We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



5]

Real-Time Rapid Embedded Power System
Control Prototyping Simulation Test-Bed Using
LabVIEW and RTDS

Karen Butler-Purry and Hung-Ming Chou
Texas A&M University
United States of America

1. Introduction

When developing new control, protection, and stability methods for power systems, it is
important to study the complex interactions of the system dynamics with the real-time
operation of the new methods. Historically hardware prototypes were developed to study
these interactions. With the recent introduction of the much cheaper rapid hardware and
software prototyping tools, developers are choosing instead to use these tools to study
dynamic interactions during real-time operation. This technology provides a cost effective
option and flexibility in modeling and coding which allows use for versatile applications.
Rapid prototyping technology is being widely used in many application areas for real-time
data analysis and control such as avionics, power, acoustics, mechatronics, and automotive
applications (Keunsoo et al., 2005; Postolache et al., 2006; Spinozzi, 2006; Toscher et al., 2006).
Parallel digital signal processors (DSPs) (French et al., 1998; Lavoie et al., 1995) are also being
used as rapid prototyping technology for real-time simulation and control.

To study real-time dynamic interactions of isolated power systems and control methods, a
test bed is developed that uses rapid prototyping technology. This chapter discusses the
real-time test bed which was developed more generally to study real-time issues, and validate
and verify new designs of centralized and de-centralized control, protection, and wide-area
monitoring methodologies for stand alone power systems, such as naval shipboard power
systems, power transmission and distribution system and microgrids.

The National Instruments Compact RIO (NI CompactRIO, 2011)low cost reconfigurable control
and acquisition system is used to implement the new control and protection methods in the
test bed. The NI CompactRIO embedded system contains the NI reconfigurable technology
and a real-time controller with an embedded (Pentium) floating-point processor. The 8-slot
reconfigurable chassis contains an embedded user-programmable FPGA (field programmable
gate array) chip providing direct access to hot swappable input/output (I/O) modules for
precise control and flexibility in timing, triggering, and synchronization. The I/O modules
contain built-in signal conditioning and isolation. The control and protection methods
are implemented using the LabVIEW RT and FPGA Modules on a Host PC. The code is
downloaded to the cRIO controller and FPGA for execution. LabVIEW Virtual Instruments
(VIs) are used to remotely monitor and control (if desired) the RT Power System and
Controller simulation. National Instruments data acquisition cards and hot swappable input
and output analog and digital modules are used to pass signals between the cRIO controller

www.intechopen.com



84 Practical Applications and Solutions Using LabVIEW™ Software

and the real time power system simulation. The inputs and outputs of the NI I/O modules
were mapped in VIs. Further data acquisition settings for the I/O modules such as the number
of channels, data type, sampling rate, and data buffer length were programmed in Vls.

The power systems are modeled using RSCAD software for a real time digital simulator
(RTDS®) (Real Time Digital Simlator - RT'DS, 2011) which is a unique integration of hardware
and software specifically designed to perform electromagnetic transient simulation (EMTP) of
AC and DC power systems with external hardware in the simulation loop. Based on its unique
architecture, it is equally suitable for simulating large transmission and distribution systems
or tightly coupled power systems such as ship systems, locomotives, airplanes, automobiles,
and micro grids. The RTDS simulator architecture exploits the parallel computation nature
of the mathematical model of large power systems using proprietary parallel processing
hardware. The RSCAD run-time interface of the RTDS is interactive and is used to view
the simulation results and provide user inputs while the simulation is in progress. RTDS
is a modular system consisting of racks that are paralleled. Each rack consists of several
processing cards which can be customized to provide the computational power of a specific
power system problem. These racks can be used to run simultaneous simulations of multiple
smaller systems or large simulations requiring multiple racks. RTDS provides high precision
(16 bit) real-time input/output (I/O) interfaces of both analog and digital signals to interface
with the external instrumentation in the simulation loop.

The implementation of an overcurrent relay protection scheme is discussed in this chapter to
illustrate the operation of the test bed. A two-bus power system which has a generator at one
bus, a load at the other bus, and a transmission line between them, is simulated on the RTDS.
The overcurrent relay is implemented on the RT processor and FPGA. Measurements of the
current flowing through the cable and the node voltages are measured. Further the results of
several case studies are discussed.

This book chapter will focus on the concept of real-time rapid embedded control prototyping
simulation and its implementation using LabVIEW. Section two will describe RTDS and cRIO
as well as the proposed methodology for implementation of embedded controller-in-the-loop
simulation. Section three will present the detailed implementation of the overcurrent relay
case study, including the programs in RTDS and in cRIO. Also, a synchronization technique
to synchronize the RTDS with the cRIO in real-time operation will be discussed. In section
four, simulation results will be described. Lastly, the conclusions and some future work will
be presented.

2. Real-Time Rapid Embedded Power System Control Prototyping Simulation Test
Bed

There are two main components in the Real-Time Embedded Power System Control Rapid
Prototyping Simulation Test Bed. One component uses the National Instruments CompactRIO
(cRIO) Embedded Design Platform that allows users to rapidly build embedded control or
acquisition systems. The other component uses the RTDS real-time digital simulator which
allows real-time simulation of power systems and hardware-in-the-loop (HIL) studies with
controllers, protective relays, and power system components. Figure 1 shows a high-level
system diagram for the Real-Time Embedded Rapid Prototyping Simulation Test Bed which
is used to test new embedded power system control and protection methods. Test power
systems are implemented in the RTDS and new controller designs are implemented in the
cRIO.

www.intechopen.com



Real-Time Rapid Embedded Power System Control
Prototyping Simulation Test-Bed Using LabVIEW and RTDS 85

Real Time Power System Simulation

Using Real Time Digital Simulator (RTDS)

Measurement from RT
power system simulation
e.g. currents, voltages,
switch status.

Control Signals from real
time controller
e.g. switch control signals

Real-Time Embedded Controller

(Using National Instrument Compact RIO)

Fig. 1. System Diagram for the Real-Time Rapid Power System Control Prototyping
Simulation Test Bed

The test bed is designed based on hardware-in-the-loop (HIL) simulation theory.
Hardware-in-the-loop simulation is an approach that is used during the development and
testing of complex real-time embedded controller. HIL simulation provides an effective
platform by adding the complexity of the plant under control to the test platform. The
embedded controller under test interacts with a plant simulation that is a mathematical
representation of all related dynamic systems of the plant. HIL simulation includes electrical
emulation of sensors and actuators which act as the interface between the plant simulation
and the embedded controller under test. The value of each electrically emulated sensor
is controlled by the plant simulation and is read by the embedded controller under test.
Likewise, this embedded controller outputs actuator control signals based on its control
algorithm. Changes in the control signals result in changes to variable values in the plant
simulation.

There are several advantages of HIL (Isermann et al., 1999), including

¢ Designing and testing of the control hardware and software without the need to operate a
real process.

¢ Testing of the effects of faults and failures of system.

* Operating and testing of extreme and dangerous operating conditions.
* Reproducible experiments, frequently repeatable.

¢ Saving of cost and development time.

For example, HIL simulation can be utilized during the validation of flight controllers
(Karpenko & Sepehri, 2006). During the development of flight controllers, their functionality
must be tested. The most realistic way is to put the flight controllers in an actual aircraft.
In this setting, due to safety and cost issues, the extremely dangerous scenarios cannot be
performed, such as engine failure and stalling. However, in HIL simulation, the actual aircraft
can be modeled in a real-time simulator and the flight controllers can directly interact with
the simulation in real-time. During HIL simulation, all possible scenarios can be performed
to test the functionality of the flight controllers without worrying about safety and cost issues.
Therefore, a primary benefit of HIL simulation is that by the time the controllers first operate

www.intechopen.com



86 Practical Applications and Solutions Using LabVIEW™ Software

in the actual system, they will already have undergone a great deal of thorough testing in a
realistic simulation environment (Ledin, 2001).

In the Real-Time Embedded Power System Control Rapid Prototyping Simulation Test Bed, a
power system is simulated in real-time in RTDS while a controller under test is implemented
in NI cRIO. Figure 2 shows the schematic of the major components in the test bed. The host
machine has two functions. One is to allow users to write programs for RTDS with RSCAD
and programs for cRIO with LabVIEW. The other function is to provide user interface and
control of the program execution for RTDS and cRIO.

RT Power System
Simulation on RTDS Host Machine

Communication via TCPIP

=7z

e —J

Digital Signal

Communicalhon
to'from host

Analog Signal

Qnm::c!ry
m Block 2

Block 1

Real Time Control or Protaction
Simulation on NI Cmpact RIO

16

Fig. 2. Schematic of real-time rapid embedded control prototyping simulation test bed

2.1 Real time digital simulator for power system real-time simulation

Real time digital simulator (RTDS), shown in Figure 2, is used to model and simulate power
systems in real time. RTDS (Real Time Digital Simlator - RTDS, 2011) is a unique integration of
hardware and software specifically designed to perform electromagnetic transient simulation
of AC and DC power systems. RTDS is a modular system consisting of racks that are parallel.
Also it provides high precision real-time input/output interfaces of both analog and digital
signals. Detailed information of the input/output module and the processor of RTDS are
summarized in Table 1.

The RSCAD software package provides a graphical user interface to write and execute
programs in RTDS. RSCAD provides numerous libraries of power system component models
as well as control and protection models. RSCAD also provides an interactive run-time
interface and allows users to view simulation results and enter or adjust user inputs while
the simulation is in progress.

2.2 CompactRIO for rapid control prototyping

The National Instruments CompactRIO (cRIO) low cost reconfigurable control and acquisition
system, shown in Figure 2, is an embedded hardware controller, which can be programmed
to implement various control and protection methodologies for different applications (NI

www.intechopen.com



Real-Time Rapid Embedded Power System Control

Prototyping Simulation Test-Bed Using LabVIEW and RTDS 87
Component Detail
GPC x 3 GIGA Processor Card
(Solve up to 54 nodes and 56 breakers)
GTDI Digital Input Module
(64 Channels, Sampling rate: 300 ns)
GTDO Digital Output Module
(64 Channels, Updated every time step)
GTAI %2 Analog Input Module
(12 Channels, Sampling rate: 6 us)
GTAO x2 Analog Output Module
(12 Channels, Sampling rate: 1 us)
WIF Workstation Network Card

Table 1. Detailed RTDS hardware information

CompactRIO, 2011). The cRIO System contains four components: Reconfigurable chassis
housing the user programmable FPGA; Hot swappable I/O modules; Real-time controller
for communication and processing; and Graphical LabVIEW Software for rapid Real Time
and FPGA programming.

The cRIO contains reconfigurable technologies (FPGA) and a real-time controller with an
embedded floating-point processor (RT processor). The 8-slot reconfigurable chassis contains
an embedded user-programmable FPGA (Field Programmable Gate Array) chip providing
direct access to hot swappable I/O modules for precise control and flexibility in timing,
triggering, and synchronization. In addition to I/O functionalities, FPGA has the computing
power which performs integer math operation. Table 2 summarizes the detailed hardware
information for the cRIO used in the test bed.

By using LabVIEW RT module and FPGA module, the user can write programs in the
LabVIEW programming language on a host PC and then download these programs to the
RT processor and the FPGA for execution. In this way, the cRIO can implement various types
of new control methodologies with great flexibility.

Component Detail
NI cRIO 9004 Real-Time Controller
(195 MHz Pentium processor, 512 MB CompactFlash, 64 MB DRAM)
NI cRIO-9104 |8-Slot, 3M Gate (FPGA) CompactRIO Reconfigurable Embedded Chassis

NI 9215 8 Channel Analog Input Module

NI 9264 16 Channel Analog Output Module

NI 9401 8 Channel Digital Input/ Output Module
NI 9403 32 Channel Digital Input/ Output Module

Table 2. Detailed cRIO hardware information

2.3 Methodology for implementation of embedded controller-in-the-loop simulation

A methodology for implementing controller-in-the-loop (CIL) simulation in the test bed was
developed with the major aspects adapted from chapters 3 and 4 in Ledin’s book (Ledin,
2001). Chapter 3 focuses on non-real-time simulation of dynamic systems, while Chapter 4
focuses on issues related to real-time hardware-in-the-loop simulation. The CIL simulation
methodology has four phases: off-line simulation of full system, real-time implementation of

www.intechopen.com



88 Practical Applications and Solutions Using LabVIEW™ Software

full system, ride-alone (open-loop) simulation, and controller-in-the-loop simulation. Figure
3 shows a flowchart that conveys the steps for the four phases.

o) B

h

| b5 tha frequency
40f the plant's
#" | analog outpul
i L=

(1) Skeich systom o be simulsted | Phasel | oo e 3 e il >
A ; Depterming a sampling )\
‘ A isbu Bpacisc iesi nile:n:.mmmw,ut‘ 15 ]

_ |(2) Distinguish plant from controller | e = e, Keap
;Familias: Adams- e rwmﬁm b wilhir +/- 10V
|Bashforth, Euler, L4 L b ==
iRunga-Kuha. alc. _,-| {3} Chooss integration family and algoriinm |-l @ v
!QE[’;:;?RZE' v {11) Determing s sample and hold | 1=, 1o avoid
- - —| signal aliasi
| TR, ete, (4) Choose the simulalion frame mmmmmzmmm o
— rate Al

lal'srmz.-;- plant and 123 Chochs el o jeg, Keop
contraller offline | for D/A signais | = |w=lr||n st
|18 the simutation Y
|correct, accurate —
{and stabla ? —— L] e r e
e 13) Implement in@&n
[Ves) amheddad coninalier {e.g. In Lah'.ﬂEW}
83, Flie ko, (6) identiy and remova Fhased [Leave controller
id'.-namln:: memary _| operations unsultable for RT h 4 | 5
aIFuc@bun, inetficient simualaton {14) Connest l -’T!WLWE dz:orllnecled
Ialgnnlhms = = lant ol 1 Sontraller in i :n:a. . ride=-along
¥ |mode)
i
! a5 a single schemall [ callisr
iCan simulation D e INe) ; e onp‘:;f-m ::fpul.
:a_xacg'lel inreal- - [Wa) \r> T |match simulatian
:ume [_.B-.‘IPS ot Phaghs T [Yes] contralier oulput?
{appropriate?) i‘fﬂs] . i
{15} Disabla the simulated
t&j Gmnmm offline vs. Al
sirmulation rmsults - - d
- v
— [Na] C J,'ﬁ{iﬂmm
{Do results agree 7 ———— \) plant in to controller out
[Yes] =
Is plant opanating
- B, ma A |propery?
B D N
[Yes]
p = m——rr ! _-\
| END )

Fig. 3. Procedure of implementing embedded controller-in-the-loop simulation

2.3.1 Phase 1: Offline simulation of full system

In this phase, both the plant and the controller are simulated in a single schematic offline
in non-real time by using commercially available software, such as Matlab or PSCAD. An
appropriate integration algorithm and simulation step time should be chosen appropriately
based on system dynamics. If the simulation results of Phase 1 are correct, the user proceeds
to Phase 2.

2.3.2 Phase 2: Real-time implementation of full system

In this phase, both the plant and the controller are simulated in a single schematic in real time
using the real-time digital simulation(RTDS) systems .

To convert a simulation from non-real time into real time, operations that are not appropriate
for real-time simulation are identified. Some examples are reading or writing disk files,
dynamic memory allocation, and inappropriate algorithms with indeterminate execution

www.intechopen.com



Real-Time Rapid Embedded Power System Control
Prototyping Simulation Test-Bed Using LabVIEW and RTDS 89

time. In addition, the appropriate integration step time based on the system dynamics must
be selected. If the time step is too short, the simulation will require more computing power
to run in real-time. If the time step is too long, based on Nyquist’s theorem, the simulation
results will be inaccurate.

The results of Phase 2 and Phase 1 are compared. If the difference is acceptable, the user
continues to Phase 3. If the difference is unacceptable, go back to Phase 1 to identify the
source of the errors and revise accordingly.

2.3.3 Phase 3: Ride-along mode simulation

In this phase, the actual embedded controller, which was simulated in RTDS in phase 2,
is connected to the real-time simulator that models the power system (plant). Input and
output interface between the real-time simulator and the embedded controller is set up,
including scaling factor, sampling rate, sample-and-hold rate, etc. The control signals from
this embedded controller are inputs to the real-time simulator.

These control signals from the embedded controller are not input into the system modelled
in the real-time simulator. Instead, the control signals from the simulated controller inside
the real-time simulator are input to the modelled system. The purpose of this stage is to
compare the control signals from the simulated controller in real-time simulator and that from
the embedded controller.

Since the simulated controller will not perfectly represent the actual embedded controller;
therefore, in the ride-along mode, we may observe that the response of the actual embedded
controller is not actually close to the response of the simulated controller (Ledin, 2001).
However, ride-along mode simulation should still give a very good idea of whether or not
the controller is operating correctly in this environment. If the difference between these two
control signals is acceptable for the application, go to the next and final phase, CIL mode
simulation.

2.3.4 Phase 4: CIL mode simulation

With the successful completion of ride-along mode simulation, CIL mode simulation can be
performed by using the control signal from the actual embedded controller as input to the
real-time simulation. Often the closed loop simulation will work correctly on the first attempt.

3. Case study implementation

A digital protective relay is a protective relay that uses a microprocessor to analyze power
system voltages and currents for the purpose of detection of faults in an electric power system.
An overcurrent relay discriminates between normal operation and fault operation in a power
system. When the current exceeds a specific pickup value, the relay will open the breaker
to clear the fault (J. Duncan Glover, 2007). Some of the functions of an overcurrent digital
protective relay that are implemented in this case study are listed below.

¢ The relay applies A/D (analog-to-digital) conversion processes to the incoming currents.

* The relay analyzes the A/D converter output to extract, at a minimum, magnitude of the
incoming quantity, commonly using Fourier transform concepts (RMS and some form of
averaging are used in basic overcurrent relays).

* The relay applies advanced logic in determining whether the relay should trip or restrain
from tripping based on current magnitude, parameters set by the user, relay contact inputs,
and the timing and order of event sequences.

www.intechopen.com



90 Practical Applications and Solutions Using LabVIEW™ Software

A simple two-bus, three-phase power system, whose one-line diagram and detailed
information are shown in Figure 4 and Table 3, is implemented in the RTDS. A
microprocessor-based overcurrent relay controls the breakers: BRK_A, BRK_B and BRK_C.
This overcurrent relay has three current transformers (CT) that measure line current in each
of the three phases: i,(t), iy(t) and i.(t). Based on these measurements, the relay logic in
the over-current relay will determine the correct value for the control signals that control the
breakers. If the RMS value of the line current is higher than the pickup value, the relay logic
will open the breaker in the corresponding phases to protect the power system. In this case
study, the breaker and CTs are implemented in the RTDS and the relay logic is implemented
in the cRIO.

AC Source FBRK A |l . Transmission Line '; [ Load
[BRe B |—>l Transmission Line '; Load
[ere_c —U Transmission Line - —  Load
Bus 1 1 ! Bus 2
| Overcurrent
relay

Fig. 4. One line diagram of two-bus, three-phase with overcurrent relay protection

Component Detail
AC Source 3 Phase, 60 Hz, 2.45 kV
(Hz: Hertz, V: Volt)
Transmission Line 66.6 mQ) + 5.3mH

(Q2: Ohm, H: Henry)

Load Impedance 21.26m() + 10.1mH

(Q2: Ohm, H: Henry)
Closed Resistance of Breaker 0.001 OO

Pickup Value of Overucurrent Relay 0.1 kA (RMS)
(A: Amp, RMS: Root Mean Square)

Table 3. Parameters of the simple power system

Figure 5 shows the functional blocks of RTDS and cRIO in CIL simulation. In the RTDS, the
power system is modeled and simulated in real time. The RTDS sends to the cRIO three phase
current measurements, i,(t), i(t) and i(t) via the RTDS analog output (AO) module and
sends the triggering signal via the RTDS digital output (DO) module. Based on the current
measurements, the RMS calculation block in the FPGA of the cRIO calculates the RMS values
of these three current measurements. Based on these RMS values, the relay logic implemented
in the RT processor in the cRIO determines the value of the breaker signals. Then the cRIO
sends these three breaker signals (BRK_cRIO_A,BRK_cRIO_B,BRK_cRIO_C) back to RTDS via
the cRIO digital output (DO) module to RTDS digital input (DI) module to control these three
breakers of the simple power system simulation in RTDS.

The program in the FPGA runs at 50 us loop rate while that in the RT processor runs at 5
ms loop rate. The procedure for selecting the loop rates for the FPGA and RT processor will
be discussed later in this chapter. Since the loop rates for the FPGA and the RT processor are
different, a data buffer: DMA-FIFO is used to transfer data from the FPGA to the RT processor
without losing data.

www.intechopen.com



Real-Time Rapid Embedded Power System Control
Prototyping Simulation Test-Bed Using LabVIEW and RTDS 91

To have a higher chance of having successful CIL simulation, Ledin (Ledin, 2001) recommends
that before implementing HIL simulation, it is better to implement ride-along mode
simulation. To perform ride-along mode simulation, it requires implementation of identical
RMS calculation blocks and over-current relay logic blocks in RTDS and cRIO. In this way, we
can compare the breaker signals from RTDS (BRK_Rtds_A, BRK_Rtds_B, BRK_Rtds_C) and
that from cRIO (BRK_cRIO_A,BRK_cRIO_B,BRK_cRIO_C). In the ride-along mode, the goal is
to determine if the embedded controller simulation is accurate. Figure 6 shows the functional
block of RTDS and cRIO in the ride-along mode simulation.

RTDS cRIO

50us FPGA
Current Measurement

wlar] " 50us |
Bower AO ia(k), in(k], ic(k)
N | H
Triggering Signal s

Y

DI
Systems ™ DO > Calculation
{ Breaker Signal Do [ i
DI [+ SRK oRI0 A = USRI O SRR DO |
BRK_cRIO B
BRK_cRIO_C DMA-FIFO
| Relay
Logic

RT Processor

Fig. 5. Functional blocks of RTDS and cRIO in CIL simulation

RTDS cRIO

S0us FPGA
- - - = Al 50us
» AD gk}, falk), ic(k) i
el Triggering Signal DI L RMS |
| 1 | H
Systems  |—|—f 5 > Calculation |
A < Breaker Signal DO [* :
<—|— Dl ey S AR N

BRK_cRIO_B
Y BRK_cRIO_C DMA-FIFO

Calculation Sms |
BRK_RTDS_A L Relay
BRK_RTDS_B hJ i Lo
BRK_RTDS_C Relay | g
Logic

RT Processor

Fig. 6. Functional blocks of RTDS and cRIO in ride-along simulation

In the remainders of this section, a brief description of the implementation of the power
system in RTDS will be given. After that, the implementation of overcurrent relay in cRIO,
including the program in FPGA and RT processor will be described in detail.

www.intechopen.com



92 Practical Applications and Solutions Using LabVIEW™ Software

3.1 Brief description of implementation in RTDS

In RTDS, the simulation time step is fixed at 50 us. Figure 7 shows the simple two-bus,
three-phase power system implemented in RTDS, while Figure 8(a) shows the analog output
module that sends the three current measurements to cRIO, (b) shows the digital input module
that receives the breaker signals and one debugging signal from cRIO, and (c) shows the
digital output module that sends the triggering signal and one cRIO program control signal
to cRIO.

AC Source Breaker { Transmission Line

o
L
P
.

A Type
BRia 0053

=2 e e s BV O — = , y 1 .
00 o]
[~} BREn L 00053 |
T - . peesiiy ; - ; : :
u.cmon:: e ::ﬁs . J |
YL e
weo
0065 Load

00000
25 BV

[5. 5 [& " Faut
) 3 5 Fosition,

Fig. 7. Circuit diagram in RTDS

— T

[ orAa, I A o e

M # F:::I (1=

s,y FOROTA (| N T

P 1, —— _;f‘_i‘m.u
< TR o J

D = 2
. ¥ _:r
UIDFIL.-,EL.I:I.PJ‘F:UT _Il\— UIFE-W-?IFF"G."'UI
(a) Analog output (AO) (b) Digital input (DI) (c) Digital output (DO)

Fig. 8. Input and output modules in RTDS

Table 4 summarizes the detailed description and settings of the I/O modules of RTDS. In the
setting of the analog output module, the value of scaling factor should be set according to the
range of the current measurements. In this power system, the maximum fault current is found
to be 2000A. To make best use of the whole range of the analog output module of RTDS, whose
maximum voltage is 10V, the scaling factor should be "5 Volt for 1 Unit". This is because when
the current is 2000A, the amp meter will read 2 units. Based on the specified scaling factor,
the analog output module of RTDS will output its maximum voltage: 10 V. This scaling factor

www.intechopen.com



Real-Time Rapid Embedded Power System Control
Prototyping Simulation Test-Bed Using LabVIEW and RTDS 93

should be kept in mind when we write VI program for cRIO so that cRIO can interpret the
voltage correctly.

I/0O module Variable Setting
Analog Output|is(t),i,(t),ic(t) GTAO Card Number:2
GPC GTIO Fiber Port Number:1
D/ A Output Scaling: 5Volt for 1 Unit
Oversampling Factor:1
Advance Factor:1

Digital Input | BRK_cRIO_A GTDI Card Number:1
BRK_cRIO_B GPC GTIO Fiber Port Number:2
BRK_cRIO_C
Digital Output Trig GTDO Card Number:1

GPC GTIO Fiber Port Number:2

Table 4. Settings of I/O module of RTDS

3.2 Description of implementation of over-current relay in cRIO

In the cRIO, there are two parts that have computing power: FPGA and RT processor. The
VI programs in these two parts run simultaneously. The VI in the FPGA is responsible for
input/output functions and the RMS calculation of the current measurement signals from the
RTDS. The VI in the RT processor is responsible for the relay-logic implementation and user
interface. The relay logic makes the decision based on the RMS calculation from the FPGA and
updates the breaker signals that are sent to FPGA to be output at the digital output module. In
the remainder of this section, detailed description of VIs in the FPGA and in the RT processor
will be described.

3.2.1 FPGA

There are two tasks performed in the FPGA. One is the input/output functions, while the
other is calculation of the RMS values of current measurements and writing of RMS values
into FIFO. Figure 9 shows the flowchart of the program in FPGA. Some initialization (Step
A1, A2 and B1) is performed before the execution of the main program (Step A3, A4 and B2).
Figure 10 shows the VI implemented in the FPGA.

3.2.1.1 Calibrate analog input module (Step A1l in Figure 9)

Since the analog input module returns a binary value, which is the uncalibrated representation
of the voltage as a signed 32-bit integer (I32), we need to convert this binary value into a
calibrated nominal value. Therefore, before using the analog input module, we need to get
the calibration data that is read from the input analog module. The calibration data includes
LSB weight and Offset. These values are used to convert the binary value into the nominal
value by Equation 1 (NI, 2004).

Nominal value = [(Binary Value x LSB Weight) — Offset] x 107 (1)

3.2.1.2 Allocate FIFO_RMS (Step A2 in Figure 9)

An iterative algorithm of RMS calculation is used, so it is necessary to have one period of
the three-phase current measurements. These measurements are stored in three FIFOs, which

www.intechopen.com



94 Practical Applications and Solutions Using LabVIEW™ Software

Stan
¥
(A1) Calibrate analog input medule
v
(B1) Set up the direction of digital IYO module
Y
(A2) Allocate FIFO_RMS

" 50 us
le 50 us v
v ) (B2) Write output signal to output module

(A3) RMS calculation Read input signal from input module

L 4
(Ad) Write RMS value into FIFO

Fig. 9. Flowchart for FPGA VI, shown in Figure 10

are called FIFO_RMS_A, FIFO_RMS_B and FIFO_RMS_C. The following settings are used,
including (1) memory type, (2) data representation, and (3) number of elements in FIFOs.
The type of FIFO is a look-up table since it takes less space in FPGA. The representation of the
FIFO is set to be 132 since the output of the analog input module is I32. Since the frequency
of the current measurements is 60 Hz and the sampling rate is 50us, which is the same as the
loop rate at which FPGA is running, the number of elements N in FIFO_RMS is determined
by Equation 2.

N = Period ~1/60
~ Sampling Rate 50 x 10-©

3.2.1.3 RMS calculation (Step A3 in Figure 9)

There are two steps in RMS calculation. The first step is to convert the voltage value read
from the analog input module of the cRIO into the correct current value. The second step is to
compute the RMS value of the current value using an iterative RMS calculation algorithm.
Step 1: Convert the voltage into current value

An uncalibrated binary value is read from the analog input module of cRIO. To convert this
binary value into the nominal value, Equation 1 is used. To get the corresponding current
value, the nominal value from Equation 1 is multiplied by a scaling factor, shown in Equation
3. The scaling factor in RTDS makes it output 10 V signal on its analog output module when
the current measurement is 2 kA. Therefore 1 V sensed by the cRIO’s analog input module
means that the corresponding current is 200 A. In other words,the scaling factor of cRIO is
200.

= 333.333 ~ 334 (2)

Current Value = Nominal Value x Scaling Factor 3)

Since the maximum number for signed 32 bits representation is 2,147,483, 647 = 2.147 x 10°
(NI, 2004), it is important to make sure the mathematical operation does not overflow. If the
operation overflows, the result of the mathematical operation will be incorrect. To make sure
the operation does not overflow, LabVIEW provides some operations with an overflow flag.
The flag, which can be connected to indicators, will be one if the operation overflows. It is a

www.intechopen.com



95

Prototyping Simulation Test-Bed Using LabVIEW and RTDS

Real-Time Rapid Embedded Power System Control

|Binpow o/ jeubip jo Lo Xasp auy jas]

O 010 Al N0 e
¢ 01d 4 i
UDPSA U 395

Fig. 10. VIin the FPGA
www.intechopen.com



96 Practical Applications and Solutions Using LabVIEW™ Software

good practice to check this flag when implementing a program. When you are sure that there
is no overflow from the mathematical operations, these overflow indicators can be removed
to reduce the FPGA space.

The range of the current measurements is between 20A and 2000A in this simple power
system; therefore, the output voltage of RTDS is from 0.1V to 10 V. The corresponding range
of the binary value from the analog input module of cRIO is between 327.67 to 32767. To
prevent the overflow when Equation 3 is implemented, some arrangements of this equation
were made:

Current Value = [Binary Value x LSB Weight — Offset] x 10~° x Scaling Factor
= [Binary Value x LSB Weight — Offset] x 1072 x 10~ x Scaling Factor

Scaling Factor

100
Scaling Factor

100

— [Binary Value x LSB Weight — Offset] x 1072 x 107> x

— [Binary Value x (LSB Weight x 1072) —Offset x 1072] x 107> x
4)
Figure 11 shows the program that implements the last equation in Equation 4, where the

value 318506 is the LSB weight while -1449794 is the offset, both of which are calibration data.

ecaling factor /100

k+1

S An Mod7/AI0S
®an Mod7iAILS
B AN Mod7ia12S)

Fig. 11. Program to convert binary value into current value

Step 2: Iterative RMS Calculation

Equation 5 shows the iterative RMS calculation algorithm used in this program. N is the
number of elements in the calculation window, x5! is the new RMS value of next time step,
xk < is the present RMS value, x*1 is the new current value, x**1~N is the current value that
is N time steps ago. Since the division operation takes lots of space (slice) of FPGA and time
to execute, the formula is converted from Equation 5 to Equation 6 to reduce the number of

operations.

(xk+l)2 . (xk+1fN)2

(xffntsl)z = N + (x];ms)Z )
N(xfg )2 = (52 = (HN)2 4 N () (6)
From Equation 6, N (x11)? is calculated and written into DMA-FIFO, which will be discussed

next. So instead of using pickup value of x5!, the pickup value of N(x5:1)? is used in

over-current relay logic, which is implemented in RT processor.

One point worth discussion is that the mathematical operation in FPGA is integer operation,
so the fraction part of a number will be truncated, resulting in some errors. However, as
seen from the formula implemented, the integer operation is operated on a large number (the
smallest input voltage is 327.68), therefore, the error percentage is very low, less than 1%.

www.intechopen.com



Real-Time Rapid Embedded Power System Control
Prototyping Simulation Test-Bed Using LabVIEW and RTDS 97

3.2.1.4 Write RMS value into FIFO (Step A4 in Figure 9)

As mentioned before, the speed of FPGA is much faster than that of RT processor. In this case,
the loop rate of FPGA is 50 us while the loop rate of RT processor is 5 ms. In order to transfer
data (RMS of current value) from FPGA to RT processor without losing data, another FIFO is
used. FPGA will put one current RMS value into the FIFO every 50 us, while the RT processor
will retrieve data from the FIFO every 5 ms. The number of data that the RT processor takes
each time is 100 [= (5ms)/ (50us)].

The function of this FIFO is different from that of FIFO_RMS. FIFO_RMS is used to store one
period of current values to calculate the RMS value of current measurements, while this FIFO
is used as a buffer between the FPGA and the RT processor due to their different execution
speeds. Since there are three RMS values of three-phase current value, three FIFOs are used.
To allocate these FIFOs, go to the "Project Explorer”, right click on "FPGA Target", select
"New"-> "FIFO". Then the properties of FIFO are set: "Target-to-Host DMA" is used and
the depth is 255, which is the number of elements of FIFO in FPGA part. ( The number of
elements of FIFO in RT processor is set in RT program, which will be discussed later in this
book chapter) DMA is the abbreviation of Direct Memory Access, which transfers data from
the FPGA directly to the memory on the RT processor. A DMA-FIFO consists of two parts, an
FPGA part and RT processor part. LabVIEW uses a DMA engine to connect these two parts.
When the DMA engine runs, it transfers data between the two parts of the FIFO automatically
so they act as one FIFO array. For more information on DMA-FIFO, please refer to Lesson 8§,
Section F in (NI, 2004). After the DMA-FIFO is set, the value to be passed into RT processor
can be written into DMA-FIFO by using FIFO Write function.

3.2.1.5 Set up the direction of digital I/O module (Step B1 in Figure 9)

Because the channels in the digital I/O module (NI 9401 or NI 9403) can be set as either input
or output, the input and output channels must be specified.

3.2.1.6 Update the value of digital I/O module (Step B2 in Figure 9)

A while-loop is used to update the value of the digital I/O module. Controllers (DOO, DO1,
DO2, DO3) are connected to the output ports of the digital I/O module while indicators (DI4,
DI5, DI6, DI7) are connected to the input ports of the digital I/O module.

To be able to run this FPGA VI, this VI needs to be compiled into FPGA code. For detailed
information of FPGA compilation, please refer to Lesson 4, Section I in (NI, 2004). To start the
execution of this VI, you can hit the RUN button in the LabVIEW window; however in this
project, the VI in the RT processor controls the execution of this FPGA VI, including start, stop
as well as parameter settings, such as loop rate and scaling factor.

3.2.2 RT processor

There are two functions implemented in RT processor. One function is overcurrent relay logic,
shown on the left side of Figure 12. The other function is user interface and parameter settings
via front panel communication, shown on the right side of Figure 12. The first function is in
the time-critical loop while the second function is in a non-time-critical loop. The reason we
separate the VI into two timed-loops is to prioritize these two different functions.

www.intechopen.com



98 Practical Applications and Solutions Using LabVIEW™ Software

v
(A1) Select FPGA program

v
(A2) Set the parameters of FPGA program

¥
{A3) Start the FPGA Program

v
(A4) Set the size of DMA-FIFO on target side

|-

Time-critical Loop
¥

(T1) Complement DO2

Y
(A5) Waiting for the rising edge of
The triggering signal

¥
(A6) Output the breaker signal to FPGA
(T2) Complement DO3

J
(A7) Retrieve RMS from FIFO

L

(AB) Implement Relay logic

Start

Y

5ms

(B1a) User Interface
(B1b)Parameter Settings

Fig. 12. Flowchart of RT processor VI, , shown in Figure 13

www.intechopen.com

1000 ms



Real-Time Rapid Embedded Power System Control
Prototyping Simulation Test-Bed Using LabVIEW and RTDS

99

(a) Time-critical loop

Fig. 13. VI in the RT processor

www.intechopen.com

(b) Non-time-critical loop



100 Practical Applications and Solutions Using LabVIEW™ Software

It is possible to put the above two functions in the same timed-loop. However, since
front-panel communication takes care of the user interface, such as displaying value in the
host-PC screen and sending control value from host-PC to cRIO, it takes time to execute. More
importantly, the time it takes is not deterministic. Therefore, to make the over-current relay
logic deterministic, two timed-loops with different priorities are used. The time-critical loop
with higher priority includes the over-current relay logic while the non-time-critical loop with
lower priority includes user interface and parameter settings. Therefore, the RT processor
resource will be given to the time-critical loop whenever this time-critical loop needs the
resource. Only when time-critical loop doesn’t need the resource, will the non-time-critical
loop use the resource. In this way, the program implemented in the time-critical loop can be
ensured to run deterministically. For more information about the concept of time-critical loop,
please refer to Lesson 3 in (NI, 2009) .

Figure 13 shows the VI implemented in the RT processor. Part(a) is the program that includes
the initialization and the time-critical loop while part(b) includes the non-time-critical loop.

3.2.2.1 Select FPGA program (Step Al in Figure 12)

Figure 14(a) shows the program that selects the desired FPGA VI to be executed. The selected
file is a FGPA bitfile, which is generated after the FPGA VI is compiled.

l5et parameter of FPGA program|

elect FPGA program] F 6wz 3
——§ e %
4 Loop Rate (u5)
. » scaling fackor /100
TRIOO [ ml 1 Setlop rae (usece) [50) L
.
] P 5(&1; hﬂﬂtﬂm
RIO-9104 @

Fig. 14. (a)Select FPGA program, (b)set the parameters of FPGA VI

3.2.2.2 Set the parameters of FPGA program (Step A2 in Figure 12)

Some parameters of the FPGA VI, including the loop rate of FPGA and the scaling factor, are
set by the program shown in Figure 14(b). Therefore, users can use the front panel to set these
parameters of FPGA VI.

3.2.2.3 Start the FPGA program (Step A3 in Figure 12)
Figure 15(a) shows the program that starts the FPGA VI execution.

ket the size of DMA-FIFO on target sice|

ik == =
FIFOD.Confiquee | | FIFOL.Configure FIFGR. Conbiure
[} ) b b Deth | Depth b Depth
b Bp
Run
b Wat Unti Done (F)

&F

Fig. 15. (a)Run FPGA program, (b)set the FIFO size on target side

www.intechopen.com



Real-Time Rapid Embedded Power System Control
Prototyping Simulation Test-Bed Using LabVIEW and RTDS 101

3.2.2.4 Set the size of DMA-FIFO on target side (Step A4 in Figure 12)

As mentioned, there are two parts of DMA-FIFO. One is in the FPGA and the other is in the
RT processor. The size of DMA-FIFO in the FPGA is set in the FPGA program while the size of
DMA-FIFO in the RT processor is set by using the function shown in Figure 15(b). If the size
of DMA-FIFO in RT processor side is not specified, then the system will automatically set the
size to be twice the size of the DMA-FIFO in the FPGA. Care must be made when determining
the size of DMA-FIFO. If the size is too small, the DMA-FIFO tends to be full and data cannot
be written into the DMA-FIFO. If the size is too big, it will waste memory space.

3.2.2.5 Waiting for the rising edge of the triggering signal (Step A5 in Figure 12)

Since the clock rates of RTDS and cRIO are different, there should be some mechanism such
that the program in RTDS and the program in cRIO do not run out of step. In other words,
there needs to be something used to make the two programs proceed together in time.

Using real-time programming concept, the time-critical loop can run in real-time and
deterministically. So why do we need to use triggering signal? Because even if we can run the
program in the RT processor deterministically, say it runs every 5 ms, it is still possible that in
the time frame of RTDS, the program in RT processor runs every 5.001 ms. This is because the
accuracy of clock rate of cRIO and RTDS are not exactly the same. Even though the difference
is very small, in some applications, this difference may accumulate to cause some problems.
Since RTDS is running in real time, the difference will accumulate quickly. Further discussion
of triggering signal will be given in the last part of this section.

Figure 16(a) shows the rising edge detection. If the rising edge of the triggering signal is not
detected, the program will stay in this while loop. When the rising edge of the triggering
signal is detected, the program will leave the while loop and go to the next stage.

[ﬂJtput the breaker sngna1| .

Edge Detection]
Fig. 16. (a)Rising edge detection of triggering signal, (b)output the breaker control signals

3.2.2.6 Output the breaker signal to FPGA (Step A6 in Figure 12)

Figure 16(b) shows that the breaker control signal is output to the digital output channel DOO,
DO1 and DO2. This signal is based on the result of the previous iteration which is 5 ms ago,
the loop rate of RT program.

3.2.2.7 Retrieve RMS data from DMA-FIFO(Step A7 in Figure 12)

Figure 17 shows the program of retrieving data (RMS of current value) from the DMA-FIFO.
Since the execution speed of RT processor is much slower than that of the FPGA (the loop
rate of RT processor is 5 ms while the loop rate of FPGA is 50 us), to prevent this DMA-FIFO
from overflowing, the program in RT processor should retrieve all data in the DMA-FIFO each
time.

www.intechopen.com



102 Practical Applications and Solutions Using LabVIEW™ Software

There are two steps to retrieve all data in the DMA-FIFO. First, the left function block in the
Figure 17(a) gets the number of elements in the DMA-FIFO and passes this number to the
"Number of Elements" of the right function block. The right function block reads "Number of
Elements" number of data from DMA-FIFO and transfers it to "Data" as an array. Since the
data from DMA-FIFO is an array and only the latest data(N x RMS? )is needed, a for-loop
without the N value specified as shown in Figure 17(b) was used.

] ™ RIOSI04 b RIOGI4 Bl
FIFO1.Read FIFO1.Read
@—r Number of Elements b Number of Elements
b Timeout (ms) b Timeout (ms)
Data b Data ’
Elements Remaining » Elements Remaining »

iget last element

Fig. 17. (a)Retrieve data block in FIFO, (b)get the last element of data block

3.2.2.8 Implement relay logic (Step A8 in Figure 12)

Figure 18 shows the implementation of the overcurrent relay logic, which updates the breaker
signal. The retrieved N x RMS? value is compared with the threshold (pickup) value. Since
the retrieved data is N x RMS?, the threshold value is also in the same format. In this example,
the threshold current is 0.1 kA, so based on the scaling factor of RTDS, the output voltage is 0.5
V. Since the scaling factor of cRIO is 200 and N is 334., the threshold value is 3,340,000, which
is equal to 334 x (200 x 0.5)2. If the retrieved N x RMS? value is higher than the threshold
value, the breaker signal will be equal to one (open value). Otherwise, the breaker signal will
be zero (closed value). Note that this breaker signal is updated, but is not output to the digital
output module via FPGA. The new breaker signal is output in the step A6 of next iteration of
the time-critical loop.

et

L o, lupdate the breaker signall

Fig. 18. Comparison with threshold value

3.2.2.9 Implementation in non-time-critical loop (Step B1 in Figure 12)
Below are the tasks for non-time-critical loop:

1. Send the settings of VI from the host PC to the RT processor via front panel communication,
including threshold value, period of time-critical loop, and loop rate of time-critical-loop.

Send the results of VI to the host PC, including breaker status, time duration of time-critical
loop, RMS value of current, number of FIFO elements.

Convert (N x Vgums)? to actual RMS value of current value.

www.intechopen.com



Real-Time Rapid Embedded Power System Control
Prototyping Simulation Test-Bed Using LabVIEW and RTDS 103

3.2.2.10 Communication between time-critical and non-time critical loops

The signal passing between the time-critical loop and the non-time-critical loop is done via
"Shared Variable". The type of this shared variable is set to be "Single-Process", since these
two timed-loops are in the same single process.

Since the period of these two timed-loops is different, like the situation where there is FPGA
and RT processor, to pass data without loss, FIFO mechanism should be used. Since we just
care about the newest data, then FIFO with "single element" is used. To pass multiple data
lossless, the FIFO with "multi-element” is used and the number of elements of this FIFO is
based on the loop rate of these two timed loops. These settings are done in the "Properties
Dialog" of shared variables.

3.2.2.11 How to measure the timing of signal (Step T1, T2 in Figure 12)

cRIO and RTDS execute in real time, so it is impossible to store all the simulation results,
making it difficult to debug the program. To check whether the program is executed as
expected, especially the timing of the program, we can take advantage of the digital output
module of the cRIO as well as the RTDS plotting function.

Figure 19 shows one block of program in the RT processor. This block of program
complements the digital output channel DO1 when it is executed. We can place this program
around the place of which we want to check the timing. In this VI, we complement DO2
in the beginning of the time-critical loop and complement DO3 when the rising edge of the
triggering signal is detected.

To measure these timing signals from the digital output module of the cRIO, we can use
oscilloscopes that have limited numbers of channels. Another way is to use RTDS that can
plot signals from its digital input module. In this way, we can overlay these numerous timing
signals in the same plot and check the timing of the RT program. Moreover, it is possible to
store a portion of data points in the plot of RTDS. RTDS greatly facilitates the investigation of
these timing signals.

w2 ol
» DO1

Fig. 19. Complement the digital output when executed

3.3 Discussion of synchronization of RTDS and cRIO

The benefit of outputting the breaker control signals at the rising edge of the triggering signal
is that only at the rising edge of the triggering signal can the breaker control signals be output.
The breaker control signal cannot be output at other times.

Even though there are some benefits of implementing this synchronization technique, there
are some disadvantages. Since each iteration of the time-critical loop in RT processor needs to
wait for the rising edge of the triggering signal, it slows down the response of the embedded
controller. This amount of the time delay varies, depending on the phase difference between
the triggering signal and the time-critical loop. It also depends on the frequency of the
triggering signal. If this frequency is low, the time-critical loop will take longer time to wait

www.intechopen.com



104 Practical Applications and Solutions Using LabVIEW™ Software

for the rising edge of triggering signal. However, if the frequency is too high, then EMI issues
will occur. Therefore, the frequency of the triggering signal needs to be selected carefully. In
this case study, 1 kHz is selected.

However, if this small time difference is acceptable and doesn’t cause any problems for the
application, it is not necessary to implement this synchronization technique. This embedded
controller will have quicker response.

4. Case studies

In these case studies, a three-phase ground fault was applied at the end of the transmission
line as shown in Figure 20. When this fault occurs, the value of the phase currents i,(t), i, (t)
and i.(t), and corresponding RMS values increase. As soon as the RMS value was larger than
the pickup value of the overcurrent relay, the overcurrent relay would open the breaker to
protect the system.

Three Phase Ground Fault

ilth

AC Source | BRK_A { Transmission Line | ; Load
¥ T z
| BRE_B i | Transmission Line | Load
[BRr C —ut Transmission Line [ Load
Overcurrent =
relay

Fig. 20. One-line diagram of system with three-phase ground fault

The loop rate of FPGA was selected to be 50 us, which was the same as the time step in RTDS.
The loop rate of the RT processor was selected to be as fast as possible, while at the same
time permitting the time-critical loop to run deterministically. Therefore, this loop rate would
depend on the computing power of RT processor as well as the complexity of the RT processor
VI. In these case studies, three cases where the period of the RMS calculation window was half
cycle, one cycle and two cycle, respectively, were compared. For the half cycle, a period is 8.33
ms, for one cycle, a period is 16.66 ms and for two cycle, a period is 33.33 ms. For the half-cycle
and one-cycle case, the loop rate of RT processor was 5 ms while for the two-cycle case, the
loop rate was 10 ms. This was because in the two-cycle case, the amount of data was larger,
requiring more time for RT processor to execute.

The first case study was a modified ride-along mode. The overcurrent relay was implemented
in the RTDS and the cRIO. The purpose of ride-along mode is to compare breaker control
signals from each overcurrent relays program and see if they are equivalent for determining
the accuracy of the implementation.

To ensure that both overcurrent relays observed the same dynamics, the breakers in the
RTDS were always closed even when the fault was applied, which was a modified version
of the ride-along mode shown in Figure 6. This was done because if one of the overcurrent
relays responded first and opened the breaker, the current would decrease, making the
other slower overcurrent relay unable to detect the fault. Therefore the breaker signals from
this slower overcurrent relay remained closed. The comparison between these two breaker
signals would not be right, invalidating the results of ride-along simulation. Therefore, a
modified-ride-along mode was used, where the control signals from RTDS and cRIO were not
used to control the breaker in RTDS. The breakers were always closed in these studies.
Figure 21 shows the response around the time when the fault was applied. Table 5 summarizes
three cases where the window size of RMS calculation were different. The time difference

www.intechopen.com



Real-Time Rapid Embedded Power System Control
Prototyping Simulation Test-Bed Using LabVIEW and RTDS

between the breaker signals from RTDS and cRIO was a little more than the loop rate of the
RT processor. The loop rate was 5 ms for half cycle and one cycle windows while the loop rate
was 10 ms for two cycle window. This was because when the window size of RMS calculation
is two cycles, the number of elements in FIFO_RMS were twice the size of one cycle case,
requiring more time to retrieve the data for cRIO computation. Therefore, the loop rate of RT

processor had to be increased to ensure deterministic operation.

Another observation was that when the RMS calculation window was smaller, the time
difference between fault and breaker signal was smaller since the RMS calculation was more

sensitive if its calculation window was small.

= 1F
tEj o.s —
E D 1 1 1 1 1 1 1 1 1
0 0.0l 00z 003 004 005 2005 2007 2 003 009 0.1
2 T T T T
= i i
ERL pom e it e e e T ] T
=g 0.0l 0oz o003 o004 2005 2005 oo7  oo2  oog a1
t.% 1 I EERIKr‘tdS
o o5l ERKcRIO H
g [nl 1 1 1 1 1 1 1 1 1
0 0.01 002 003 004 005 2005 2007 002 0 00g 0.1
= 1 i ]
= osl il
= i
o D.ID'I D.IDQ D.IDS D.IDA'-l D.IIJS 0.05 D.IIJ._-" D.IDEI o.o9 o1
= 1 : 3 ] ]
ta 05k 4
g il |
o D.ID'I D.IDQ D.IDS D.IDA'-l D.IIJS 0.05 D.IIJ._-" D.IDEI o.o9 o1
Time [sec]
Fig. 21. Response in modified-ride-along mode to a fault scenario
S window size
) ) 1 1 1 2 1
Signals 0.5 cycle cycle cycle
Fault and BRK_RTDS |0.0043 sec|0.0051 sec|0.0053 sec
Falut and BRK_cRIO 0.0104 sec|0.0102 sec|0.0159 sec
BRK_RTDS and BRK_cRIO|0.0060 sec|0.0051 sec|0.0106 sec

Table 5. Time difference among signals for three RMS calculation window in

modified-ride-along mode

The second set of case studies was CIL mode. The overcurrent relay implemented in RTDS
was disabled and the breaker signals from cRIO controlled the breakers implemented in RTDS.
Figure 22 shows the waveform around the time when a three-phase ground fault was applied.
It can be observed that the breaker signals from cRIO successfully opened the breakers after
the fault occurred. The time difference between the fault occurrence and the opening of the

www.intechopen.com



106 Practical Applications and Solutions Using LabVIEW™ Software

breaker was approximately 10 ms in each phase which was two times the loop rate of RT
processor. Like the first set of case studies, if the window size of RMS calculation was smaller,
it took less time to open the breaker after fault was applied, which is shown in Table 6.

= 1F
=
L5
v o5l B
E
5 o 1 1 1 1 1 1 1 1 1
[H] 0.a1 0.0z 0.03 0.04 0.05 0.06 0.07 0.05 o.09 a1
S 2 T I T T
= ] [ ——im
= opF— : : L
E : T3 I"‘g"'rms
= 3 : : ] : e
— o) i 1 1 i 1 i 1 1 i
o .01 0.0z 0.03 0.0 0.05 0.06 o.07F 0.0s o.09 a.1
R =
==
=
= 05 =
P
=
o oF 1 1 I I I I 1 L I
a o.o1 0.0z 0.03 0.04 o.05 0.06 o.ov o.0s o.09 a1
T 1F 1
=
=
ol 5 -
[}
i
= = 1 1 1 1 1 1 1 1 1
o] 0.01 0.0z 0.03 0.0 0.05 0.06 o.ovF 0.0s o.09 .1
= HAF =
=
Fa=I3
o) 0.5k -
[a]
[}
=] e 1 1 1 1 1 1 1 1 1
(H] 0.01 0.0z 0.03 0.04 0.05 0.06 o.o0vF o.05 o.09 a.1

Tirme [sec]

Fig. 22. Response in CIL mode to a fault scenario

S window size

Signals 0.5cycle | 1cycle | 2cycle

Fault and BRK 0.01034 sec|0.0111 sec|0.016 sec

Table 6. Time difference among signals for three RMS calculation window in CIL

The results of a timing analysis of the measured signals from the modified-ride-along mode
simulation are shown in Figure 23. Since the breaker signal (BRK_RTDS) from the overcurrent
relay in RTDS is updated when the time-critical loop starts (when DO2 changes its polarity),
the difference between the fault signal and BRK_RTDS is Tj. The breaker control signal from
the overcurrent relay in cRIO (BRK_cRIO) is updated when there is a rising edge during
the execution of time-critical loop (When DO3 changes its polarity), therefore the difference
between the fault signal and BRK_cRIO is T; + T;. Sometimes it may take an extra loop
iteration for the RMS value to be greater than the pickup value, so the difference maybe
T1 + T, + T3, where T3 is close to Tgy. Therefore, the time difference between BRK_RTDS
and BRK_cRIO is T, + T3.The range of T; is between 0 and Trr, range of T; is between 0 and
to T;,; and the range of T3 is between 0 and Trr, where Tyt is the loop rate of the time-critical
loop in RT processor and T},; is the period of the triggering signal.

www.intechopen.com



Real-Time Rapid Embedded Power System Control

Prototyping Simulation Test-Bed Using LabVIEW and RTDS 107
Triggering A A A A A A A A A A A A A A A A A A A A a
Signal |

- |
’ time
Tlfl
Doz
(Starting of RT Loop)
THT THT
- -
(DO3)
Detection of
Rising Edge
.
Fault Signal *
-
BRK_RTDS A
[
BRK_cRIO A I
-
T -T;; Ts

Fig. 23. Time analysis of simulation results in Figure 21

5. Conclusions and future work

In this book chapter, the concepts and the implementation of a real-time rapid embedded
power system control prototyping simulation test bed were described. The methodologies
for implementing embedded controller-in-the-loop simulation (CIL) was explained. To
illustrate the functionality of the test bed, the detailed implementation of an overcurrent relay
protection scheme for CIL simulation was described, including the settings and programming
of RTDS, the programming in cRIO, which included the FPGA and RT processor, by using
LabVIEW. Also, a synchronization approach for the RTDS and cRIO was discussed.
Additional studies are ongoing to refine the test bed design, such as studies to investigate the
time delay and data synchronization and its relationship to system performance and stability.
For example, in a power system, to be transient stable, a fault has to be cleared within a specific
amount of time. If the response of the breaker is too late or incorrect, the system will become
unstable.

Further the test bed is being utilized to study new control strategies and their performance.
In power system applications, voltage regulation and load management are used to maintain
the proper operation of power systems. These control strategies can be verified and validated
using the test bed discussed in this chapter. Due to the real-time environment of RTDS and
RT target, it is possible to observe the effectiveness of these control strategies in the real-time
simulation environment.

www.intechopen.com



108 Practical Applications and Solutions Using LabVIEW™ Software

6. Acknowledgment

The authors gratefully acknowledge the contributions of Tania Okotie and the funding
from Office of Naval Research under grants N00014-09-1-0579, N0014-04-1-0404, and
N00014-07-1-0939.

7. References

French, C. D., Finch, J. W. & Acarnley, P. P. (1998). Rapid prototyping of a real time dsp
based motor drive controller using simulink, Simulation, International Conference on,
pp- 284-291.

Isermann, R., Schaffnit, ]. & Sinsel, S. (1999). Hardware-in-the-loop simulation for the design
and testing of engine-control systems, Control Engineering Practice pp. 643-653.

J. Duncan Glover, Mulukutla S. Sarma, T. O. (2007). Power System Analysis and Design, 4 edn,
CL-Engineering.

Karpenko, M. & Sepehri, N. (2006). ~Hardware-in-the-loop simulator for research on
fault tolerant control of electrohydraulic flight control systems, American Control
Conference, p. 7.

Keunsoo, H., Seok-Gyu, O., MacCleery, B. & Krishnan, R. (2005). An automated reconfigurable
fpga-based magnetic characterization of switched reluctance machines, Industrial
Electronics, Proceedings of the IEEE International Symposium on, pp. 839-844.

Lavoie, M., QuAl-Do, V., Houle, J. L. & Davidson, J. (1995). Real-time simulation of power
system stability using parallel digital signal processors, Mathematics and Computers in
Simulation pp. 283-292.

Ledin, J. (2001). Simulation Engineering, CMP Books, Lawrence, USA.

NI (2004). CompactRIO and LabVIEW Development Fundamentals.

NI (2009). LabVIEW Real-Time Application Development Course Manual.

NI CompactRIO (2011). Available at: http://www.ni.com/compactrio/.

Postolache, O., Dias Pereira, J. M. & Silva Girao, P. (2006). Real-time sensing channel modelling
based on an fpga and real-time controller, Instrumentation and Measurement Technology
Conference, Proceedings of the IEEE on, pp. 557-562.

Real Time Digital Simlator - RTDS (2011). Available at: http://www.rtds.com/.

Spinozzi, J. (2006). A suite of national instruments tools for risk-free control system
development of a hybrid-electric vehicle, American Control Conference, 2006 p. 5.

Toscher, S., Kasper, R. & Reinemann, T. (2006). Implementation of a reconfigurable hard
real-time control system for mechatronic and automotive applications, Parallel and
Distributed Processing Symposium, IPDPS 20th International p. 4.

www.intechopen.com



Practical Applications and Solutions Using LabVIEW™ Software

LabVIEW . o
wfl:n[nupml:m\:wsn.uu SOUUTIONS Edited by Dr. Silviu Folea

ISBN 978-953-307-650-8

Hard cover, 472 pages

Publisher InTech

Published online 01, August, 2011
Published in print edition August, 2011

The book consists of 21 chapters which present interesting applications implemented using the LabVIEW
environment, belonging to several distinct fields such as engineering, fault diagnosis, medicine, remote access
laboratory, internet communications, chemistry, physics, etc. The virtual instruments designed and
implemented in LabVIEW provide the advantages of being more intuitive, of reducing the implementation time
and of being portable. The audience for this book includes PhD students, researchers, engineers and
professionals who are interested in finding out new tools developed using LabVIEW. Some chapters present
interesting ideas and very detailed solutions which offer the immediate possibility of making fast innovations
and of generating better products for the market. The effort made by all the scientists who contributed to
editing this book was significant and as a result new and viable applications were presented.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Karen Butler-Purry and Hung-Ming Chou (2011). Real-Time Rapid Embedded Power System Control
Prototyping Simulation Test-Bed Using LabVIEW and RTDS, Practical Applications and Solutions Using
LabVIEW™ Software, Dr. Silviu Folea (Ed.), ISBN: 978-953-307-650-8, InTech, Available from:
http://www.intechopen.com/books/practical-applications-and-solutions-using-labview-software/real-time-rapid-
embedded-power-system-control-prototyping-simulation-test-bed-using-labview-and-rtds

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE EBHIERFEK6SS iEEPrRE ARG DA E4058TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.




