meisenheimer,D.,  McDowell, F., Sacher, H.J., Brauch, B.H., Gulde, G., 

Preuss, U., Wilme & N.Z., Seibert. (2002). Removal of pharmaceut icals during 

drinking water treatment. Environmental Science and Technology. Vol. 36, pp. 3855–

3863 

Underwood, G.J.C. & D.M., Paterson. (2003). The importance of extracellular carbohydrate 

production by marine epipelic diatoms. Advances in Botanical Research. Vol. 40, pp. 

183-240. 

www.intechopen.com



 
Magnetic Particle Induction and Its Importance in Biofilm Research 215 

Vesterlund, J., Paltta, M., Karp & A.C., Ouwehand. (2005). Measurement of bacterial 

adhesion -in vitro evaluation of different methods. J. MicroBiol. Methods. Vol. 60, 

pp. 225–233 

Vives-Rego, J., P., Lebaron & G., Nebe-von Caron. (2000). Current and future applications of 

flow cytometry in aquatic microbiology. FEMS Microbiology Reviews. Vol. 24, pp. 

429-448 

Wagner, W.  & A., Loy. (2002) Bacterial community composition and function in sewage 

treatment systems. Current Opinion in Biotechnology. Vol. 13, pp. 218–227 

Wang, Z., L., Liu, J., Yeo & W., Cai. (2006). Effects of extracellular polymeric substances on 

aerobic granulation in sequencing batch reactors. Chemosphere. Vol. 63, pp. 1728-

1735  

Warren J.W. (1991). The catheter and urinary tract infection. Medical Clinics of North America. 

Vol. 75, pp. 481-493 

Westrich, B. & U., Förstner. (2005). Sediment dynamics and pollutant mobility in rivers 

(SEDYMO). J. Soils & Sediments. Vol. 5, pp. 197-200 

Whiteley, M., G., Bangera, R.E., Bumgarner, M.R., Parsek, G.M., Teitzel, S., Lory & E. P., 

Greenberg. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature. 

Vol. 413, pp. 860-864 

Williams, I., F., Paul, D., Lloyd, R., Jepras, I., Critchley, M., Newman, J., Warrack, T., 

Giokarini, A.J. Hayes , P.F., Randerson & W. A., Venables. (1999). Flow cytometry 

and other techniques show that Staphylococcus aureus undergoes significant 

physiological changes in the early stages of surface-attached culture. Microbiology. 

Vol. 145, pp. 1325-1333  

Wolfaardt, G.M., J.R., Lawrence, R.D., Robarts & D.E., Caldwell (1988). In situ 

characterization of biofilm exopolymers involved in the accumulation of 

chlorinated organics. Microbial Ecology. Vol. 35, pp. 213–223. 

Worlitzsch, D., R., Tarran, M., Ulrich, U., Schwab, A., Cekici, K.C., Meyer, P., Birrer, G., 

Bellon, J., Berger, T., Weiss, K., Botzenhart, J.R. Yankaskas, S., Randell, R.C., 

Boucher & G. Döring. (2002). Effects of reduced mucus oxygen concentration in 

airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. Vol. 109, pp.  

317–325  

Wood, P. & P., Armitage. (1999). Sediment deposition in a small lowland stream- 

management implications. Regulated Rivers: Research & Management. Vol. 15, 

pp. 199-210 

Wu, H., Z., Song, M., Hentzer, J.B., Andersen, A., Heydorn, K., Mathee, C., Moser, L., Eberl, 

S., Molin, N., Hoiby & M., Givskov. (2000). Detection of N-acylhomoserine lactones 

in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology. Vol. 

146, pp. 2481–2493 

Wu, H., Song, M., Hentzer, J.B., Andersen, S., Molin, M., Givskov & N., Hoiby. (2004). 

Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in 

Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother. Vol. 53, 

pp. 1054–1061 

www.intechopen.com



 
Biomedical Engineering – Frontiers and Challenges 216 

Xu WH, G., Zhang , X.D., Li, S.C., Zou, P., Li, Z.H., Hu & J.,  Li. (2007). Occurrence and 

elimination of antibiotics at four sewage treatment plants in the Pearl River Delta 

(PRD), South China. Water Research. Vol. 41, pp. 4526–4534 

Yallop, M.L., D.M., Paterson & P., Wellsbury. (2000). Interrelationships between rates of 

microbial production, exopolymer production, microbial biomass, and sediment 

stability in biofilms of intertidal sediments. Microbial Ecology 39: 116-127 

Yoon S.S., R.F., Hennigan, G.M., Hilliard, U.A., Ochsner, K., Parvatiyar,  M.C., Kamani, H.L., 

Allen, T.R., DeKievit, P.R., Gardner, U., Schwab, J.J., Rowe, B.H., Iglewski, T.R., 

McDermott, R.P., Mason, D.J., Wozniak, R.E.W., Hancock, M.R., Parsek, T.L., 

Noah, R.C., Boucher & D.J., Hassett. (2002). Pseudomonas aeruginosa anaerobic 

respiration in biofilms: relationships to cystic fibrosis pathogenesis. Developmental 

Cell. Vol. 3, pp. 593–603 

Zobell, C.E., (1943). The effect of solid surfaces upon bacterial activity. J. Bacteriol., Vol. 46, 

pp. 39–56 

www.intechopen.com



Biomedical Engineering - Frontiers and Challenges

Edited by Prof. Reza Fazel

ISBN 978-953-307-309-5

Hard cover, 374 pages

Publisher InTech

Published online 01, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

In all different areas in biomedical engineering, the ultimate objectives in research and education are to

improve the quality life, reduce the impact of disease on the everyday life of individuals, and provide an

appropriate infrastructure to promote and enhance the interaction of biomedical engineering researchers. This

book is prepared in two volumes to introduce recent advances in different areas of biomedical engineering

such as biomaterials, cellular engineering, biomedical devices, nanotechnology, and biomechanics. It is hoped

that both of the volumes will bring more awareness about the biomedical engineering field and help in

completing or establishing new research areas in biomedical engineering.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Amy M. Anderson, Bryan M. Spears, Helen V. Lubarsky, Irvine Davidson, Sabine U. Gerbersdorf and David M.

Paterson (2011). Magnetic Particle Induction and Its Importance in Biofilm Research, Biomedical Engineering -

Frontiers and Challenges, Prof. Reza Fazel (Ed.), ISBN: 978-953-307-309-5, InTech, Available from:

http://www.intechopen.com/books/biomedical-engineering-frontiers-and-challenges/magnetic-particle-

induction-and-its-importance-in-biofilm-research



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


