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1. Introduction 

This chapter proposes a software and hardware platform based on a FPGA board to which a 
Wi-Fi communication device has been added in order to make remote wireless 
reconfiguration possible. This feature introduces a high level of flexibility allowing the 
development of applications which can quickly adapt to changes in environmental 
conditions and which can react to unexpected events with high speed. The capabilities 
introduced by wireless technology and reconfigurable systems are important in road traffic 
control systems, which are characterized by continuous parameter variation and unexpected 
event and incident occurrence. 
Intelligent Transportation System (ITS) is the term commonly used to describe the 
employment of electronic devices for the management of road traffic and other types of 
transportation networks for improving decision making by operators and users. There are 
many new available technologies which can be used for increasing the efficiency of road 
systems and many cities are introducing ITS models as pilot schemes to test their 
effectiveness. 
Reconfigurable hardware offers many benefits and this led to its use in the ITS field also. 
Traffic light systems implemented on FPGAs were developed and examples can be found in 
the literature (El-Medany & Hussain, 2007; Zhenggang et al., 2009). This research led to the 
conclusion that FPGA based devices can be a good solution for this type of systems 
conferring them scalability, adaptability and stability, and increasing their efficiency 
(Zhenggang et al., 2009). FPGAs had also been used in vehicle-to-vehicle communication 
(V2V), the authors of (Sander et al., 2009) presenting a V2V communication system based on 
this technology and special mechanisms that exploit its benefits. The result consists of a 
modular and flexible framework for software routines which in the same time supports 
critical tasks with special hardware accelerators. The modularity achieved with the help of 
FPGA technology allows the system to react to changes in the environmental conditions or 
in the user demands.  

2. Background  

2.1 FPGA reconfigurable systems 
FPGA is the acronym for Field Programmable Gate Array and it represents a silicon chip 
which has an internal scheme that can be “changed”. Together with the class of 
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programmable logic devices (PLDs), without a clearly defined distinction among them, they 
form the programmable Application-Specific Integrated Circuit (ASIC) group of devices 
(Smith, 1997).  
A FPGA is a device that consists of an array of basic logic cells that can be configured after 
fabrication using a certain programming technology. The logic cells are interconnected by 
wires and switch boxes with each other and with special input/output blocks (Mitra et al. 
1998). Other important components include, but are not limited to multipliers, embedded 
block RAM and digital clock managers. The configurable logic blocks, or logic cells, are 
made up of two basic components: flip-flops and look-up tables (LUTs). The LUT is a 
storage block having the capacity of one bit that acts as a programmable gate. The input 
represents the address lines of the storing element and the output represents the value 
contained at this address. The input and output data can be synchronized with the clock 
signals. When programming the FPGA, one actually specifies the logic function of each basic 
logic cell and configures the connections represented by the switch boxes within the device. 
FPGA devices can be divided in two main classes: one time programmable FPGAs which 
are based on an antifuse approach and reconfigurable FPGAs which usually employ SRAM 
cells (Lyke, 2002). The SRAM cells contained in the device will not keep the stored 
information when the supply power is turned off and this way the configuration will be lost.  
Depending on its generation, the FPGA allows static or dynamic reconfiguration. In the case 
of static reconfiguration, the FPGA is programmed in the compiling phase and it cannot be 
reconfigured during operation, while in the second case, the FPGA can be reconfigured at 
any point in the lifetime of the application. Furthermore, dynamic reconfiguration can be 
total, when the entire device is reconfigured, or partial, when only a part of an operating 
FPGA is reconfigured. 
By using the hardware to its maximum capabilities and due to their truly parallel nature, 
FPGAs are able to assure better performance as compared to conventional processors 
(National Instruments1, 2011). They can be used in digital signal processing (DSP) systems 
where they can provide more complete solutions than the ones represented by traditional  
DSP implementations (programmable digital signal processors or ASICs) (Tessier & 
Burleson, 2001). Despite being slower than ASICs, the hardwired circuits realized by FPGAs 
have a speed advantage of several orders of magnitude over the software solutions on 
general purpose processors (Reis & Jess, 2004). Other applications which employ FPGA 
devices include space and defence systems (Tessier & Burleson, 2001; Altera, 2011), 
prototyping systems (Banovic, 2005), medical systems (Altera, 2010) and many other 
relatively new developed markets such as language recognition, bioinformatics (HPCWire, 
2009), cryptography (Prasanna & Dandalis, 2007) etc. 
The capacity of reprogramming the hardware during operation allowed programmable 
logic to take over a central role in digital systems. The most important feature that results 
from the ability to reconfigure digital circuits is flexibility (Compton & Hauck, 2002). 
Among other things, it provides the possibility that a system might adapt to changing 
operating contexts or to unforeseen events (Lyke, 2002) in order to be able to fulfil its 
originally assigned tasks. Although this important feature, the flexibility of “on-field” re-
programming without going through re-fabrication with a new design (Xilinx, 2010), along 
with the FPGA based systems’ low-cost and short time-to-market come at a considerable 
price, namely significant area overhead, increased delay and power consumption (Kuon et 
al., 2007), this did not affect their development and large scale usage.  
Systems that make use of user-reprogrammable logic elements such as FPGAs were studied 
(Patel & Moallem, 2010; Kalte, 2002) being well suited for applications with high 
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dependability (Straka & Kotasek, 2008); Bolchini, et al., 2007). Reconfigurability allows the 
implementation of mechanisms that improve overall system performance and 
dependability: in the field hardware upgrades, runtime reconfiguration, adaptive hardware 
algorithms, continuous service applications and system adaptation to unexpected events 
and environmental conditions.  
The utilization of FPGAs in applications where the reach to the target device is impractical 

and difficult through wires (e.g. the system is not stationary, a portable embedded system) 

(Andretzky, 2005) lead to the need for the wireless configuration of FPGAs. In the literature 

we can find several implementations for the configuration process (Maye, 2005; Adly et al. 

2010). The work in (Maye, 2005) achieves the wireless configuration of FPGA based 

components of a Modular Robot through Bluetooth. This is possible because each one of the 

modules that make up the system contains a FPGA board and a Bluetooth board. The 

authors in (Adly et al. 2010) developed a flash memory configuration controller for 

configuring a FPGA wirelessly from a flash memory. The design of a programmable chip 

working as a configuration controller which receives configuration bits through a wireless 

link, stores them into a flash memory and afterwards recalls them to configure the FPGA 

was developed in this case. 

2.2 LabVIEW development platform 
LabVIEW, the short name for Laboratory Virtual Instrument Engineering Workbench, is a 

graphically based programming language developed by National Instruments (Bitter et al., 

2006). An appropriate description is given by Simon Hogg: “LabVIEW is a highly 

productive development environment for creating custom applications that interact with 

real-world data or signals in fields such as science and engineering” (National Instruments1, 

2010). LabVIEW, as a programming language, is a powerful tool that is ideal for test and 

measurement (T&M), automation, instrument control, data acquisition, and data analysis 

applications (Bitter et al., 2006). 

The LabVIEW software development environment consists of several valuable components 

such as G Programming, Hardware Support, Analysis and Technical Code Libraries, UI 

Components and Reporting Tools and Models of Computation, which reduce the amount of 

time and people needed for project completion (National Instruments1, 2010). It provides a 

number of add-on modules for extending the graphical development platform to target a 

wide range of hardware devices. One of these add-ons is the NI LabVIEW FPGA Module 

which makes custom measurement and hardware control possible without prior knowledge 

of low-level hardware description languages or board-level design. It uses LabVIEW VIs for 

defining the FPGA logic instead of low-level languages such as very high speed integrated 

circuit hardware description language (VHDL) (National Instruments, 2007). By using this 

module, applications that employ field-programmable gate arrays on NI reconfigurable I/O 

(RIO) hardware can be developed (National Instruments2, 2011). The parallelism and data 

flow in LabVIEW are very similar to the ones in a FPGA implementation, therefore running 

LabVIEW code on FPGAs leads to true, simultaneous, parallel processing (National 

Instruments, 2007; National Instruments2, 2011). 

The LabVIEW FPGA VIs are created on a computer and afterwards compiled and run on 

reconfigurable hardware. Because the compiling time can range from minutes to hours 

depending on design complexity, LabVIEW provides a FPGA Device Emulator for 
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executing the VI on the Windows development computer for verification purposes. While 

the typical FPGA design flow includes program creation, translating design files (design 

entry), synthesizing and mapping design elements to device resources, placing and routing 

design resources, performing timing analysis and generating programming file (Altera, 

2009), LabVIEW offers an intuitive and simplified solution for this action. The development 

process for creating FPGA applications in LabVIEW consists of: the creation of the FPGA VI, 

emulation on PC for testing if necessary, compilation to FPGA and the creation of host VIs 

for communicating with the reconfigurable hardware (National Instruments2, 2010). 

Actually, the configuration of the FPGA device’s operation is performed by programming in 

LabVIEW. Another useful characteristic is represented by the fact that when a specific FPGA 

device is targeted, LabVIEW displays only the functions available in the FPGA (National 

Instruments2, 2010). 

3. Wi-Fi FPGA based reconfigurable platform for ITS  

3.1 General system overview 
The general structure of the proposed platform is presented in the figure bellow. As it can be 

seen, the platform is composed of the two main components: the FPGA board at which level 

the application’s logic algorithms are implemented and the Tag4M board which has Wi-Fi 

communication capabilities and which executes the reconfiguration and communication 

algorithms needed for making remote access possible. The presented platform can be 

installed on vehicles or on the road traffic infrastructure equipment (like traffic lights and 

dynamic signs). The presented platform can communicate with a Configuration Server 

which is responsible for performing the reconfiguration operations in order to set-up new 

applications at the FPGA platform level. It can also communicate with Traffic Servers in 

order to report traffic data or to receive commands. 

 

 

Fig. 1. General system structure 

By attaching the Tag4M Wi-Fi extension to the FPGA board a versatile computing device 

with communication capabilities which has numerous applications in the ITS field is 

obtained. This provides the FPGA device not only with the capacity to communicate over 

the Internet with remote servers or other devices but also the possibility to dynamically 

change its functionality depending on the current application’s requirements. 
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This flexibility is particularly important in dynamic environments represented by road 
traffic systems. A FPGA platform installed in a vehicle can play multiple roles and the same 
hardware can be used in multiple traffic scenarios without the need of having direct access 
to the device installed in the field or on the vehicle. The device can be easily accessed by 
using remote servers to which it communicates and which perform the configuration 
procedures. While the vehicle is entering the highway, a configuration server can load into 
the vehicle device an application for automatic toll collection eliminating the need for the 
vehicles to slow down while passing the checkpoints. When the vehicle exits the highway 
the previously loaded toll collection program can be replaced with a road traffic control 
module which makes the vehicle capable of communicating with other vehicles or with 
infrastructure equipments in order to provide peers information for achieving traffic 
fluidization. At a later time, when the vehicle is entering a parking zone the on-board FPGA 
platform can be loaded with a parking advisory system in order to guide the driver to the 
closest parking place and to keep track of the parking time. 
The same FPGA equipment can be used as the infrastructure controller for managing the 
traffic lights and other dynamic traffic signs. By using its Wi-Fi communication capabilities 
it is easy to integrate these pieces of equipment into the distributed road traffic monitoring 
and control system.  

3.2 Wi-Fi Tag4M device 
The Tag4M device which is used for FPGA reconfiguration is presented in Figure 2 (scale 
1:1). This is a Wi-Fi RFID (Radio-Frequency Identification) active device with measurement 
capabilities. By attaching sensors to its I/O terminal blocks in a similar manner as for a data 
acquisition device, the user can build wireless proof-of-concept sensor solutions for a wide 
range of applications. The system has the advantage of reduced dimensions (4.7 cm x 7.0 
cm) and of a limited weight of 50 g and can run on battery power, making it a portable 
solution. It is a complete Wi-Fi and networking solution, incorporating a 32-bit CPU, a 
memory unit, an eCos real-time operating system and a UDP or TCP/IP stack. Other 
included components are the analogical sensor interface, the power management unit, the 
hardware cryptographic accelerator and the real time clock (G2 Microsystems1, 2008). 
 

 

Fig. 2. Tag4M Data Acquisition System 

The hardware architecture of the device is presented in Figure 3. In this version, 8 analogical 
and 10 digital channels and 2 serial ports are available. A general interface was 
implemented to allow the acquisitions from different sources like: 3-axis accelerations, 3-axis 
gyroscopes, magnetic sensors and more other parameters, which can be combined for 
obtaining a wide range of configurations (G2 Microsystems3, 2008). 
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Fig. 3. The Hardware Architecture of the Tag4M Data Acquisition System 

3.3 Wi-Fi Tag4M software stack 
In this section, the software stack installed on the Wi-Fi Tag4M is described. The device is 
powered by a G2C547 module from G2 Microsystem (bought by Roving Networks). It has 
an eCos real-time operating system installed on ROM which boots up when the system is 
powered on (G2 Microsystems2, 2008). 
The eCos operating system runtime provides full preemptibility, low latency, 
synchronization primitives, scheduling policies and interrupt handling mechanisms which 
are useful in real-time applications. The embedded applications can also take advantage of 
other eCos functionalities such as device drivers, memory management mechanisms, 
exception handling, math libraries and many more others. The OS also includes all the 
necessary tools for developers, namely: build tools, compilers, assemblers, linkers, debugger 
and simulators.  
Programming microcontroller devices raise a unique set of challenges in general and the 
Tag4M device is not an exception. First, there are several points of failure. The Wi-Fi Tag4M 
device itself may fail. There can be transient or permanent communication errors between 
connected devices and the microcontroller device like overlapping signals, accidental 
disconnection etc. The C Application on the Wi-Fi Tag4M device itself may fail, but this is 
unlikely to happen. A communication failure between the Wi-Fi Tag4M device and the 
application server could also occur. An application for the Tag4M device needs to handle 
these multiple points of failure and hide its complexity from the end user. 
Secondly, device programming requires much more debugging and testing iterations than 
normal application development because of the direct low-level interaction with the 
underlying hardware. 
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The application needs to provide robust error handling capabilities. Automatic error 
correction codes must be incorporated for correcting several types of transient errors. This 
minimizes maintenance requirements and user intervention. 
 

 

Fig. 4. Tag4M Device Software Stack 

As it is shown in Figure 4, the Wi-Fi Tag4M device software stack is composed of the eCos 
operating system, eCos libraries for accessing low level services, the G2 library for accessing 
sensors and measurement services and two user applications (Main DAQ App and Config 
App) which are stored in the non-volatile memory (NVM). 

 
3.4 FPGA configuration process 
The prototype architecture represented by Figure 5 uses a Spartan-3E Starter Kit board 
which can be configured in serial mode (Xilinx, 1998). The upgrade of the design in the field 
over a wireless network is made possible by using the Tag4M as a microcontroller and as a 
Wi-Fi receiver. The signals used are the DIO lines 0 to 4 of the Tag4M and the FPGA IO lines 
(-PROGRAMM, CCLK, DIN, -INT and DONE).  
 

 

Fig. 5. The connection between the FPGA and the Tag4M device 

Spartan-3E 

The Spartan-3E Starter Kit Board we used provides a powerful development platform for 
designs targeting the Spartan 3E FPGA produced by Xilinx. It features the Xilinx XC3S500E 
FPGA having 500K gates. Some of the Spartan-3E FPGA family features include: parallel 
NOR Flash configuration, SPI Serial Flash Configuration, Master and Slave Serial 
configuration, etc. The FPGA chip on the board can provide up to 232 user-I/O pins and 
over 10000 logic cells in a 320-pin FBGA package (Xilinx, 2006).  
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Configuration Process 

Serial mode was chosen for configuration because of the reduced number of interface 
signals needed (a minimum of four: DIN, CCLK, -PROGRAM and -INIT) and because of the 
relative ease of implementation. The microcontroller that initiates the configuration process 
and which sends configuration data, the Tag4M, acts as the “master” and the Spartan-3E 
board plays the role of the “slave” device, being the one receiving data.  
A brief description of the configuration process is given in the following paragraphs. The 
four steps that make up the configuration flow are: the clearing of the configuration 
memory, initialization, configuration and start-up.  

Clearing Configuration Memory  

The first step is performed either automatically at system power-up or by applying a Low-
level pulse to the -PROGRAM input. This is useful when the “master” initiates the 
configuration at any time during device operation. When -PROGRAM changes to High, the 
last clearing operation takes place. After this step, in the initialization phase, -INIT goes High 
to confirm that the memory is cleared. It is not recommended for -PROGRAM to be held low 
for more than 500μs and it should not be used for delaying the configuration process. The 
entrance in the configuration step can be delayed by holding the -INIT signal Low.  

Initialization 

At this point, the selected configuration mode is identified by sampling the mode pins 
which indicate the slave serial mode (M[g_SR_2:0]=<1:1:1>). Now, the device can pass to the 
configuration step. By holding -INIT low, the entry to the configuration step can be delayed. 

Configuration 

After -INIT goes High, the controller begins to send data on the DIN line from the memory 
block along with clock pulses, this action taking place in the configuration phase. A small 
pause having the duration between 55 and 275μs is needed before sending clock signals and 
data bits. After the last bits for configuration are sent, some additional clock cycles are 
needed, and then the Start-Up step takes place and the Spartan device starts normal 
functioning (Xilinx, 2009). 

Start-Up 

The events taking place during Start-Up are: the DONE pin goes High, the I/Os go active 
and the Global Set/Reset (GSR) Net is released. The DONE pin is optional because the 
“master” knows the number of configuration bits it has to send, but it can be used as an 
indicator for problems with configuration: its failure to go High means that an error had 
occurred (Xilinx, 1998). In this phase, several additional clock cycles must be provided, for 
synchronizing the events that take place at this time. 
The following figure presents the general configuration process of the Spartan-3 devices 
(Xilinx, 2009). 
When a FPGA board installed on a vehicle or on the road side needs to be configured, a Start 
Programming message is sent to the associated Tag4M device, which in turn initializes the 
configuration procedure for the FPGA device. As a result of this first set of messages 
exchanged, the Configuration Server receives an ACK message if the FPGA board is ready 
for receiving the new program or ERR in case an error occurred. In the case in which the 
ACK message was received, the Configuration Server will decompose the program in small 
packages and will send them sequentially over Wi-Fi to the Tag4M device, and from there to 
the FPGA board. In the case in which a package is lost (and an ERR message received), the 
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respective package will be resent. The programming procedure will end with a Stop 
Programming command.  
 

 

Fig. 6. General configuration process (Xilinx, 2009) 

The messages exchanged between the entities involved in the FPGA configuration process is 
presented in the following figure. 
 

 

Fig.  7. Description of the communication protocol 
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The application installed on the Tag4M device is responsible for performing the FPGA 
programming procedure. The application has an event-driven architecture with a main loop 
(presented in Table 1) in which events are handled. 
 

 

Table 1. Events executed in the main application thread 

Without entering into implementation details, the basic activities implemented at Tag4M 
level are presented in this paragraph. When the application is started, the first action 
performed is the search for an available access point (AP). If one AP is found, the 
application will acquire a dynamic IP address and then will wait for messages from the 
Configuration Server. When a new message is received by the Tag4M device, it will be 
decoded, and depending of its content a new event will be fired. For example, when a Start 
Programming message is received this will result in firing a START_PROGRAMMING event 
which will be detected and handled by the event loop described in the table above. As 
described in the Configuration section, the FPGA configuration bits are sent on the rising 
edge of the CCLK signal (the clock is generated on the DIO1 line) using the FPGA DIN line 
(which is connected to the Tag4M DIO2 line). The bit sending process is implemented in the 
fpgaPackageSend() function.  
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4. Applications of the Wi-Fi FPGA platform for ITS  

4.1 Detecting vehicle location using Wi-Fi RSSI 
The simplicity and cost efficiency of the Received Signal Strength Indicator (RSSI) based 
localization makes it the best candidate for specific applications like tracking systems and 
dynamic networks where precision is not crucial.  
In the following paragraphs an application implemented in LabVIEW for vehicle 
localisation using a FPGA and a Tag4M device is presented. 
A “scan” operation which finds all access points and reads the corresponding RSSI values is 
implemented at Tag4M level. These values are packed and sent to the FPGA using a serial 
communication link where the localisation algorithm is implemented.  
Table 2 presents a scan operation result. In this case four APs are detected. The 
corresponding RSSI values (in dBm) measured by the Tag4M are reported for every AP. 
 

 

Table 2. A sequence of results for the “scan” operation executed on the Tag4M device 

The program for reading the RSSI values from the Tag4M device was implemented in 
LabVIEW2010. Three APs (which are placed on a crossroad) named witagserver, Hawk and 
Tag4M, are displayed by the application in this case. 
 

 

Fig. 8. Front Panel of the program for reading RSSI values 
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The data received by the program are parsed and only data from APs which we are interested 
in are processed. The RSSI values are converted to distance values using formula (1). 
The value of the received signal strength is a function of the transmitted power and the 

distance between the sender and the receiver. The received signal strength will decrease 

when the distance increases as the following equation shows (Aamodt, 2006). 

10(10 log )RSSI n d A= − ⋅ +  (1)

Where: 

- n represents the signal propagation constant, also named propagation exponent, 

- d represents the distance from the sender, 

- A represents the received signal strength at a distance of one meter. 

The distance values are grouped into an array which is sent to another application using a 

Shared Variable. This option offers the possibility for the user to read the location from his 

application which runs locally on a Touch Panel Computer (TPC) installed on the car or on a 

mobile phone. 

The program for localization using the Wi-Fi FPGA platform was implemented in 

LabVIEW2010. The application displays the distances between the Wi-Fi FPGA placed in a 

car and the three APs placed on a crossroad. The number of APs can be increased for 

obtaining a more accurate position estimate. The distances between the Wi-Fi FPGA and 

each AP are represented as circles having the centre in the AP locations which have 

previously known coordinates. 
 

 

Fig. 9. Block Diagram for the Tag4M RSSI value reading program 

The application was tested for only one crossroad because of the difficulty of placing a 

larger number of APs on a road. The car’s position is given by the point at the intersection of 

the three circles. 

The distance data are received from the program that reads the RSSI values using a Shared 

Variable. The local applications which run on a TPC or mobile phone convert the data to 

graphical representations which are afterwards displayed. 
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Fig. 10. Front Panel of the localisation program 

 

 

Fig. 11. Block Diagram of the localisation program 

4.2 Detecting vehicle movement using accelerometer and the gyroscope sensors 
Another application of the presented FPGA platform can be used for detecting the dynamic 

vehicle parameters. By attaching a gyroscope sensor and a 3-axis accelerometer to the FPGA 

board, the implementation of an application for determining the vehicle’s state (moving or 

stopped, running on a straight road or making a turn) is possible. A LabVIEW application 

was implemented and installed on a FPGA in order to determine the vehicle’s dynamic 

behaviour.  

Car
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A correlation between the signals from a 3-axis accelerometer and a 2-axis gyroscope is 
realized in order to determine the state of the car. The signals acquired by the accelerometer 
and gyroscope sensors were filtered implementing a Butterworth filter (Figure 12) which 
has an essential characteristic: a smooth and monotonically decreasing frequency response 
(National Instruments, 2009). The Butterworth filter is available in LabVIEW FPGA, and the 
Express VI from the Help documentation and configure panel is presented in Figure 12 
along with the settings. LabVIEW allows the operative and rapid change of the filter 
parameters and the usage of other types of filters. 
 

 

Fig. 12. Butterworth filter, FPGA implementation 

3-Axis Acceleration Sensor 

The acceleration sensor (Figure 13) allows the measurement of static or dynamic acceleration 
(in ±3g range) on three axes. The ADXL330, iMEMS type, from Analog Devices was chosen 
to be used for this purpose. 
 

 

Fig. 13. Acceleration sensor scheme 

External components are used for establishing the period of the output signal between 2 and 
1000 ms, and the frequency band is limited to values between 0.5 and 1.6 kHz. The typical 
noise level is 280 μg/√Hz rms and allows the acquisition of signals under a 5 mg level 
(Analog Devices, 2006). 
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2-Axis Gyroscope Sensor 

 

Fig. 14. Gyroscope sensor scheme 

The gyroscope chosen to be used (LPR530AL) integrates one actuator and one accelerometer 
in a single micro machined structure. It is based on the Coriolis principle and it is able to 
react when an angular rate is applied to the sensing element which is kept in continuous 
oscillating movement (STMicroelectronics, 2009). The electric scheme is presented in Figure 
14. It has a full scale of ±300 °/s and it is capable of detecting rates of up to 140 Hz with a -3 
dB bandwidth. 
A series of tests has been performed in order to determine a correlation between the 
vehicle’s movement and the signal generated by the two sensors. 
The program for displaying data acquired by the Wi-Fi FPGA platform from the 3-axis 
accelerometer and the 2-axis gyroscope was implemented in LabVIEW2010 and the 
application panel is presented in Figure 15. The application displays the signals received 
from the two sensors. 
 

 

Fig. 15. Front Panel of the “Display Data” program 
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Fig. 16. Block Diagram of the “Display Data” program 

 

 

Fig. 17. Accelerometer and Gyroscope signals 
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In this case, the Tag4M device is used as a serial RS232 to Wi-Fi gate between the FPGA 
board (Spartan-3E Starter Kit) and the PC application that runs on the server. The block 
diagram of the PC application is presented in Figure 16. 
One initialization step is necessary for reading the data from the Tag4M device. During this 
stage, the Tag4M sends a package containing the IP received through DHCP from the AP. 
This IP is used in the application for sending commands to the Tag4M device after the 
initialization step. The data are read in a loop and are validated if they are received from a 
previously known MAC address which is used as a validation mask. The latency 
determined after performing a number of experiments lies between the value of 5 and 20 
milliseconds and it depends on the RSSI values. The values of the latency are greater in case 
of a poor signal. 
Figure 17 presents the experimental results obtained from an IVU device installed on a 
vehicle performing a series of manoeuvres in a test field. 
The length of the “Vehicle stopped” period is of 1500 samples which represent 7.5 seconds 
at a rate of acquisition of 200 Sps. 

5. Conclusion 

The first part of this paper presents a solution for remote Wi-Fi FPGA reconfiguration using 
Tag4M devices. The resulting system represents a versatile equipment with multiple 
applications in various fields, including ITS.  
In the second part two applications developed for a FPGA platform that can be used in road 
traffic systems are presented. The first application exemplifies the way in which a vehicle 
can be tracked by using access points installed in the field and by using the Tag4M device 
which can read the RSSI values for each of them. The approximate of the vehicle’s location is 
computed by applying a triangulation algorithm. 
In the second application, the dynamic behaviour of a vehicle is determined by using a 
gyroscope and an accelerometer sensor attached to a FPGA board. 
The work outlines the advantages provided to the developer and to the user by the 
employment of the FPGA technology and the features of the LabVIEW programming 
language in an Intelligent Transportation System. The reconfigurable systems’ flexibility 
and the simplified way of creating programs for FPGAs by using the LabVIEW platform 
lead to a system that allows facile in the field hardware upgrades, runtime reconfiguration 
and adaptation to unexpected events or to changing environmental conditions.  
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