
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

18

Dynamic Wi-Fi Reconfigurable FPGA Based
Platform for Intelligent Traffic Systems

Mihai Hulea, George Dan Moiş and Silviu Folea
Technical University of Cluj-Napoca,

Romania

1. Introduction

This chapter proposes a software and hardware platform based on a FPGA board to which a
Wi-Fi communication device has been added in order to make remote wireless
reconfiguration possible. This feature introduces a high level of flexibility allowing the
development of applications which can quickly adapt to changes in environmental
conditions and which can react to unexpected events with high speed. The capabilities
introduced by wireless technology and reconfigurable systems are important in road traffic
control systems, which are characterized by continuous parameter variation and unexpected
event and incident occurrence.
Intelligent Transportation System (ITS) is the term commonly used to describe the
employment of electronic devices for the management of road traffic and other types of
transportation networks for improving decision making by operators and users. There are
many new available technologies which can be used for increasing the efficiency of road
systems and many cities are introducing ITS models as pilot schemes to test their
effectiveness.
Reconfigurable hardware offers many benefits and this led to its use in the ITS field also.
Traffic light systems implemented on FPGAs were developed and examples can be found in
the literature (El-Medany & Hussain, 2007; Zhenggang et al., 2009). This research led to the
conclusion that FPGA based devices can be a good solution for this type of systems
conferring them scalability, adaptability and stability, and increasing their efficiency
(Zhenggang et al., 2009). FPGAs had also been used in vehicle-to-vehicle communication
(V2V), the authors of (Sander et al., 2009) presenting a V2V communication system based on
this technology and special mechanisms that exploit its benefits. The result consists of a
modular and flexible framework for software routines which in the same time supports
critical tasks with special hardware accelerators. The modularity achieved with the help of
FPGA technology allows the system to react to changes in the environmental conditions or
in the user demands.

2. Background

2.1 FPGA reconfigurable systems
FPGA is the acronym for Field Programmable Gate Array and it represents a silicon chip
which has an internal scheme that can be “changed”. Together with the class of

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software 378

programmable logic devices (PLDs), without a clearly defined distinction among them, they
form the programmable Application-Specific Integrated Circuit (ASIC) group of devices
(Smith, 1997).
A FPGA is a device that consists of an array of basic logic cells that can be configured after
fabrication using a certain programming technology. The logic cells are interconnected by
wires and switch boxes with each other and with special input/output blocks (Mitra et al.
1998). Other important components include, but are not limited to multipliers, embedded
block RAM and digital clock managers. The configurable logic blocks, or logic cells, are
made up of two basic components: flip-flops and look-up tables (LUTs). The LUT is a
storage block having the capacity of one bit that acts as a programmable gate. The input
represents the address lines of the storing element and the output represents the value
contained at this address. The input and output data can be synchronized with the clock
signals. When programming the FPGA, one actually specifies the logic function of each basic
logic cell and configures the connections represented by the switch boxes within the device.
FPGA devices can be divided in two main classes: one time programmable FPGAs which
are based on an antifuse approach and reconfigurable FPGAs which usually employ SRAM
cells (Lyke, 2002). The SRAM cells contained in the device will not keep the stored
information when the supply power is turned off and this way the configuration will be lost.
Depending on its generation, the FPGA allows static or dynamic reconfiguration. In the case
of static reconfiguration, the FPGA is programmed in the compiling phase and it cannot be
reconfigured during operation, while in the second case, the FPGA can be reconfigured at
any point in the lifetime of the application. Furthermore, dynamic reconfiguration can be
total, when the entire device is reconfigured, or partial, when only a part of an operating
FPGA is reconfigured.
By using the hardware to its maximum capabilities and due to their truly parallel nature,
FPGAs are able to assure better performance as compared to conventional processors
(National Instruments1, 2011). They can be used in digital signal processing (DSP) systems
where they can provide more complete solutions than the ones represented by traditional
DSP implementations (programmable digital signal processors or ASICs) (Tessier &
Burleson, 2001). Despite being slower than ASICs, the hardwired circuits realized by FPGAs
have a speed advantage of several orders of magnitude over the software solutions on
general purpose processors (Reis & Jess, 2004). Other applications which employ FPGA
devices include space and defence systems (Tessier & Burleson, 2001; Altera, 2011),
prototyping systems (Banovic, 2005), medical systems (Altera, 2010) and many other
relatively new developed markets such as language recognition, bioinformatics (HPCWire,
2009), cryptography (Prasanna & Dandalis, 2007) etc.
The capacity of reprogramming the hardware during operation allowed programmable
logic to take over a central role in digital systems. The most important feature that results
from the ability to reconfigure digital circuits is flexibility (Compton & Hauck, 2002).
Among other things, it provides the possibility that a system might adapt to changing
operating contexts or to unforeseen events (Lyke, 2002) in order to be able to fulfil its
originally assigned tasks. Although this important feature, the flexibility of “on-field” re-
programming without going through re-fabrication with a new design (Xilinx, 2010), along
with the FPGA based systems’ low-cost and short time-to-market come at a considerable
price, namely significant area overhead, increased delay and power consumption (Kuon et
al., 2007), this did not affect their development and large scale usage.
Systems that make use of user-reprogrammable logic elements such as FPGAs were studied
(Patel & Moallem, 2010; Kalte, 2002) being well suited for applications with high

www.intechopen.com

Dynamic Wi-Fi Reconfigurable FPGA Based Platform for Intelligent Traffic Systems 379

dependability (Straka & Kotasek, 2008); Bolchini, et al., 2007). Reconfigurability allows the
implementation of mechanisms that improve overall system performance and
dependability: in the field hardware upgrades, runtime reconfiguration, adaptive hardware
algorithms, continuous service applications and system adaptation to unexpected events
and environmental conditions.
The utilization of FPGAs in applications where the reach to the target device is impractical

and difficult through wires (e.g. the system is not stationary, a portable embedded system)

(Andretzky, 2005) lead to the need for the wireless configuration of FPGAs. In the literature

we can find several implementations for the configuration process (Maye, 2005; Adly et al.

2010). The work in (Maye, 2005) achieves the wireless configuration of FPGA based

components of a Modular Robot through Bluetooth. This is possible because each one of the

modules that make up the system contains a FPGA board and a Bluetooth board. The

authors in (Adly et al. 2010) developed a flash memory configuration controller for

configuring a FPGA wirelessly from a flash memory. The design of a programmable chip

working as a configuration controller which receives configuration bits through a wireless

link, stores them into a flash memory and afterwards recalls them to configure the FPGA

was developed in this case.

2.2 LabVIEW development platform
LabVIEW, the short name for Laboratory Virtual Instrument Engineering Workbench, is a

graphically based programming language developed by National Instruments (Bitter et al.,

2006). An appropriate description is given by Simon Hogg: “LabVIEW is a highly

productive development environment for creating custom applications that interact with

real-world data or signals in fields such as science and engineering” (National Instruments1,

2010). LabVIEW, as a programming language, is a powerful tool that is ideal for test and

measurement (T&M), automation, instrument control, data acquisition, and data analysis

applications (Bitter et al., 2006).

The LabVIEW software development environment consists of several valuable components

such as G Programming, Hardware Support, Analysis and Technical Code Libraries, UI

Components and Reporting Tools and Models of Computation, which reduce the amount of

time and people needed for project completion (National Instruments1, 2010). It provides a

number of add-on modules for extending the graphical development platform to target a

wide range of hardware devices. One of these add-ons is the NI LabVIEW FPGA Module

which makes custom measurement and hardware control possible without prior knowledge

of low-level hardware description languages or board-level design. It uses LabVIEW VIs for

defining the FPGA logic instead of low-level languages such as very high speed integrated

circuit hardware description language (VHDL) (National Instruments, 2007). By using this

module, applications that employ field-programmable gate arrays on NI reconfigurable I/O

(RIO) hardware can be developed (National Instruments2, 2011). The parallelism and data

flow in LabVIEW are very similar to the ones in a FPGA implementation, therefore running

LabVIEW code on FPGAs leads to true, simultaneous, parallel processing (National

Instruments, 2007; National Instruments2, 2011).

The LabVIEW FPGA VIs are created on a computer and afterwards compiled and run on

reconfigurable hardware. Because the compiling time can range from minutes to hours

depending on design complexity, LabVIEW provides a FPGA Device Emulator for

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software 380

executing the VI on the Windows development computer for verification purposes. While

the typical FPGA design flow includes program creation, translating design files (design

entry), synthesizing and mapping design elements to device resources, placing and routing

design resources, performing timing analysis and generating programming file (Altera,

2009), LabVIEW offers an intuitive and simplified solution for this action. The development

process for creating FPGA applications in LabVIEW consists of: the creation of the FPGA VI,

emulation on PC for testing if necessary, compilation to FPGA and the creation of host VIs

for communicating with the reconfigurable hardware (National Instruments2, 2010).

Actually, the configuration of the FPGA device’s operation is performed by programming in

LabVIEW. Another useful characteristic is represented by the fact that when a specific FPGA

device is targeted, LabVIEW displays only the functions available in the FPGA (National

Instruments2, 2010).

3. Wi-Fi FPGA based reconfigurable platform for ITS

3.1 General system overview
The general structure of the proposed platform is presented in the figure bellow. As it can be

seen, the platform is composed of the two main components: the FPGA board at which level

the application’s logic algorithms are implemented and the Tag4M board which has Wi-Fi

communication capabilities and which executes the reconfiguration and communication

algorithms needed for making remote access possible. The presented platform can be

installed on vehicles or on the road traffic infrastructure equipment (like traffic lights and

dynamic signs). The presented platform can communicate with a Configuration Server

which is responsible for performing the reconfiguration operations in order to set-up new

applications at the FPGA platform level. It can also communicate with Traffic Servers in

order to report traffic data or to receive commands.

Fig. 1. General system structure

By attaching the Tag4M Wi-Fi extension to the FPGA board a versatile computing device

with communication capabilities which has numerous applications in the ITS field is

obtained. This provides the FPGA device not only with the capacity to communicate over

the Internet with remote servers or other devices but also the possibility to dynamically

change its functionality depending on the current application’s requirements.

www.intechopen.com

Dynamic Wi-Fi Reconfigurable FPGA Based Platform for Intelligent Traffic Systems 381

This flexibility is particularly important in dynamic environments represented by road
traffic systems. A FPGA platform installed in a vehicle can play multiple roles and the same
hardware can be used in multiple traffic scenarios without the need of having direct access
to the device installed in the field or on the vehicle. The device can be easily accessed by
using remote servers to which it communicates and which perform the configuration
procedures. While the vehicle is entering the highway, a configuration server can load into
the vehicle device an application for automatic toll collection eliminating the need for the
vehicles to slow down while passing the checkpoints. When the vehicle exits the highway
the previously loaded toll collection program can be replaced with a road traffic control
module which makes the vehicle capable of communicating with other vehicles or with
infrastructure equipments in order to provide peers information for achieving traffic
fluidization. At a later time, when the vehicle is entering a parking zone the on-board FPGA
platform can be loaded with a parking advisory system in order to guide the driver to the
closest parking place and to keep track of the parking time.
The same FPGA equipment can be used as the infrastructure controller for managing the
traffic lights and other dynamic traffic signs. By using its Wi-Fi communication capabilities
it is easy to integrate these pieces of equipment into the distributed road traffic monitoring
and control system.

3.2 Wi-Fi Tag4M device
The Tag4M device which is used for FPGA reconfiguration is presented in Figure 2 (scale
1:1). This is a Wi-Fi RFID (Radio-Frequency Identification) active device with measurement
capabilities. By attaching sensors to its I/O terminal blocks in a similar manner as for a data
acquisition device, the user can build wireless proof-of-concept sensor solutions for a wide
range of applications. The system has the advantage of reduced dimensions (4.7 cm x 7.0
cm) and of a limited weight of 50 g and can run on battery power, making it a portable
solution. It is a complete Wi-Fi and networking solution, incorporating a 32-bit CPU, a
memory unit, an eCos real-time operating system and a UDP or TCP/IP stack. Other
included components are the analogical sensor interface, the power management unit, the
hardware cryptographic accelerator and the real time clock (G2 Microsystems1, 2008).

Fig. 2. Tag4M Data Acquisition System

The hardware architecture of the device is presented in Figure 3. In this version, 8 analogical
and 10 digital channels and 2 serial ports are available. A general interface was
implemented to allow the acquisitions from different sources like: 3-axis accelerations, 3-axis
gyroscopes, magnetic sensors and more other parameters, which can be combined for
obtaining a wide range of configurations (G2 Microsystems3, 2008).

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software 382

Fig. 3. The Hardware Architecture of the Tag4M Data Acquisition System

3.3 Wi-Fi Tag4M software stack
In this section, the software stack installed on the Wi-Fi Tag4M is described. The device is
powered by a G2C547 module from G2 Microsystem (bought by Roving Networks). It has
an eCos real-time operating system installed on ROM which boots up when the system is
powered on (G2 Microsystems2, 2008).
The eCos operating system runtime provides full preemptibility, low latency,
synchronization primitives, scheduling policies and interrupt handling mechanisms which
are useful in real-time applications. The embedded applications can also take advantage of
other eCos functionalities such as device drivers, memory management mechanisms,
exception handling, math libraries and many more others. The OS also includes all the
necessary tools for developers, namely: build tools, compilers, assemblers, linkers, debugger
and simulators.
Programming microcontroller devices raise a unique set of challenges in general and the
Tag4M device is not an exception. First, there are several points of failure. The Wi-Fi Tag4M
device itself may fail. There can be transient or permanent communication errors between
connected devices and the microcontroller device like overlapping signals, accidental
disconnection etc. The C Application on the Wi-Fi Tag4M device itself may fail, but this is
unlikely to happen. A communication failure between the Wi-Fi Tag4M device and the
application server could also occur. An application for the Tag4M device needs to handle
these multiple points of failure and hide its complexity from the end user.
Secondly, device programming requires much more debugging and testing iterations than
normal application development because of the direct low-level interaction with the
underlying hardware.

www.intechopen.com

Dynamic Wi-Fi Reconfigurable FPGA Based Platform for Intelligent Traffic Systems 383

The application needs to provide robust error handling capabilities. Automatic error
correction codes must be incorporated for correcting several types of transient errors. This
minimizes maintenance requirements and user intervention.

Fig. 4. Tag4M Device Software Stack

As it is shown in Figure 4, the Wi-Fi Tag4M device software stack is composed of the eCos
operating system, eCos libraries for accessing low level services, the G2 library for accessing
sensors and measurement services and two user applications (Main DAQ App and Config
App) which are stored in the non-volatile memory (NVM).

3.4 FPGA configuration process
The prototype architecture represented by Figure 5 uses a Spartan-3E Starter Kit board
which can be configured in serial mode (Xilinx, 1998). The upgrade of the design in the field
over a wireless network is made possible by using the Tag4M as a microcontroller and as a
Wi-Fi receiver. The signals used are the DIO lines 0 to 4 of the Tag4M and the FPGA IO lines
(-PROGRAMM, CCLK, DIN, -INT and DONE).

Fig. 5. The connection between the FPGA and the Tag4M device

Spartan-3E

The Spartan-3E Starter Kit Board we used provides a powerful development platform for
designs targeting the Spartan 3E FPGA produced by Xilinx. It features the Xilinx XC3S500E
FPGA having 500K gates. Some of the Spartan-3E FPGA family features include: parallel
NOR Flash configuration, SPI Serial Flash Configuration, Master and Slave Serial
configuration, etc. The FPGA chip on the board can provide up to 232 user-I/O pins and
over 10000 logic cells in a 320-pin FBGA package (Xilinx, 2006).

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software 384

Configuration Process

Serial mode was chosen for configuration because of the reduced number of interface
signals needed (a minimum of four: DIN, CCLK, -PROGRAM and -INIT) and because of the
relative ease of implementation. The microcontroller that initiates the configuration process
and which sends configuration data, the Tag4M, acts as the “master” and the Spartan-3E
board plays the role of the “slave” device, being the one receiving data.
A brief description of the configuration process is given in the following paragraphs. The
four steps that make up the configuration flow are: the clearing of the configuration
memory, initialization, configuration and start-up.

Clearing Configuration Memory

The first step is performed either automatically at system power-up or by applying a Low-
level pulse to the -PROGRAM input. This is useful when the “master” initiates the
configuration at any time during device operation. When -PROGRAM changes to High, the
last clearing operation takes place. After this step, in the initialization phase, -INIT goes High
to confirm that the memory is cleared. It is not recommended for -PROGRAM to be held low
for more than 500μs and it should not be used for delaying the configuration process. The
entrance in the configuration step can be delayed by holding the -INIT signal Low.

Initialization

At this point, the selected configuration mode is identified by sampling the mode pins
which indicate the slave serial mode (M[g_SR_2:0]=<1:1:1>). Now, the device can pass to the
configuration step. By holding -INIT low, the entry to the configuration step can be delayed.

Configuration

After -INIT goes High, the controller begins to send data on the DIN line from the memory
block along with clock pulses, this action taking place in the configuration phase. A small
pause having the duration between 55 and 275μs is needed before sending clock signals and
data bits. After the last bits for configuration are sent, some additional clock cycles are
needed, and then the Start-Up step takes place and the Spartan device starts normal
functioning (Xilinx, 2009).

Start-Up

The events taking place during Start-Up are: the DONE pin goes High, the I/Os go active
and the Global Set/Reset (GSR) Net is released. The DONE pin is optional because the
“master” knows the number of configuration bits it has to send, but it can be used as an
indicator for problems with configuration: its failure to go High means that an error had
occurred (Xilinx, 1998). In this phase, several additional clock cycles must be provided, for
synchronizing the events that take place at this time.
The following figure presents the general configuration process of the Spartan-3 devices
(Xilinx, 2009).
When a FPGA board installed on a vehicle or on the road side needs to be configured, a Start
Programming message is sent to the associated Tag4M device, which in turn initializes the
configuration procedure for the FPGA device. As a result of this first set of messages
exchanged, the Configuration Server receives an ACK message if the FPGA board is ready
for receiving the new program or ERR in case an error occurred. In the case in which the
ACK message was received, the Configuration Server will decompose the program in small
packages and will send them sequentially over Wi-Fi to the Tag4M device, and from there to
the FPGA board. In the case in which a package is lost (and an ERR message received), the

www.intechopen.com

Dynamic Wi-Fi Reconfigurable FPGA Based Platform for Intelligent Traffic Systems 385

respective package will be resent. The programming procedure will end with a Stop
Programming command.

Fig. 6. General configuration process (Xilinx, 2009)

The messages exchanged between the entities involved in the FPGA configuration process is
presented in the following figure.

Fig. 7. Description of the communication protocol

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software 386

The application installed on the Tag4M device is responsible for performing the FPGA
programming procedure. The application has an event-driven architecture with a main loop
(presented in Table 1) in which events are handled.

Table 1. Events executed in the main application thread

Without entering into implementation details, the basic activities implemented at Tag4M
level are presented in this paragraph. When the application is started, the first action
performed is the search for an available access point (AP). If one AP is found, the
application will acquire a dynamic IP address and then will wait for messages from the
Configuration Server. When a new message is received by the Tag4M device, it will be
decoded, and depending of its content a new event will be fired. For example, when a Start
Programming message is received this will result in firing a START_PROGRAMMING event
which will be detected and handled by the event loop described in the table above. As
described in the Configuration section, the FPGA configuration bits are sent on the rising
edge of the CCLK signal (the clock is generated on the DIO1 line) using the FPGA DIN line
(which is connected to the Tag4M DIO2 line). The bit sending process is implemented in the
fpgaPackageSend() function.

www.intechopen.com

Dynamic Wi-Fi Reconfigurable FPGA Based Platform for Intelligent Traffic Systems 387

4. Applications of the Wi-Fi FPGA platform for ITS

4.1 Detecting vehicle location using Wi-Fi RSSI
The simplicity and cost efficiency of the Received Signal Strength Indicator (RSSI) based
localization makes it the best candidate for specific applications like tracking systems and
dynamic networks where precision is not crucial.
In the following paragraphs an application implemented in LabVIEW for vehicle
localisation using a FPGA and a Tag4M device is presented.
A “scan” operation which finds all access points and reads the corresponding RSSI values is
implemented at Tag4M level. These values are packed and sent to the FPGA using a serial
communication link where the localisation algorithm is implemented.
Table 2 presents a scan operation result. In this case four APs are detected. The
corresponding RSSI values (in dBm) measured by the Tag4M are reported for every AP.

Table 2. A sequence of results for the “scan” operation executed on the Tag4M device

The program for reading the RSSI values from the Tag4M device was implemented in
LabVIEW2010. Three APs (which are placed on a crossroad) named witagserver, Hawk and
Tag4M, are displayed by the application in this case.

Fig. 8. Front Panel of the program for reading RSSI values

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software 388

The data received by the program are parsed and only data from APs which we are interested
in are processed. The RSSI values are converted to distance values using formula (1).
The value of the received signal strength is a function of the transmitted power and the

distance between the sender and the receiver. The received signal strength will decrease

when the distance increases as the following equation shows (Aamodt, 2006).

10(10 log)RSSI n d A= − ⋅ + (1)

Where:

- n represents the signal propagation constant, also named propagation exponent,

- d represents the distance from the sender,

- A represents the received signal strength at a distance of one meter.

The distance values are grouped into an array which is sent to another application using a

Shared Variable. This option offers the possibility for the user to read the location from his

application which runs locally on a Touch Panel Computer (TPC) installed on the car or on a

mobile phone.

The program for localization using the Wi-Fi FPGA platform was implemented in

LabVIEW2010. The application displays the distances between the Wi-Fi FPGA placed in a

car and the three APs placed on a crossroad. The number of APs can be increased for

obtaining a more accurate position estimate. The distances between the Wi-Fi FPGA and

each AP are represented as circles having the centre in the AP locations which have

previously known coordinates.

Fig. 9. Block Diagram for the Tag4M RSSI value reading program

The application was tested for only one crossroad because of the difficulty of placing a

larger number of APs on a road. The car’s position is given by the point at the intersection of

the three circles.

The distance data are received from the program that reads the RSSI values using a Shared

Variable. The local applications which run on a TPC or mobile phone convert the data to

graphical representations which are afterwards displayed.

www.intechopen.com

Dynamic Wi-Fi Reconfigurable FPGA Based Platform for Intelligent Traffic Systems 389

Fig. 10. Front Panel of the localisation program

Fig. 11. Block Diagram of the localisation program

4.2 Detecting vehicle movement using accelerometer and the gyroscope sensors
Another application of the presented FPGA platform can be used for detecting the dynamic

vehicle parameters. By attaching a gyroscope sensor and a 3-axis accelerometer to the FPGA

board, the implementation of an application for determining the vehicle’s state (moving or

stopped, running on a straight road or making a turn) is possible. A LabVIEW application

was implemented and installed on a FPGA in order to determine the vehicle’s dynamic

behaviour.

Car

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software 390

A correlation between the signals from a 3-axis accelerometer and a 2-axis gyroscope is
realized in order to determine the state of the car. The signals acquired by the accelerometer
and gyroscope sensors were filtered implementing a Butterworth filter (Figure 12) which
has an essential characteristic: a smooth and monotonically decreasing frequency response
(National Instruments, 2009). The Butterworth filter is available in LabVIEW FPGA, and the
Express VI from the Help documentation and configure panel is presented in Figure 12
along with the settings. LabVIEW allows the operative and rapid change of the filter
parameters and the usage of other types of filters.

Fig. 12. Butterworth filter, FPGA implementation

3-Axis Acceleration Sensor

The acceleration sensor (Figure 13) allows the measurement of static or dynamic acceleration
(in ±3g range) on three axes. The ADXL330, iMEMS type, from Analog Devices was chosen
to be used for this purpose.

Fig. 13. Acceleration sensor scheme

External components are used for establishing the period of the output signal between 2 and
1000 ms, and the frequency band is limited to values between 0.5 and 1.6 kHz. The typical
noise level is 280 μg/√Hz rms and allows the acquisition of signals under a 5 mg level
(Analog Devices, 2006).

www.intechopen.com

Dynamic Wi-Fi Reconfigurable FPGA Based Platform for Intelligent Traffic Systems 391

2-Axis Gyroscope Sensor

Fig. 14. Gyroscope sensor scheme

The gyroscope chosen to be used (LPR530AL) integrates one actuator and one accelerometer
in a single micro machined structure. It is based on the Coriolis principle and it is able to
react when an angular rate is applied to the sensing element which is kept in continuous
oscillating movement (STMicroelectronics, 2009). The electric scheme is presented in Figure
14. It has a full scale of ±300 °/s and it is capable of detecting rates of up to 140 Hz with a -3
dB bandwidth.
A series of tests has been performed in order to determine a correlation between the
vehicle’s movement and the signal generated by the two sensors.
The program for displaying data acquired by the Wi-Fi FPGA platform from the 3-axis
accelerometer and the 2-axis gyroscope was implemented in LabVIEW2010 and the
application panel is presented in Figure 15. The application displays the signals received
from the two sensors.

Fig. 15. Front Panel of the “Display Data” program

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software 392

Fig. 16. Block Diagram of the “Display Data” program

Fig. 17. Accelerometer and Gyroscope signals

www.intechopen.com

Dynamic Wi-Fi Reconfigurable FPGA Based Platform for Intelligent Traffic Systems 393

In this case, the Tag4M device is used as a serial RS232 to Wi-Fi gate between the FPGA
board (Spartan-3E Starter Kit) and the PC application that runs on the server. The block
diagram of the PC application is presented in Figure 16.
One initialization step is necessary for reading the data from the Tag4M device. During this
stage, the Tag4M sends a package containing the IP received through DHCP from the AP.
This IP is used in the application for sending commands to the Tag4M device after the
initialization step. The data are read in a loop and are validated if they are received from a
previously known MAC address which is used as a validation mask. The latency
determined after performing a number of experiments lies between the value of 5 and 20
milliseconds and it depends on the RSSI values. The values of the latency are greater in case
of a poor signal.
Figure 17 presents the experimental results obtained from an IVU device installed on a
vehicle performing a series of manoeuvres in a test field.
The length of the “Vehicle stopped” period is of 1500 samples which represent 7.5 seconds
at a rate of acquisition of 200 Sps.

5. Conclusion

The first part of this paper presents a solution for remote Wi-Fi FPGA reconfiguration using
Tag4M devices. The resulting system represents a versatile equipment with multiple
applications in various fields, including ITS.
In the second part two applications developed for a FPGA platform that can be used in road
traffic systems are presented. The first application exemplifies the way in which a vehicle
can be tracked by using access points installed in the field and by using the Tag4M device
which can read the RSSI values for each of them. The approximate of the vehicle’s location is
computed by applying a triangulation algorithm.
In the second application, the dynamic behaviour of a vehicle is determined by using a
gyroscope and an accelerometer sensor attached to a FPGA board.
The work outlines the advantages provided to the developer and to the user by the
employment of the FPGA technology and the features of the LabVIEW programming
language in an Intelligent Transportation System. The reconfigurable systems’ flexibility
and the simplified way of creating programs for FPGAs by using the LabVIEW platform
lead to a system that allows facile in the field hardware upgrades, runtime reconfiguration
and adaptation to unexpected events or to changing environmental conditions.

6. References

Aamodt, K. (2006). CC2431 Location Engine, Application Note AN042, from
http://focus.tij.co.jp/jp/lit/an/swra095/swra095.pdf

Adly, I.; Ragai, H. F.; Al-Henawy, A. & Shehata, K. A. (2010). Wireless Configuration
Controller Design for FPGAs in Software Defined Radios, The Online Journal on
Electronics and Electrical Engineering (OJEEE), vol. 2, no. 3, pp. 293 – 297.

Altera (2009). AN 307: Altera Design Flow for Xilinx Users, from:
http://www.altera.com/literature/an/an307.pdf.

Altera (2010). Medical Imaging Implementation Using FPGAs, White Paper, from
http://www.altera.com/literature/wp/wp-medical.pdf

Altera (2011). Military End Market, from

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software 394

 http://www.altera.com/end-markets/military-aerospace/mil-index.html
Analog Devices (2006). Small, Low Power, 3-Axis 3g MEMS Accelerometer”, Technical

Report, from
 http://www.analog.com/en/mems-sensors/inertial-sensors/adxl330/-

products/product.html
Andretzky, B. (2005). FPGAs Build Bridges To Wireless Connectivity, from

http://electronicdesign.com/article/embedded/fpgas-build-bridges-to-wireless-
connectivity9820.aspx

Banovic, K.; Khalid, M.A.S. & Abdel-Raheem, E. (2005). FPGA-Based Rapid Prototyping of
DSP systems, 48th Midwest Symposium on Circuits and Systems, pp. 647 – 650,
Covington, KY.

Bitter, R.; Mohiuddin, T. & Nawrocki, M. (2006). LabVIEW Advanced Programming Technique,
CRC Press, second edition.

Bolchini, C.; Miele, A. & Santambrogio, M. D. (2007). TMR and Partial Dynamic
Reconfiguration to mitigate SEU faults in FPGAs, Proceedings of the 22nd IEEE
International Symposium on Defect and Fault-Tolerance in VLSI Systems, pp.87 – 95,
Rome, Italy.

Compton, K. & Hauck, S. (2002). Reconfigurable Computing: A Survey of Systems and
Software, ACM Computing Surveys, vol. 34, no. 2, pp. 171 – 210.

El-Medany, W.M. & Hussain, M.R. (2007). FPGA-Based Advanced Real Traffic Light
Controller System Design, 4th IEEE Workshop on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS 2007), pp. 100 –
105, Dortmund, Germany.

G2 Microsystems1 (2008). G2C547 SoC, Technical Report, from
 www.g2microsystems.com
G2 Microsystems2 (2008). G2C547 Software, Example Application. Technical Report, from

www.g2microsystems.com.
G2 Microsystems3 (2008). G2M5477 Wi-Fi Module Data Sheet, Technical Report, from

www.g2microsystems.com.
HPCWire (2009). FPGA cluster accelerates bioinformatics application by 5000×, from

http://www.hpcwire.com/offthewire/FPGA-Cluster-Accelerates-Bioinformatics-
Application-by-5000X- 69612762.html

Kalte, H.; Langen, D.; Vonnahme, E.; Brinkmann, A. & Rückert, U. (2002). Dynamically
Reconfigurable System-on-Programmable-Chip, Proceedings 10th Euromicro
Workshop on Parallel, Distributed and Network-based Processing, pp. 235 – 242, Canary
Islands, Spain.

Kuon, I.; Tessier, R. & Rose, J. (2007). FPGA Architecture - Survey and Challenges,
Foundations and Trends® in Electronic Design Automation, vol. 2, no.2, pp. 135 – 253.

Lyke, J. (2002). Reconfigurable Systems: A Generalization of Reconfigurable Computational
Strategies for Space Systems, 2002 IEEE Aerospace Conference Proceedings, vol. 4, pp.
4-1935 – 4-1950.

Maye, J.; Supervisors: Upegui, A. & Prof. Ijspeert, A. J. (2005). Bluetooth Configuration of an
FPGA: An Application to Modular Robotics, Semester Project, from
http://birg.epfl.ch/webdav/site/birg/users/147507/public/semester/report.pdf

Mitra S.; Shirvani, P. P. & McCluskey, E.J. (1998). Fault Location in FPGA-Based
Reconfigurable Systems, IEEE Intl. High Level Design Validation and Test Workshop.

www.intechopen.com

Dynamic Wi-Fi Reconfigurable FPGA Based Platform for Intelligent Traffic Systems 395

National Instruments (2007). CompactRIOTM and LabVIEWTM Development Fundamentals
Course Manual, Course Software Version 8.2.

National Instruments (2009). Working with LabVIEW Filtering VIs and the LabVIEW Digital
Filter Design Toolkit Vis, , from

 http://zone.ni.com/devzone/cda/tut/p/id/4851
National Instruments1 (2010). What is LabVIEW?, from
 http://zone.ni.com/devzone/cda/pub/p/id/1141
National Instruments1 (2011). FPGA Technology, from
 http://www.ni.com/fpga_technology/
National Instruments2 (2010), Building Programmable Automation Controllers with LabVIEW

FPGA, Tutorial, from:
 http://zone.ni.com/devzone/cda/tut/p/id/3068
National Instruments2 (2011). NI LabVIEW FPGA, from
 http://www.ni.com/fpga/
Patel, P. & Moallem, M. (2010). Reconfigurable system for real-time embedded control

applications, IET Control Theory and Applications, issue 11, pp. 2506 – 2515.
Prasanna, V. K. & Dandalis, A. (2007). FPGA-based Cryptography for Internet Security,

Online Symposium for Electronics Engineers (OSEE), pp. 1– 6.
Reis, R. & Jess, Jochen A. G. (2004). Design Of System On A Chip: Devices & Components,

Kluwer Academic Publishers.
Sander, O.; Glas, B.; Roth, C.; Becker, J. & Muller-Glaser, K. D. (2009). Design of a Vehicle-to-

Vehicle Communication System on Reconfigurable Hardware, International
Conference on Field-Programmable Technology (FPT 2009), pp. 14 – 21, Sydney, NSW,
Australia.

Smith, M. J. S. (1997). Application-Specific Integrated Circuits”, Addison-Wesley Pub Co.
STMicroelectronics (2009). LPR530AP MEMS motion sensor: dual axis pitch and roll 300/s

analog gyroscope, Technical Report, from
 http://www.st.com/internet/com/-

TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD0023
7209.pdf

Straka, M. & Kotasek, Z. (2008). Design of FPGA-Based Dependable Systems, Proceedings of
the 4th Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science, pp. 240 – 247, Znojmo, Czech Republic.

Tessier, R. & Burleson, W. (2001). Reconfigurable Computing for Digital Signal Processing -
A Survey, Journal of VLSI Signal Processing, vol. 28, issue 1/2, pp. 7 – 27.

Xilinx (1998). The Low-Cost, Efficient Serial Configuration of Spartan FPGAs, XAPP098,
Application Note by Kim Goldblatt, November 13 (Version 1.0), from
http://www.xilinx.com/support/documentation/application_notes/xapp098.pdf

Xilinx (2006). Spartan-3E Starter Kit User Guide, User Guide, (Version 1.0), from
http://www.xilinx.com/support/documentation/boards_and_kits/ug230.pdf

Xilinx (2009). Spartan-3E FPGA Family: Data Sheet, Product Specification, August 26
(Version 3.8), from

 http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
Xilinx (2010). Partial Reconfiguration User Guide, from
 http://www.xilinx.com/-

support/documentation/sw_manuals/xilinx12_1/ug702.pdf

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software 396

Zhenggang, L.; Jialong, X.; Mingyun, Z.; Jun, Y. & Hongwei, D. (2009). FPGA-Based Dual-
Mode Traffic Light System Design, 1st International Conference on Information Science
and Engineering (ICISE), pp. 558 – 561, Nanjing, China.

www.intechopen.com

Practical Applications and Solutions Using LabVIEW™ Software

Edited by Dr. Silviu Folea

ISBN 978-953-307-650-8

Hard cover, 472 pages

Publisher InTech

Published online 01, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book consists of 21 chapters which present interesting applications implemented using the LabVIEW

environment, belonging to several distinct fields such as engineering, fault diagnosis, medicine, remote access

laboratory, internet communications, chemistry, physics, etc. The virtual instruments designed and

implemented in LabVIEW provide the advantages of being more intuitive, of reducing the implementation time

and of being portable. The audience for this book includes PhD students, researchers, engineers and

professionals who are interested in finding out new tools developed using LabVIEW. Some chapters present

interesting ideas and very detailed solutions which offer the immediate possibility of making fast innovations

and of generating better products for the market. The effort made by all the scientists who contributed to

editing this book was significant and as a result new and viable applications were presented.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mihai Hulea, George Dan Mois ̧ and Silviu Folea (2011). Dynamic Wi-Fi Reconfigurable FPGA Based Platform

for Intelligent Traffic Systems, Practical Applications and Solutions Using LabVIEW™ Software, Dr. Silviu Folea

(Ed.), ISBN: 978-953-307-650-8, InTech, Available from: http://www.intechopen.com/books/practical-

applications-and-solutions-using-labview-software/dynamic-wi-fi-reconfigurable-fpga-based-platform-for-

intelligent-traffic-systems

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

